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Combining multiple microarray datasets increases sample size and leads to improved reproducibility in identification of
informative genes and subsequent clinical prediction. Although microarrays have increased the rate of genomic data collection,
sample size is still a major issue when identifying informative genetic biomarkers. Because of this, feature selection methods often
suffer from false discoveries, resulting in poorly performing predictive models. We develop a simple meta-analysis-based feature
selection method that captures the knowledge in each individual dataset and combines the results using a simple rank average.
In a comprehensive study that measures robustness in terms of clinical application (i.e., breast, renal, and pancreatic cancer),
microarray platform heterogeneity, and classifier (i.e., logistic regression, diagonal LDA, and linear SVM), we compare the rank
average meta-analysis method to five other meta-analysis methods. Results indicate that rank average meta-analysis consistently
performs well compared to five other meta-analysis methods.

1. Introduction

We develop a simple, yet robust meta-analysis-based fea-
ture selection (FS) method for microarrays that ranks
genes by differential expression within several independent
datasets,then combines the ranks using a simple average to
produce a final list of rank-ordered genes. Such meta-analysis
methods can increase the power of microarray data analysis
by increasing sample size [1]. The subsequent improvement
to differentially expressed gene (DEG) detection, or to FS
is essential for downstream clinical applications. Many of
these applications, such as disease diagnosis and disease
subtyping, are predictive in nature and are important for
guiding therapy. However, DEG detection can be difficult
due to technical and biological noise or due to small sample
sizes relative to large feature sizes [2]. These properties are
typical of many microarray datasets. Despite small sample
sizes, the number of gene expression datasets available to the
research community has grown [3]. Thus, it is important
to develop methods that can use all available knowledge

by simultaneously analyzing several microarray datasets of
similar clinical focus. However, combining high-throughput
gene expression datasets can be difficult due to techno-
logical variability. Differences in microarray platform [4]
or normalization and preprocessing methods [5] affect the
comparability of gene expression values. Laboratory batch
effects can also affect reproducibility [6]. Numerous studies
have proposed novel strategies to remove batch effects [7].
However, in some cases, batch effect correction can have
undesirable consequences [8]. In light of these challenges,
several studies have proposed novel methods for meta-
analysis of multiple microarray datasets.

Existing microarray meta-analysis methods either com-
bine separate statistics for each gene expression dataset or
aggregate samples into a single large dataset to estimate
global gene expression. The study by Park et al. used analysis
of variance to identify unwanted effects (e.g., the effect of
different laboratories) and modeled these effects to detect
DEGs [9]. Choi et al. used a similar approach to compute an
“effect size” quantity, representing a measure of precision for
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Figure 1: Study design diagram. We compare the predictive
performance of meta-analysis-based feature selection (FS) methods
by designing a study that considers five components: (1) basic
FS methods that are the building blocks of some of the meta-
analysis methods, (2) meta-analysis-based FS methods, (3) clinical
application, (4) microarray data platform, and (5) classifier (logistic
regression, diagonal LDA and linear SVM). Since the “best” meta-
analysis-based FS method may be dataset- or application-specific,
assessing performance over a wide variety of factors enables an
evaluation of the method’s robustness.

each study, and used this “effect size” to directly compare and
combine microarray datasets [10]. Wang et al. combined the
fold change of genes between classes from three microarray
datasets and weighted each dataset by its variance such that
datasets with higher variance contribute less to the final
statistic [11]. Yoon et al. conducted a large-scale study of
gene expression by examining the variation of genes across
multiple microarray datasets, regardless of the clinical focus
[12]. Breitling and Herzyk ranked fold changes between all
interclass pairs of samples and computed the product of
all ranks for each gene [13]. More recently, Campain and
Yang reviewed several meta-analysis methods and assessed
their performance using both classification accuracy and
synthetic data [14]. Research has shifted towards methods
that consider multiple FS methods, reflecting the fact that
no single FS method performs well for all datasets [15].
Although several meta-analysis methods exist, except for the
study by Campain and Yang, the literature rarely compares
these methods in a comprehensive manner.

We develop the rank average method, a simple meta-
analysis-based FS method, for identifying DEGs from mul-
tiple microarray datasets and design a study (Figure 1) to
compare rank average to five other meta-analysis-based
FS methods. We focus on the predictive ability of genes

emerging from meta-analysis and show that rank average
meta-analysis is robust with respect to three factors. These
three factors are (1) clinical application (i.e., breast, renal,
and pancreatic cancer diagnosis or subtyping), (2) data
platform heterogeneity (i.e., combining different microarray
platforms), and (3) classifier. Using a comprehensive factorial
analysis, we rate each meta-analysis-based FS method relative
to its peers. In terms of identifying genetic features with
reproducible predictive performance and in terms of robust-
ness to multiple factors, results indicate that rank average
meta-analysis performs consistently well in comparison to
five other meta-analysis-based FS methods.

