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A B S T R A C T

Tannery wastewater is one of the most toxic waste generated in industries. In spite of this, there still remains a
paucity of information on characteristics of wastewater generated from artisanal tanneries. This study, therefore,
assessed the water consumption, wastewater generation rates, physicochemical and microbiological character-
istics of wastewater produced from each process unit of an artisanal tannery in Ghana. The study revealed that the
total amount of water use in the tannery ranged between 1171 and 2120L/day whilst the total volume of
wastewater generated was within 820 and 1324L/day. Physicochemical characteristics of the different waste-
water types generated at the tannery including chemical oxygen demand (13600–24333.30 mg/L), biochemical
oxygen demand (1445.64–2803 mg/L), ammonia (3.20–21.38 mg/L), colour (950.35–53900.10PtCo), electrical
conductivity (8170 - 10080 μS/cm), turbidity (450.24–1805NTU), suspended (1033.50–3216.40 mg/L) and
dissolved (26166.50–4996.65 mg/L) solids exceeded the guidelines set by the Ghana Environmental Protection
Agency. There were also high levels of chlorides, sodium, sulphates and calcium ions. The most dominant anion
and cation in the wastewater were chlorides (715–20490.60 mg/L) and sodium ions (258–14056.45 mg/L)
respectively. Heavy metals identified in the wastewater included zinc, aluminium, iron and chromium ions with
the most dominant one being aluminium ions (0.58–78.18 mg/L). Whilst the E-coli was below detectable limit, the
count of total coliforms ranged between 0 and 4.5 � 104CFU/100mL. Five helminth egg species (Ascaris lum-
bricoides, hookworm, Trichuris trichiura, Strongyloides stercoralis, and Enterobius vermicularis) were identified with
their numbers surpassing the safe limit set by the World Health Organisation for irrigation purposes. These results
indicated that the indiscriminate discharge of the untreated wastewater on the bare soil as it is practised at the
tannery has the potential to adversely affect public and environmental health. Appropriate treatment schemes are
therefore, required to treat the wastewater to safe limits prior to discharge.
1. Introduction

Water is an essential resource for manufacturing industries. The
average water consumption by industries is estimated at 22% of the
global water use (Gutterres et al., 2015) with the highest consuming
sectors being the textile, semiconductor and leather manufacturing in-
dustries (UNIDO, 2007). Industrial use of this important commodity
leads to the generation of large volumes of wastewater accompanied with
its discharge and treatment issues.

The leather manufacturing sector makes non-putrescible leathers
from biodegradable skins and hides via tanning processes (Dargo and
Ayalew, 2014). From ancient times, artisanal tanners have relied on
ppiah-Brempong).
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tannins; extracts from plant parts such as such as barks, fruit pods, leaves
and roots as tanning agents in converting skins/hides into leathers in a
process termed as vegetable tanning (Falc~ao and Araújo, 2018). This
artisanal method of leather production is usually carried out using very
simple tools in pits and pots in the open space (Ezenwe et al., 2001).

The leather manufacturing process has, however, been heavily
industrialised over the years. In modern times, leather making processes
are executed in well-built factories equipped with sophisticated ma-
chineries and rely on the use of diverse process chemicals (Ezenwe et al.,
2001). Consequently, the vegetable tanning method has been substituted
with other tanning techniques such as chrome, alum, aldehyde, zirco-
nium salt and syntans tanning (Covington, 1997). Presently, the chrome
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tanning technique which uses basic chromium sulphate as its tanning
agent is practised in about 90% of all tanneries worldwide due to its
apparent advantage over the vegetable tanning method in producing
very flexible, colourful and multipurpose leathers within a shorter period
of time (Dargo and Ayalew, 2014). Despite this enormous transformation
in the leather industry, the artisanal method of leather production is still
being practised in some developing countries such as Ghana (Ezenwe
et al., 2001).

Leather industries, in spite of the attractive leathers produced have
been stigmatised with odoriferous environs and generation of highly
decomposable organic wastes (Muthukkauppan and Parthiban, 2018).
This challenge stems up from the use of animal skin/hides and the
dependence on various process chemicals which include dyes, salts,
tannins, oils, lime, biocides, enzymes, chromium sulphates, acids and
finishing solvents applied in the manufacturing processes (Ilou et al.,
2014). Only a small portion of about 20% of most of these chemicals are
retained in the leathers during production, the remaining amount comes
out with the resulting wastewater (Muthukkauppan and Parthiban,
2018). About 40% of the chromium used in industrial tanneries forms
part of the wastewater generated. Chromium in the wastewater can exist
in different oxidation states-either as hexavalent chromium [Cr(VI)] or
trivalent chromium [Cr(III)] with the former being about a hundred
times more toxic than the latter (Genawi et al., 2020). The wastewater
generated in tanneries is therefore, generally characterized by strong
colouration, huge loads of suspended particles, organic compounds,
heavy metals as well as odorous smells (Ilou et al., 2014). In a study
conducted by Liu et al. (2002), tannery wastewater ranked among the
most toxic industrial wastewaters.

Despite its high toxicity, tannery wastewater are usually discarded on
the tannery sites or into nearby surface water bodies without treatment
(Amanial, 2016; Chowdhury et al., 2013), particularly in some devel-
oping countries such as Ghana leading to environmental degradation.
Appropriate wastewater treatment and management schemes are
required to curb this menace. Information regarding water consumption,
wastewater generation volumes and its characteristics are required for
the design and management of these treatment schemes and also for the
environmental impact assessment of indiscriminate discharge of tannery
wastewater. Whilst this information is readily available for industrial
tanneries (Sawalha et al., 2019; Ilou et al., 2014; Islam et al., 2014), there
is a paucity of it on artisanal tanneries, even though artisanal leather
making remains a source of livelihood for lots of people in Ghana and in
some other developing countries such as Ethiopia (Gebremichael, 2016),
Cameroun (Paltahe et al., 2019), Sudan (Skinner, 2007) and Nigeria
(Zaruwa and Kwaghe, 2014). From an extensive literature search, a study
conducted by Paltahe et al. (2019) was the only work done investigating
into the characteristics of artisanal tannery wastewater. This paper
therefore, seeks to fill this gap in literature by investigating the water
consumption, wastewater generation rate and characteristics in an arti-
sanal tannery in Ghana.

1.1. General processes in artisanal leather production in Ghana

Skins of sheep and goats usually obtained from slaughterhouses are
cured by salting and sun-drying to prevent decay during storage. The
leather making process as practised in the selected study area starts with
the liming process where the cured skins are soaked in a liming liquor
prepared from amixture of wood ash, waste carbide andwater in order to
loosen the hair roots in the skins. The hairs are then removed from the
skins using a double-handled knife. Next, the skins are drenched in a
deliming and bating solution made from a mixture of ground pawpaw
leaves and water. The proteolytic enzyme, papain in the pawpaw leaves
disintegrates the flesh and the fatty tissues on the skins which are then
scraped off with the knife. The skins after been bated are washed and
then tanned via the vegetable tanning technique. The vegetable tanning
liquor is composed of ground pods of Acacia nilotica (commonly termed
as Gum Arabic tree or Babul) and water. The tanned skins may then be
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dyed into red or black colour. The red dye liquor is produced from a
mixture of pounded sorghum leaf sheaths, a small portion of the liming
liquor and water. The black dye on the other hand, is composed of water,
iron filings and ground pods of Acacia nilotica. The leathers after being
dyed are dried, stretched and trimmed to complete the leather
manufacturing process. On very rare occasions, the tanners produce
white leathers by employing the use of aluminium sulphate in tanning
the skins-a process termed as alum tawing. The alum tawing liquor is a
mixture of aluminium sulphate, salt and water.

Amongst all the different liquors employed at the tannery, namely,
liming, deliming/bating, vegetable tanning, alum tawing, red dye and
black dye liquors, only the alum tawing, vegetable tanning and red dye
liquors are discarded after use. The remaining liquors are reused
repeatedly in the production process and frequently strengthened again
by adding the appropriate process material or chemical when their po-
tency diminishes. A schematic diagram illustrating the production pro-
cesses and the input materials used in artisanal leather making in Ghana
has been shown in Figure 1. Detailed descriptions on the leather making
processes in artisanal tanneries in Ghana are well elaborated in a study
conducted by Appiah-Brempong et al. (2020).

2. Materials and methods

2.1. Data collection

The data was collected from the Aboabo Artisanal Tannery in Ghana
with a geographical location of 6o41050.57``N, 1o3607.02``W. Data
gathering encompassed field data collection and laboratory analyses. The
field data collection was employed in determining the water demand and
wastewater generation volumes as well as in the sample collection of
process liquors. The laboratory analyses were then conducted to deter-
mine the types and levels of pollutants in the process liquors.

2.1.1. Quantification of water demand and wastewater generation
Water demand and wastewater generation in leather industries are

generally measured in L/kg of skin or hide. Hence, to estimate the water
consumption and wastewater generation volume during each produc-
tion stage, the average weight of the animal skins to be processed as
well as the volumes of water used and the wastewater produced after-
ward are required. The production stages in artisanal leather making
which involves the use of water are liming, deliming & bating, vege-
table tanning, alum tawing, red dyeing, black dyeing and washing. Due
to the lack of a water metering system at the tannery the water use and
wastewater volumes were measured in litres using graduated buckets.
In this way, the total volume of water used in each process unit could be
read and computed. The leather making operations were carried out in
plastic buckets instead of the pits in order to enhance accuracy in the
measurements. The spent liquor obtained after the vegetable tanning,
alum tawing and red dyeing operations were carefully poured out
individually into specified graduated buckets to determine the volume
of wastewater generated in each operation stage. Prior to the
commencement of the leather manufacturing operations, the mass of
the raw animal skins were weighed in kilograms using a hanging scale.
The water demand and volume of wastewater generated (L/kg) at each
process stage were computed by dividing the total volume of water used
or wastewater generated (L) by the total mass of raw animal skins (kg)
that were processed [Eqs. (1) and (2)]. The quantification process was
carried out five times on the field over a period of five weeks since the
manufacturing process takes 5 days to complete. Data on the number of
skins processed daily at tannery were also collected over this 5-week
period. This data was used in estimating the daily volumetric water
consumption and wastewater generation for each process unit [Eqs. (3)
and (4)].

Vw ¼ vw
mtotal; skins

(1)
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Vww ¼ vww
mtotal; skins

(2)
where, Vw and Vww are the average volume of water use and the average
volume of wastewater generated respectively in each process stage per
unit mass of raw animal skin (L/kg), vw and vww are the total volume of
water used or wastewater generated respectively in each process unit (L)
and mtotal, skins is the total mass of raw skins to be processed (kg)

qd;w ¼ Vw � N �maverage; skins (3)

qd;ww ¼ Vww � N �maverage; skins (4)

where, qd,w and qd,ww are the average daily volumetric water use and
average daily volumetric wastewater generated (L/day) respectively, N is
the average number of skins processed in a day (1/day) and maverage, skins

is the average mass of a raw animal skin to be processed (kg).