2. Methods

2.1. Microarray Datasets. We use six breast cancer, five renal
cancer, and five pancreatic cancer gene expression datasets
(Table 1) to compare meta-analysis-based FS methods. Each
renal cancer dataset examines patient samples from several
subtypes of tumors: clear cell (CC), oncocytoma (ONC),
chromophobe (CHR), and papillary (PAP). We are interested
in identifying genes differentially expressed between the
CC subtype and all other subtypes, that is, CC versus
ONC/CHR/PAP. These renal cancer datasets share a similar
clinical focus. However, they are heterogeneous in terms of
microarray platform [16–21]. Similarly, the breast cancer
datasets are heterogeneous in both platform and clinical
focus [22–26]. Although patient samples from each dataset
have undergone different treatment for breast cancer and
have been extracted at different stages of the disease, each
sample is labeled as either estrogen receptor positive (ER+)
or negative (ER−). Thus, we assess the performance of classi-
fiers that predict the estrogen receptor status. The pancreatic
cancer datasets also include a variety of platforms and clinical
focuses [27–31]. We identify genes to discriminate pancreatic
cancer versus noncancer patient samples. These datasets
contain different numbers of probes (or probesets in the
case of Affymetrix datasets) due to differences in microarray
platform. Within each dataset group, we reduce the number
of probes in each dataset to a common shared set based on
probe sequence similarity.

2.2. Rank Average Meta-Analysis. The meta-analysis-based
FS method proposed in this paper ranks genes individually
in each dataset and computes the average rank of each gene.
Gene rank order is determined by a measure of differential
expression (which can be any of a number of basic FS
methods such as fold change or t-test) and we assume that
this rank order is invariant to batch effects. Using the average
rank of a gene across several datasets to obtain the final
multidataset rank order, we can infer (1) the relative strength
of that gene in differentiating the patient samples of interest
and (2) the consistency of the gene’s differential expression
across multiple studies.

The remainder of this section uses the following mathe-
matical notation. K is the total number of datasets, M is the
total number of genes in each dataset, and Nk is the number
of samples in dataset k, where k = 1 · · ·K and N is the total
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Table 1: Microarray datasets.

(a) Breast cancer estrogen receptor status

Dataset ER+ ER− Platform No. of probes

MDACC Train 80 50 Affy HG-U133A 22283

MDACC Test 60 40 Affy HG-U133A 22283

Miller 213 34 Affy HG-U133A 22283

Sotiriou 72 24 Affy HG-U133A 22283

Minn 57 42 Affy HG-U133A 22283

Van’t Veer 226 69 Agilent 2-Color 24496

Common probes: 8953.

(b) Renal cancer subtype

Dataset CC Other Platform No. of probes

Schuetz 13 12 Affy HG-Focus 8793

Jones 32 29 Affy HG-U133A 22283

Kort 10 30 Affy HG-U133+2.0 54675

Yusenko 26 27 Affy HG-U133+2.0 54675

Higgins 26 9 cDNA 2-Color 22689

Common probes: 946.

(c) Pancreatic cancer diagnosis

Dataset Normal Cancer Platform No. of probes

Badea 39 39 Affy HG-U133+2.0 54675

Ishikawa 25 24 Affy HG-U133A/B 44928

Pei 16 36 Affy HG-U133+2.0 54675

Pilarsky 18 27 Affy HG-U133A/B 44928

Iacobuzio-Donahue 5 17 cDNA 2-Color 43910

Common probes: 4530.

number of samples in all datasets. We denote a gene i in
dataset k as a vector

gi,k =
(
xi,k1 , xi,k2 , . . . , xi,kNk

)
, (1)

where xi,kj is the expression value of gene i of sample j in
dataset k. In the case of sample aggregation (i.e., the naive
method of meta-analysis), we denote a gene i across all
datasets with

gi,• =
((

xi,11 , xi,12 , . . . , xi,1N1

)
,
(
xi,21 , xi,22 , . . . , xi,2N2

)
, . . . ,

(
xi,K1 , xi,K2 , . . . , xi,KNK

))
.