2.1.2. Wastewater sample collection and characterisation
Grab samples of the different liquors/wastewater (liming, deliming/

bating, black dye, vegetable tanning, alum tawing and red dye liquors)
meant for physicochemical and microbial analyses were collected from
their respective receptacles at the tannery into twelve (12) 1L plastic
Figure 1. Flow chart of leather making process in an artisanal tannery
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bottles for laboratory analyses. Each sample type was collected in du-
plicates. Samples designated for heavy metal analyses were acidified to
pH ranges between 1 and 2 using nitric acid in order to reduce the
sorption of heavy metals onto the walls of bottles and also to prevent the
formation of metal precipitates during sample storage. Parameters which
can alter easily such as temperature, pH, turbidity and electrical con-
ductivity were measured on site. Sample bottles were transported to the
Environmental Quality Engineering Laboratory of Kwame Nkrumah
University of Science and Technology in an ice chest containing ice
cubes. Sample collection was done on five different days in the month of
May, 2019. Samples which were not analysed immediately were stored at
4 �C in a refrigerator to hamper microbial activities. All analyses were
done in accordance with standard methods (American Public Health
Association (APHA), 1999). Turbidity and Total Suspended Solids (TSS)
measurements were done using the HANNA turbidimeter (HI 93414) and
the gravimetric method respectively. The HACH methods for determi-
nation of Chemical Oxygen Demand (COD), sulphate (SO2þ

4 Þ; ammonia
(NH3–N), and Total Nitrogen (TN) levels in the liquors were followed and
the results were read using HACH DR 3900 spectrophotometer.
Biochemical Oxygen Demand (BOD5) analysis was carried using the
dilution method alongside with dissolved oxygen measurement. Atomic
absorption spectroscopy was employed in analyzing calcium (Ca2þ),
with its input materials and characteristics of the tannery liquors.
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sodium (Naþ), aluminium (Al3þ), zinc (Zn2þ), chromium (Cr) and iron
(Fe). Chloride (Cl�) was measured using the argentometric method. The
determination of total coliforms and E-coli were performed using the
membrane filtration method with Chromocult® coliform agar and
detection and enumeration of helminth eggs carried out according to the
modified USEPA technique (Schwartzbrod, 1998).

3. Results and discussion

3.1. Water use and wastewater generation at the artisanal tannery

A total amount of 10–18L of water is used on each kilogram of raw
animal skin during leather production at the artisanal tannery. The cor-
responding wastewater volume generated ranged from 7 to 11.30L of
wastewater per kilogram of raw skin. The number of raw skins processed
daily was averagely 57 and the average weight of a skin was also found to
be 2.06kg. Hence, the daily water consumption and wastewater gener-
ation range from 1,170 to 2,120L and 820–1320L respectively. The water
consumption and the wastewater generation rate for each production
unit of the artisanal tannery in L/kg raw skin and in L/day are presented
in Table 1.

Water use and wastewater generated at the artisanal tannery is less
than the 35–40L of water/kg raw hide and 30–40L of wastewater/kg raw
hide widely reported in literature for industrial leather manufacturing
industries (Thanikaivelan et al., 2005). Whilst about 65% of the total
amount of water consumed in the artisanal tannery is discarded as
wastewater, approximately 90% of the water used in industrial tanneries
is discharged as wastewater (Kabir et al., 2017). The water consumption
in the artisanal tannery is however, close to the 12.7–17.6L/kg raw hide
reported by Sundar et al. (2001) for advanced leather manufacturing
industries where cleaner technologies aimed at reducing water demand
and pollution loads are practised. The wastewater generation rate at the
artisanal tannery is also comparable to that of advanced leather
manufacturing industries (10–12L/kg) (Sawalha et al., 2019).

The disparity in water demand between artisanal and most industrial
tanneries can be explained by the predominant use of bovine hides (Dixit
et al., 2015) in industrial leather production industries as opposed to the
extensive use of sheep and goat skins in the artisanal tannery. Larger
quantities of water are required in processing bovine hides due to the
bulkiness of these hides. The weight of the hides is estimated to be within
the range of 15 and 40kg whilst that of the sheep and goatskins are within
1 and 6kg (European-commission, 2003).

The few washing stages incorporated in the manufacturing process of
artisanal tanneries can also explain its lowwater use. Whilst the hides are
washed after almost every treatment stage primarily to rid them of any
absorbed process chemicals in industrial tanneries (Nacheva et al., 2004)
this is rarely the case in artisanal tanneries where washing may be done
Table 1. Water consumption and wastewater generation volumes during each
production stage in an artisanal tannery.

Process Water Consumption Wastewater generation

L/kg raw skin �102 L/day L/kg raw skin �102 L/day

Pre-tanning

Liming 1–4 1.17–4.69 0 0

Deliming/Bating 0.5–1.4 0.59–1.64 0 0

Tanning

Vegetable tanning 1.2–1.6 1.41–1.87 0.7–1.3 0.82–1.52

Alum tawing 4–6 4.69–7.03 3.5–6 4.10–7.03

Post-tanning

Black dyeing 0.5–0.7 0.59–0.82 0 0

Red dyeing 0.5–1.0 0.59–1.17 0.5–0.7 0.59–0.82

Composite
washing

2.3–3.4 2.69–3.98 2.3–3.3 2.69–3.87

Total 10.0–18.1 11.71–21.20 7.0–11.3 8.20–13.24
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only after bating the pelts or during dyeing when fainter colours are
desired. Thus, an amount of 11–13L of water/kg of raw hide is appor-
tioned for washing purposes in industrial tanneries (Sundar et al., 2001)
whilst only about 2.3–3.4L of water/kg of raw skin is meant for washing
purposes during artisanal leather production. According to Boahin et al.
(2013) the inadequate washing of the skins by the artisans contributes to
the odourous smell of the finished leathers.

Furthermore, the differences in leather manufacturing processes in
industrial and artisanal tanneries could also account for the variation in
water demand. Some operations such as pickling (0.8–1L/kg raw hide),
rechroming (0.7–1L/kg raw hide) and neutralization (1.7–2L/kg raw
hide) which require extensive use of water (Sundar et al., 2001) are
practised in industrial tanneries but not in the artisanal tannery. Addi-
tionally, the soaking stage, a very important step in leather making aimed
at washing and rehydrating the skins is omitted from the production
stages in the artisanal tannery but is however, widely practised in in-
dustrial tanneries and consumes as much 6–9L/kg of raw hide
(Sathiyamoorthy et al., 2013; Sundar et al., 2001). The reuse of the
liming, deliming/bating and black dye liquors is a water-saving strategy
which could also account for the lesser use of water in the artisanal
tannery.