(2)

Using this notation, we can define a function, ri,k,ϑ =
Rϑ(gi,k), to compute the rank, ri,k,ϑ, of a gene, gi,k, using a
ranking algorithm denoted by ϑ. A smaller rank indicates a
greater degree of differential expression. In the case of sample
aggregation, the ranking function takes the form ri,•,ϑ =
Rϑ(gi,•). The average rank, ri, of a gene i across all datasets,
weighted by number of samples in each dataset, Nk, is

ri = 1
N

K∑

k=1

NkRϑk

(
gi,k

)
. (3)

Weighting gives preference to ranks from datasets with larger
sample sizes.

We consider several basic FS, or gene ranking, methods as
follows: fold change (FC), t-test (T), significance analysis of
microarrays (SAM) [32], rank-sum (RS), minimum redun-
dancy maximum relevance using the difference formulation
(mRMRD), and mRMR using the quotient formulation
(mRMRQ) [33]. We explicitly define the rank algorithm for
the kth dataset as

ϑk ∈ {FC,T , SAM, RS, mRMRD, mRMRQ}. (4)

For each dataset and each basic FS method, we use three-
fold cross-validation to compute an estimate of classification
performance (measured using AUC) averaged over 20 feature
sizes (ranging from the top single feature to the top twenty
features). We then choose the basic FS method, ϑk, with
highest estimated classification performance for each dataset.
Because each basic FS method makes different assumptions
about DEGs and the correctness of these assumptions varies
from dataset to dataset, allowing a different basic FS method
for each dataset can improve performance.

2.3. Predictive Performance. We use classification perfor-
mance to assess meta-analysis-based FS methods with the
assumption that improved FS leads to higher prediction
performance when classifying samples from an independent



4 The Scientific World Journal

Microarray
datasets

Dataset 1

Dataset 2

Dataset 3

Dataset N

Basic FS
methods

SAM

Fold change

Rank sum

T-test
... mRMRD

mRMRQ

1 dataset
1 basic FS (optimized)

1 basic FS (optimized)
N datasets (aggregated)

N datasets

N datasets

1 basic FS method

6 basic FS methods

Features

Rank average
Single-dataset 1
Single-dataset 2

Rank products

Wang

mDEDS

Naive

Choi

. . .

(a) Selecting features from multiple microarray datasets using six meta-analysis-based methods

Homogeneous data

1, 2 1, 2 1, 3 1, 3 1, 4 1, 4 2, 3 2, 3 2, 4 2, 4 3, 4 3, 4

1 1

11 1 1

2 2

2222

3 3

3333

4 4

44 44

X XXX

X X X

XXX

X X X

X

XXXXXX

XXXXX

XXXXXX

X X X X XX

Heterogeneous data
Feature selection

datasets
Training

datasets

datasets

Validation

1, 5 2, 5 3, 5 4, 5

(b) Example of dataset permutations for evaluating meta-analysis predictive performance

Figure 2: Procedure for comparing the predictive performance of six microarray meta-analysis-based FS methods. (a) Features are selected
from microarray datasets using the rank average meta-analysis method (pink box), several other meta-analysis methods (orange boxes:
mDEDS, rank products, Choi, and Wang), and a naive method (blue box) that aggregates samples into a larger dataset. Rank average meta-
analysis chooses a single feature selection (FS) method from among several basic FS methods (SAM, fold change, rank sum, t-test, mRMRD,
and mRMRQ) for each individual dataset that optimizes prediction performance (via cross-validation) over the top 20 features. A simple
weighted average of gene ranks from all individual datasets produces the final set of rank average meta-analysis features. The rank products,
Choi, and Wang methods use one basic FS method to select features from multiple datasets while the mDEDS method uses all six basic
FS methods. (b) Features are selected from two or more datasets from each group to build a classifier (pink boxes), which is trained with
samples from only one dataset (yellow boxes). The performance of the classifier is assessed using independent datasets (datasets not used for
training or feature selection, green boxes). The predictive performance of a microarray meta-analysis-based FS method is an average over all
permutations of training and validation datasets (blue boxes). In the example, datasets 1–4 consist of one-channel Affymetrix arrays while
dataset 5 (in the case of heterogeneous data) consists of two-channel arrays.

dataset. We assess prediction performance using indepen-
dent training and testing datasets because of the small sample
size of some of the datasets and because we want to reflect
clinical scenarios in which predictive models would likely
be derived from data collected from a separate batch of
patients. We compare our proposed rank average meta-
analysis method to other meta-analysis methods including:
(1) the rank products method [13], (2) the mDEDS method
[14], (3) Choi et al.’s method of interstudy variability [10],
(4) Wang et al.’s method of weighting differential expression
by variance [11], and (5) a naive method that aggregates
samples from multiple datasets. The rank products, mDEDS,
Choi, and Wang methods can be applied to multiple datasets
as well as to single datasets. For each method and each
dataset group, we compute single-dataset performance, com-
bined homogeneous-dataset performance (from two to four
datasets combined), and combined heterogeneous-dataset
performance (Figure 2(a)).

Classification performance depends on both feature
selection and number of samples available for training. We

are interested in performance gains due to meta-analysis-
based FS alone. We isolate this performance gain by training
classifiers with samples from a single dataset only, while
allowing the features used for training to come from multiple
datasets. Thus, any improvement (or degradation) in clas-
sification performance of a meta-analysis-based FS method
in comparison to the baseline single-dataset FS is due to
features selected rather than to increases in training sample
size. We assess classification performance using a separate
validation dataset and permute the datasets such that each
individual dataset in each dataset group—renal, breast, and
pancreatic cancer—is used at least once for validation. More-
over, for each permutation, we use 100 iterations of bootstrap
sampling from the training datasets to estimate classification
performance. Figure 2(b) is an example of the permutations
possible with a five-dataset group (datasets 1–4 are the same
platform while dataset 5 is a different platform), in which
the prediction performance of two-dataset combination is
assessed. This procedure can be expanded to handle three-
dataset, four-dataset, or higher combinations for FS.
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Figure 3: Rating meta-analysis methods by prediction performance when combining all available datasets. Each meta-analysis method (rank
average, rank products, Wang, mDEDS, Choi, and naive) is rated relative to its peers. We assess performance rating across three factors: (1)
clinical application (breast cancer: BC, renal cancer: RC, and pancreatic cancer: PC), (2) data platform heterogeneity (homogeneous: orange,
heterogeneous: blue), and (3) classifier (logistic regression: LR, diagonal LDA: DLDA and linear SVM). For each combination of factors, the
rating of each meta-analysis method is represented by an additive bar. Methods with higher absolute prediction performance receive higher
ratings (and longer bars). When considering absolute prediction performance, rank average, with a mean overall rating of 4.56, performs
consistently well compared to its peers.

The procedure for measuring predictive performance
of heterogeneous-dataset combination is slightly different.
Each dataset group contains several one-channel Affymetrix
datasets and one two-channel dataset (either cDNA or Agi-
lent). Gene expression values of the two-channel datasets
are computed as log ratios, resulting in different dynamic
ranges compared to the one-channel datasets. We assess
the robustness of each meta-analysis-based FS method to
heterogeneous data platforms by first determining the per-
formance of the method when combining only Affymetrix
data (Figure 2(b), homogeneous data), then comparing to
results obtained when combining a mixture of Affymetrix
and two-channel arrays (Figure 2(b), Heterogeneous Data).
For example, we compute heterogeneous combination per-
formance by combining one or more Affymetrix datasets
to the two-channel dataset, then training a classifier using
one of the Affymetrix datasets, and testing samples from

an independent dataset (again Affymetrix). Thus, not only
should a good meta-analysis-based FS method perform well
with respect to single dataset FS, but also the method should
exhibit minimal performance degradation, if any, when
combining heterogeneous data platforms.

3. Results

3.1. Robustness of Rank Average Meta-Analysis. We rate each
meta-analysis method by absolute prediction performance
(Figure 3). Based on this criterion, we find that rank average
meta-analysis, with the highest overall mean rating of 4.56,
performs consistently well compared to five other meta-
analysis methods including the mDEDS, rank products,
Choi, Wang, and naive methods. This analysis answers the
question: which meta-analysis-based FS method consistently
exhibits the largest prediction performance when combining
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Table 2: Differentially expressed genes identified from rank average meta-analysis of multiple microarray datasets.