Finally, some amount of water termed as technical water is used in
industrial tanneries for energy production, wastewater treatment and
floor cleansing (Buljan et al., 2000; Ramanujam et al., 2010) constitutes
about a fifth of the total water consumption (Buljan et al., 2000). How-
ever, in the artisanal tannery, where leather production takes place
manually in an open space with no wastewater purification systems,
there is no allocation of water for sanitary purposes or energy production.

Considering the wastewater discharge, the lesser volume generated in
the artisanal tannery can be linked to the low amount of water used as
well as the reuse of some of the liquors in the leather manufacturing
processes as it has been also reported for advanced leather making in-
dustries (Sawalha et al., 2019). Additionally, absorption of water by
some of the solid process materials such as waste carbide, wood ash and
ground pods of A. nilotica used in the artisanal leather production process
can also account for the lower volumes of wastewater from the artisanal
tannery. This forms a sludge at the bottom of the pots or pits. This is
however, unlike industrial leather making where according to Ilou et al.
(2014), most of the process chemicals used are in a liquid form which
rather add to the resulting wastewater since these chemicals are not fully
absorbed into the hides or leathers.

3.2. Characteristics of the artisanal tannery spent and unspent liquors

The results of the physical, chemical and microbiological character-
istics of the spent (vegetable tanning, alum tawing and red dye liquors)
and unspent liquors (liming, deliming/bating, black dye liquors) are
presented in Tables 2, 3, 4. The characteristics of the different liquors are
indicated in the schematic diagram of the leather making process shown
in Figure 1.

3.2.1. Physical parameters
From the results displayed in Table 2, the average temperature of all

the liquors ranged within 30.80 and 33.60 �C due to the prevailing
weather conditions. The temperature of all the liquors fell within the
tolerance limit established by the Ghana Environmental Protection
Agency (Ghana EPA).

The mean Electrical Conductivity (EC) and Total Dissolved Solids
(TDS) of all the liquors ranged within 6930 and 56600 μS/cm and
3576.65 and 28500 mg/L respectively (Table 2). The liming liquor had
the highest EC (56600 μS/cm) and TDS (28500mg/L) concentrations due
to the large concentration of sodium, chloride (from the salts applied on
the skins), calcium, and magnesium (from the wood ash and waste car-
bide) ions. These ions are absorbed into the animal skins during the
liming stage and diffuse into the other liquors upon immersion of the
skins. Hence, their concentrations in the subsequent liquors dwindled



Table 2. Physical characteristics of spent and unspent liquors at the artisanal tannery.

Parameter Liming Deliming/Bating Spent vegetable tanning Spent alum tawing Spent red dye Black dye Ghana EPA
(2016)

Temperature (oC) 33.22 � 2.45 33.22 � 0.83 32.40 � 1.01 33.60 � 1.15 33.50 � 1.08 30.80 � 0.56 <3o above
ambient

Colour (PtCo) 48983 � 634.11 17566 � 679.54 22033 � 1350.5 950.35 � 123.3 53900 � 804.65 16886 � 900.9 100

EC (μS/cm) 56600 � 26.28 34700 � 21.50 10080 � 77.55 52370 � 3.42 8170 � 4.30 6930 � 1.32 1500

TDS (mg/L) 28500 � 497.80 17533 � 580.60 4996.7 � 383.78 26166 � 261.63 4123.3 � 173.62 3576.7 � 108.62 1000

TSS (mg/L) 6728.7 � 645.42 8116.8 � 633.88 3216.4 � 868.78 1033.5 � 704.65 1894.1 � 385.01 2820 � 165.82 50

Turbidity (NTU) 2953.4 � 279.24 1733.3 � 394.98 1805 � 142.93 450.24 � 43.98 1700 � 186.6 943.50 � 74.52 75

Table 3. Chemical characteristics of spent and unspent liquors at the artisanal tannery.

Parameter Liming Deliming/Bating Spent vegetable tanning Spent alum tawing Spent red dye Black dye Ghana EPA (2016)

pH 12.95 � 0.28 8.79 � 0.22 6.02 � 0.47 4.54 � 0.83 6.36 � 0.60 5.75 � 0.74 6–9

BOD5 (mg/L) 2705.3 � 396.73 2073.4 � 287.51 2803 � 308.76 1445.6 � 641.56 2709 � 354.12 2068.8 � 291.41 50

COD (mg/L) 17050 � 157.20 4366.7 � 921.65 24333 � 654.84 2380 � 109.23 13600 � 157.55 6970 � 72.10 250

BOD5: COD 0.16 � 0.06 0.47 � 0.04 0.12 � 0.02 0.61 � 0.06 0.20 � 0.04 0.30 � 0.06

TN (mg/L) 115.68 � 21.85 93.14 � 14.45 37.18 � 9.16 64.35 � 55.87 38.52 � 7.02 40.10 � 36.77 50

NH3–N (mg/L) 68.75 � 7.43 48.08 � 5.79 16.80 � 3.38 21.38 � 3.54 3.20 � 0.78 4.75 � 0.49 1

SO4
2þ(mg/L) 355.75 � 30.74 115.38 � 19.56 30.14 � 3.20 1190.7 � 18.72 90.25 � 3.80 10.42 � 2.05 250

Ca2þ (mg/L) 18.45 � 5.78 14.80 � 3.61 7.26 � 1.15 9.74 � 2.38 5.72 � 1.28 3.24 � 0.26 -

Cl�(mg/L) 23280 � 1636 12516 � 151.32 751 � 68.74 20490 � 1270.64 795.88 � 82.35 643.30 � 76.55 -

Naþ (mg/L) 20727 � 503.28 9510 � 141.35 258.66 � 36.95 14056 � 763.75 315.20 � 72.61 245.28 � 45.60 -

Total Fe (mg/L) 7.58 � 2.40 6.05 � 2.94 2.02 � 1.45 5.26 � 1.72 2.95 � 1.08 18.90 � 5.92 10

Al3þ (mg/L) 5.04 � 1.02 3.55 � 0.75 1.28 � 0.08 78.18 � 10.52 0.54 � 0.01 0.95 � 0.15 -

Total Cr (mg/L) 0.04 � 0.001 0.04 � 0.002 0.04 � 0.002 0.04 � 0.002 0.03 � 0.001 0.2 � 0.01 0.5

Zn2þ (mg/L) 3.18 � 0.14 5.04 � 0.64 0.64 � 0.26 1.54 � 0.12 0.54 � 0.18 0.4 � 0.10 10

M. Appiah-Brempong et al. Heliyon 7 (2021) e08680
along the process stages from the deliming/bating, vegetable tanning,
red dyeing to the black dyeing stage. Furthermore, disintegration of
soluble proteins on the skins (Madhavi et al., 2011) might also contribute
to the dissolved matter content of the liming and deliming/bating li-
quors. Additional sources of dissolved solids in the deliming/bating,
vegetable tanning, black dye liquor and red dye liquors can also be
attributed to the use of the crushed plant materials (pawpaw leaves,
acacia pods and the leaf sheaths). That of the alum tawing spent liquor
stems from the presence of salts and aluminium sulphate (Al2(SO4)3).

The values of the EC and the TDS of all the spent liquors were above
the stipulated Ghana EPA standards of 1500 μS/cm and 1000 mg/L
respectively. Discharge of such wastewater on bare lands can lead to an
increase in electrical conductivity and solute concentration in soils
(Al-Jaboobi et al., 2014) which destroys soil structure and impedes soil
drainage, nutrient retention, soil aeration and plant development (Maria
Table 4. Biological characteristics of the spent and unspent liquors at the artisanal ta

Microbes Liming Deliming/bating Spent vegeta
tanning

Bacteria (CFU/100mL)

Total coliform 2.6 � 103

(0–6x103)
1.7 � 104

(0–4x104)
4.5 � 104

(0–1x105)

E-coli 0 0 0

Helminth eggs (eggs/L)

Ascaris lumbricoides 5.6 (0–16) 1.40 (0–3) 3.8 (2–8)

Hook worm 1 (0–2) 0 3.6 (0–7)

Trichuris trichiura 2.3 (0–5) 1 (0–2) 4.2 (0–9)

Strongyloides stercoralis 2.2 (2–3) 1 (0–2) 2.6 (0–6)

Enterobius vermicularis 3.8 (0–8) 1.8 (0–3) 4.4 (0–10)

The range of values are written in brackets.
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et al., 2012). It also results in plant stress (Corwin and Yemoto, 2017) and
a decrease in the abundance of essential soil fauna (Maria et al., 2012).
Infiltration of such wastewater into water bodies tend to make them
unpalatable (Sherrard et al., 1987) and also causes low reproduction rate,
death, loss of habitat and species extinction in aquatic organisms
(Weber-Scannell and Duffy, 2007). Certain domestic animals such live-
stock and chickens also die ingesting wastewater laden with large con-
centrations of dissolved solids (Sherrard et al., 1987).

The Total Suspended Solids (TSS), turbidity and colour of the liquors
resulted from the presence of organic and inorganic materials as well as
the dyes used in the leather making process (Bilotta and Brazier, 2008).
Materials such as hair residuals, wood ash, calcium carbide residues and
plant materials contributed significantly to the turbidity and suspended
matter constituents of the liquors. From Table 2, the average values of
TSS, turbidity and colour ranged within 1033.50 and 8116.75 mg/L,
nnery.

ble Spent alum
tawing

Spent red dye Black dye Ghana
EPA
(2016)

9 � 10
(0–2x102)

5.5 � 103

(0–1x104)
2.2 � 103

(0–4x103)
400

0 0 0 10

1.8 (0–4) 2.8 (0–5) 1.2 (0–3) -

0 3.5 (2–5) 1 (0–2) -

0 1.4 (0–3) 1.2 (0–3) -

0 0.8 (0–1) 3.2 (1–7) -

0.8 (0–2) 2.6 (2–4) 2.3 (0–5) -
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450.24 and 2953.35NTU and 950.35 and 53900PtCo respectively. The
liming liquor was the most turbid due to the presence of the hair residues
and the partially dissolved wood ash and waste carbide. The bating and
deliming liquor had the highest constituent of suspendedmatter resulting
from the crushed pawpaw leaves, disintegrated animal flesh and fat tis-
sues, hair residues and soil particles. The red dye wastewater had the
strongest colouration.

The values of TSS, turbidity and colour obtained for the spent liquors
were in excess of the limits proposed by Ghana EPA which are 50 mg/L,
75NTU and 100PtCo respectively. The discharge of this wastewater on
bare lands as practised at the tannery can cause a restriction in the flow
rate of water through the soil as the soil pores can be clogged by the
suspended particles (Vinten et al., 1983). For surface water bodies, not
only will the aesthetic value be destroyed but also the photosynthetic
activity will be reduced due to diminished light intensity. Thus, growth
and abundance of primary producers will be impaired which will ulti-
mately affect the food chain. The suspended particles are likely to block
air passages in fishes and smother them to death, destroy habitats, eggs
and larvae of fishes and also disrupt free movement and search for food
by fishes (Bilotta and Brazier, 2008; Ryan, 1991). Eventually, this can
lead to loss in biodiversity and population abundance (Kemp et al., 2011)
in surface water bodies.

3.2.2. Chemical parameters
The acidity or alkalinity of a wastewater is determined by its pH.

From the results shown in Table 3, the liming and the deliming/bating
liquors were found to be basic (12.95 and 8.79 respectively) due to the
presence of calcium hydroxide (lime). The calcium hydroxide originates
from the reaction between wood ash and calcium carbide with water
(Sun et al., 2015; Farhad and Mohammadi, 2005). The pH of the
deliming/bating liquor is appropriate to decrease the pH of the pelts so as
to favour the bating process (Beghetto et al., 2013). The black dye liquor
(5.75) and the vegetable tanning wastewater (6.01) are slightly acidic
due to the presence of the tannic acids emanating from the acacia pods
(Mahdi et al., 2006). Paltahe et al. (2019) reported pH values of 12.70,
9.10 and 7.10 for liming, deliming/bating liquors and vegetable tanning
wastewater respectively which are in agreement with that obtained in
this study. The red dye wastewater is also slightly acidic (6.36) due to the
dye extract from the sorghum leaf sheaths. This pH value is in line with
the pH of 6.2 reported by Gumel and Ali (2012). The alum tawing
wastewater is highly acidic (4.54) as a result of the production of sul-
phuric acid from the dissolution of aluminium sulphate (Al2ðSO4Þ3Þ in
water (OMRI, 2015). The pH of all the wastewater types except that of
alum tawing were within the permissible range of 6–9 as stipulated by
Ghana EPA. Direct discharge of the alum tawing wastewater on the
ground can make soils acidic (Al-Jaboobi et al., 2014) resulting in the
release of toxic ions such as aluminium and manganese. These ions
hinder growth in both plants (Rousk et al. 2009) and soil fauna (Lavelle
et al. 1995) and also hampers the absorption of water and essential nu-
trients by plant's roots (Thakuria et al., 2016; Steiner et al., 2012).
Additionally, the acidic wastewater can lead to acidification of ground-
water bodies particularly shallow wells which is a major source of water
for the residents around the tannery. Acidified groundwater is charac-
terized by a decline in pH and alkalinity and this also stimulates the
release of toxic chemicals such as nitrate, aluminium, zinc, cadmium and
chromium into the water (Knutsson, 1994; Soveri, 1992).

The average Biochemical Oxygen Demand (BOD5) and Chemical
Oxygen Demand (COD) recorded in all the liquors occurred within the
ranges of 1445.64 and 2803 mg/L and 2380 and 24333.30 mg/L
respectively. The organic matter in the liquors stemmed from the use of
plant materials (acacia pods, sorghum leaf sheath, pawpaw leaves), oils,
as well as the hair, wool, flesh and adipose tissues which detached from
the animal skins. Reported values in literature are 7100mgBOD5/L and
18330mgCOD/L for liming liquor; 3119mgBOD5/L and 8560mgCOD/L
for deliming/bating liquor and 3042mgBOD5/L and 7640mgCOD/L for
vegetable tanning wastewater (Paltahe et al., 2019). Even though these
6

are results from an artisanal tannery in Cameroun they differ from that
obtained in this study possibly due to the variation in the number of skins
processed and the quantities of plant materials or chemicals used in the
preparation of the liquors as there are no strict measurement guiding the
preparation of the liquors. The biodegradability index (BOD5: COD) of
the liquors are also presented in Table 3. Generally, wastewaters with a
BOD5:COD <0.4 are characterised as being hardly biodegradable which
may be resulting from their toxicity or the presence of recalcitrant
compounds (Lofrano et al., 2013; Schrank et al., 2004). From the results
obtained all the liquors except the deliming/bating and alum tawing li-
quors had low biodegradability. The low biodegradability of the vege-
table tanning, red dye and black dye liquors could be attributed to the
phenolic compounds which are the main constituents of the acacia pods
and sorghum leaf sheaths (Elgailani and Ishak, 2016; Kayod�e et al., 2011;
He et al., 2007). Phenolic compounds are not easily biodegradable and
are also toxic to microbial organisms (Benson et al., 2013; Doughari,
2012; Schrank et al., 2004). The low biodegradability of the liming liquor
can be linked to its high pH (12.95) which could have hampered activ-
ities of the microorganisms. The BOD5 and COD concentrations of all the
wastewater discharges are above the permissible threshold of 50 and 250
mg/L respectively. Discharge of wastewater with high organic loads into
receiving water bodies can result in rapid growth of microbes, dissolved
oxygen depletion, death of the aquatic organisms, turbid water, and low
photosynthetic activities. The decay of the dead organisms produce foul
smells in the water bodies and increase the growth of pathogenic or-
ganisms (Akpor and Muchie, 2011).

The average total nitrogen (TN) and ammonia (NH3–N) concentra-
tions in the liquors were within 37.18 and 115.68 mg/L and 3.20 and
68.75 mg/L respectively (Table 3). The highest amount was found in the
liming liquor due to the presence of blood, flesh, soluble proteins (ker-
atin, globulins, albumins, elastin and cells), hairs, fatty tissues and dung
(Mittal, 2004). The plant materials used (acacia pods, pawpaw leaves and
sorghum leaf sheath) also contain some amount of crude proteins
(Abbasian et al., 2015; Nwofia et al., 2012; Adetuyi et al., 2007) which
could add to the nitrogenous composition of the various liquors. The
concentrations of TN in the alum tawing wastewater and that of NH3–N
in all the spent liquors were not consistent with the Ghana EPA guidelines
(50mgTN/L and 1mgNH3/L). The occurrence of flesh and fatty tissues as
well as hair residues in the alum tawing liquor could have contributed to
its high TN and NH3–N concentrations. For the vegetable tanning and red
dye wastewaters, the high levels of NH3–N could be primarily linked to
the presence of plant materials, residues of hair, flesh and adipose tissues.
Introduction of excessive amounts of nitrogenous substances in surface
water bodies can lead to algae growth, depletion of dissolved oxygen and
ultimate destruction of the water quality (Akpor and Muchie, 2011).
High levels of ammonia has a toxic effect on fishes by causing growth
retardation, tissue erosion, and mortality (Shin et al., 2016).

Sodium (Naþ) and chloride (Cl�) ions were the dominating cations
and anions in the wastewater respectively. The mean concentrations of
Naþ and Cl� ions in the liquors were from 245.28-20727.40 mg/L and
643.30–23280.15 mg/L respectively (Table 3). The liming liquor had the
highest constituent of both Naþ and Cl� ions since it receives the bulk of
the salts applied in preserving the skins. Due to inappropriate washing of
the skins, some of the ions retained in the skins diffuse into the subse-
quent liquors. The sodium levels in the vegetable tanning, red dye and
black dye liquors may also be originating from the trace concentrations in
the plant material used (Abbasian et al., 2015; Adetuyi et al., 2007). The
addition of salt in the alum tawing liquor could also explain its high levels
of chloride (20490.60 mg/L) and sodium (14056.45 mg/L) ions. There
are no set limits for sodium and chloride ions in the Ghana EPA guide-
lines for wastewater discharge. Sodium and chloride ions are essential for
metabolic processes in plant and animal cells. However, excessive
amount of salt have been associated with cardiovascular and renal ill-
nesses in man (Kumar and Puri, 2012), increase in electrical conductivity
and salinity in water bodies and soils, corrosion of metallic components
of wastewater treatment systems (Kumar and Puri, 2012), osmotic



M. Appiah-Brempong et al. Heliyon 7 (2021) e08680
imbalance in fishes impeding growth and reproduction processes (Fon-
tenot et al., 2013), hindrance in seed germination, plant growth, repro-
duction and absorption of water and essential nutrients in plants
(Akbarimoghaddam et al., 2011).

The average levels of sulphate ðSO2þ
4 Þ and calcium (Ca2þ) ions fell

within the ranges of 1190.70 and 10.42 mg/L and 18.45 and 3.24 mg/L
respectively (Table 3). The alum tawing wastewater had the highest
concentrations of sulphate whilst the calcium ions were mostly pre-
dominant in the liming liquor. The least concentrations of the ions
occurred in the black dye liquor. The sulphate and calcium ions in the
liquors could have stemmed from the build-up of blood and fleshly tis-
sues from the animal skins (Blinn et al., 2006; Ortolani et al., 2001),
disintegrated hairs/wool (Reis et al., 1967; Fletcher et al., 1963), animal
dung (Saviozzi et al., 2006) trapped in the hairs on the skins as well as the
wood ash (Pitman, 2006) added to the liquor. The pawpaw leaves (Glazer
and Smith, 1965), acacia pods (Abbasian et al., 2015), sorghum leaf
sheath (Adetuyi et al., 2007) and vegetable oils (He et al., 2009) also
contain traces of sulphur and calcium ions which could be released into
the respective liquors. The calcium carbide is also a good source of cal-
cium ions (Serafimova et al., 2011). Even though there are no set
guidelines for Ca2þ ions in the Ghana EPA standards, increased levels
may lead to increased risk of cardiovascular diseases and kidney stones in
man (Daly and Ebeling, 2010). In water bodies, calcium ions can combine
with carbonate ions resulting in water hardness which causes corrosion
and scaling in water distribution systems and boilers (WHO, 2011). With
regards to sulphate ions, only the alum tawing wastewater had concen-
trations above the Ghana EPA guidelines (250 mg/L). Elevated concen-
trations of the ions can cause laxative effect, diarrhoea (Bashir et al.,
2012) and dehydration in man, alter the taste of drinking water, cause
corrosion and scaling in water systems (WHO, 2004) and lead to eutro-
phication in surface water bodies (Lamers et al., 2002). Sulphates can
also be reduced to hydrogen sulphide in water which is very toxic to
living organisms (WHO, 2003). High levels of sulphate in soils tend to
enhance the growth of sulphate-reducing bacteria which are responsible
for the production of methyl mercury, a very toxic compound which can
lead to brain malfunctioning and death in animals and man (Jeremiason
et al., 2006).

The different heavy metals analysed were total iron, aluminium, zinc
and total chromium. The concentrations found in the different liquors
varied between 2.02 and 18.90mgFe/L, 0.54 and 78.18mgAl3þ/L, 0.4
and 5.04mgZn2þ/L and 0.03 and 0.2mgCr/L (Table 3). The black dye
liquor had the highest concentration of total iron, chromium and zinc
ions which could be attributed to the use of iron filings in the solution.
Other sources of total iron and zinc in the liquors are the animal blood,
hair, disintegrated skin proteins (Gupta, 2014; Ganz and Nemeth, 2006;
Top, 2005) and wood ash (Karltun et al., 2008). The pawpaw leaves,
acacia pods and sorghum leaf sheaths also contain traces of total iron and
zinc ions (Singh et al., 2016; Abbasian et al., 2015; Nwofia et al., 2012;
Adetuyi et al., 2007). The alum tawing spent liquor had the highest levels
of aluminium ions originating from the application of aluminium sul-
phate in the solution. Wood ash is another source of aluminium ions
(Karltun et al., 2008) and pawpaw leaves are also known to contain some
concentrations of chromium (Sharma et al., 2013).

The levels of iron, total chromium and zinc ions in the different types
of wastewater met the Ghana EPA standard (10mgFe/L, 0.5mgCr/L and
10mgZn/L). There are however, no specified threshold concentrations
for Al3þ in the Ghana EPA guidelines. Aluminium is a non-essential
nutrient in living things (Akpor and Muchie, 2011). Aluminium
toxicity in plants can inhibits growth, uptake of nutrients and subse-
quently reduce crop yield whilst in humans it is associated with brain
damage, nervous breakdown, memory loss, Alzheimers disease and
gastrointestinal disorders (Jaishankar et al., 2014). However, zinc being
an essential nutrient contributes to photosynthetic and growth processes,
energy production and protein synthesis in plants (Tsonev and Lidon,
2012).
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3.2.3. Biological parameters
The results on the microbial characteristics of the different liquors

and wastewaters are presented in Table 4. The means and the ranges are
reported. The source of these microbial organisms (bacteria and helminth
eggs) in the liquors could be from animal dung, dirt and manure trapped
in the hairs/wool of the animal skins, process materials such as the plant
parts (the pods and leaves are usually dried on the ground before use), or
from erosion of contaminated soils during rainfall or by wind into the pits
containing the liquors or wastewater. For the bacteriological analyses,
the total coliform count ranged from 0–1.5� 105 in all the samples whilst
the count for E-coli was zero. The levels of E-coli in all the wastewaters
met the Ghana EPA permissible limit (10CFU/100mL) whiles the average
count of the faecal coliforms exceeded the stipulated threshold limit (400
CFU/mL).

Their occurrence is a probable indication of environmental and faecal
contamination of the liquors. It also depicts the presence of other path-
ogens in the liquors (Horan, 2003). The zero count recorded for E-coli and
the coliforms may be attributed to the possible destruction of the bac-
terial cells by the high pH of the liming liquor as was observed by Grabow
et al. (1978), the action of proteolytic enzymes (papain) in the pawpaw
leaves used in the deliming/bating liquor, antimicrobial properties of the
phenols (tannins, saponins and flavonoids) produced from the pods of the
acacia and the sorghum leaf sheaths used in the vegetable tanning, black
dye and red dye liquors (Ali Kauther Sir et al., 2020; Fayyad, 2014; Colak,
2006) as well as the high salt content, acidity and the excess aluminium
ions in the alum tawing wastewater (Abdulkarim et al., 2009; Hajmeer
et al., 2006; Boji�c et al., 2002). Additionally, the high iron content of the
black dye liquor might also play an inhibitory role against the growth of
E-coli (Kalantari and Ghaffari, 2008).

Table 4 also shows the distribution of the helminth eggs in the
different liquors. The eggs identified in the process liquors/wastewater
were that of Ascaris lumbricoides (roundworms), hookworm (Ancylostoma
duodenale and Necator americanus), Trichuris trichiura (whipworm),
Strongyloides stercoralis (threadworm) and Enterobius vermicularis
(pinworm). These are human intestinal parasites typically found in
impoverished areas of tropical and sub-tropical regions of the world. Eggs
of Ascaris lumbricoideswere the most predominant with the average count
in all the liquors/wastewaters summing up to 16.60eggs/L which
constitute 27.08% of the total number of eggs identified. Their high
prevalence could be related to their abundance in the environment and
also their ability to survive even under adverse environmental conditions
(Dold and Holland, 2011). The second most abundant egg was that of the
Enterobius vermicularis (15.70eggs/L; 25.61%) followed by Trichuris tru-
churia (10.10eggs/L; 16.48%), then Strongyloides stercoralis (9.8eggs/L;
15.99%), and then hookworm (9.10eggs/L; 14.85%).

Among all the liquors/wastewater, the vegetable tanning wastewater
bore the highest number eggs (19.2eggs/L; 31.02%) whilst the alum
tawing wastewater contained the least number. The average load of eggs
in each of the spent liquors exceeded the limit set by WHO (2006)
(<1egg/L) and therefore, cannot be considered for crop irrigation. The
zero count recorded in the liquors could arise from the anthelminthic
effect of phenols (contained in the plant materials used in the vegetable
tanning, black dye and red dye liquors) (Ndjonka et al., 2014; Badar
et al., 2011), high acidity (as in the alum tawing wastewater) (Hindiyeh
and Al-Salem, 2004), papain, the proteolytic enzyme used in the delim-
ing/bating liquor (Buttle et al., 2011; Stepek et al., 2005) and the high
alkalinity and ammonia content of the liming liquor (Senecal et al., 2020;
Jensen et al., 2009). Viable eggs and larvae of these worms are known to
cause infection in man even at a low infective dose (Amoah et al., 2016).
Infection may occur after penetration into the skin by an infective larvae
or ingestion of the ova from contaminated hands, water, food or soil
(Squire et al., 2018). The infection usually manifests itself in various
diseases such as diarrhoea, undernutrition, abdominal bloating, kwash-
iorkor, stunted growth, lung and pelvis inflammation, low cognitive
ability and anaemia particularly in pregnant women (Fan et al., 2019;
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Manz et al., 2017; Hossain and Bhuiyan, 2016). Thus, the tanners who
practise poor personal hygiene and are inappropriately garbed in any
protective clothing or equipment may be at risk of infection.

4. Conclusion

This study revealed that the amounts of water consumed and waste-
water generated in the artisanal tannery are 1171 and 2120L/day and
820 and 1324L/day respectively. Much water is saved through the reuse
of some of the process liquors. The concentrations of most of the con-
taminants in the artisanal tannery wastewater also exceeded the
threshold limits set for wastewater discharge by the Ghana Environ-
mental Protection Agency. High levels of COD, BOD5, turbidity, colour,
TSS, TDS, chlorides, sodium, sulphates, total nitrogen and faecal co-
liforms detected in the wastewater could result in destruction of water
bodies and toxicity in aquatic and terrestrial organisms. The count of the
different helminth egg species in the spent liquors (Ascaris lumbricoides,
Ancylostoma duodenale, Necator americanus, Trichuris trichiura, Strong-
yloides stercoralis, and Enterobius vermicularis) also exceeded the WHO
guidelines for irrigation. Evidently, the indiscriminate discharge of the
wastewater as practised by the tannery is a threat to human life and the
environment. It is therefore, recommended that further studies should be
carried out in development of efficient treatment systems to treat the
wastewater to safe limit for either reuse or safe discharge. The tanners
should also be educated on the use of personal protective equipment for
their safety.
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