Breast cancer Renal cancer Pancreatic cancer

Gene
symbol

Weighted
average rank

Top 20 in # of
datasets

Gene
symbol

Weighted
average rank

Top 20 in # of
datasets

Gene
symbol

Weighted
average rank

Top 20 in # of
datasets

ESR1 0.20 6 LOX 13.65 4 S100P 31.42 2

NAT1 33.99 3 COL5A2 16.86 3 LAMC2 51.44 2

DNALI1 48.46 1 ADFP 19.08 4 PHLDA2 201.93 1

SCUBE2 69.27 1 SCNN1A 19.25 2 S100A2 233.07 0

TFF1 76.74 1 LOXL2 21.37 3 MSLN 234.39 1

MYB 82.17 0 ELTD1 27.17 4 WFDC2 236.00 1

CYP2B7P1 86.93 1 PPARGC1A 30.73 1 ITGB6 238.13 0

PDZK1 98.81 0 IFITM1 31.19 2 HK2 239.87 2

PADI2 114.44 0 RALGPS1 37.17 2 R88990∗ 244.34 0

DNAJC12 123.83 0 VWF 37.85 2 ANO1 252.57 1

TSPAN1 126.87 0 CD70 41.65 0 MXRA5 261.28 0

CDH3 127.46 1 ARHGDIB 42.60 1 PLEK2 264.09 0

XBP1 134.70 0 P4HA1 48.91 2 CDC2 279.79 2

KRT18 136.35 0 BST2 50.56 2 VCAN 285.59 0

EEF1A2 138.25 0 F2R 52.22 1 FERMT1 286.92 1

SLC16A6 140.73 1 SPARC 52.86 1 MCOLN3 309.32 0

ACADSB 142.55 1 LDB2 56.29 2 TNFRSF21 315.68 1

SRD5A1 159.99 1 GJA1 58.54 0 KYNU 324.78 0

CHAD 164.19 0 PLAG1 60.29 1 TACC3 333.27 0

P4HTM 165.08 1 DSG2 68.03 1 TMC5 336.72 0
∗

Gene symbol not available, using accession number instead.

all available datasets? We assign a rating to each meta-
analysis method for every combination of three factors
that include (1) clinical application or dataset group, (2)
data platform heterogeneity (combining similar or different
microarray platforms), and (3) classifiers (logistic regres-
sion: LR, diagonal linear discriminant: DLDA, and linear
SVM). Ratings for each meta-analysis method are relative
to its peers, with higher ratings indicating better prediction
performance under the same combination of factors. In
Figure 3, bars are proportional to performance ratings. Using
pancreatic cancer (PC) as an example, the rank average
meta-analysis method has a rating of five (corresponding
to a predictive performance AUC of 81.5, See Supplemental
Table S1 available online at doi:10.1100/2012/989637) when
analyzing homogeneous datasets and when using the logistic
regression classifier. This means that its absolute predic-
tion performance is higher than that of four other meta-
analysis methods compared under the same conditions (i.e.,
homogeneous data, logistic regression classifier). The results
illustrated in Figure 3 and obtained through a comprehensive
analysis of three factors suggest that, relative to its peers, rank
average meta-analysis is robust when considering absolute
prediction performance.

3.2. Rank Average Identifies Biologically Sensible Genes. For
each dataset group, we combine all available microarray
datasets and use the rank average meta-analysis method

to identify DEGs. Assessing DEG detection performance
by examining the genes is difficult unless we know, via
validation, whether or not these genes are truly differentially
expressed. However, because of the sheer number of genes
in high-throughput datasets, the validation process is often
time and resource intensive. Despite this, we examine the top
ranked genes from each dataset group to verify that the rank
average meta-analysis method is identifying genes that are
biologically sensible.

Table 2 lists the top 20 genes selected from meta-analysis
of each of the three dataset groups: six breast cancer, five
renal cancer, and five pancreatic cancer datasets. We optimize
the FS method for each individual dataset using three-fold
cross validation and the diagonal LDA classifier. The optimal
FS method for each dataset differs. We compare ER+ and
ER− samples for each breast cancer dataset and find, not
surprisingly, that the ESR1 gene (estrogen receptor) is the top
ranked gene for all but one dataset. Accordingly, the weighted
average rank of ESR1 places it at the top of the combined
list. Among the other genes in the list, NAT1 [34], DNALI1,
SCUBE2 [35], and TFF1 [36] have been implicated in breast
cancer. Although the individual dataset ranks of these genes
vary from low to relatively high ranks (e.g., 200 to 300),
it is the consistency of selecting these genes from multiple
datasets that places them at the top of the combined list.
In Table 2, we include the number of individual datasets in
which the gene is ranked in the top 20.
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Table 3: Properties of six microarray meta-analysis methods.

Rank average mDEDS Rank products Choi Wang Naive (control)

Basic FS methods considered
FC, T , SAM, RS,

mRMRQ/D
FC, T , SAM, RS,

mRMRQ/D
FC1 T2 FC3 FC, T , SAM, RS,

mRMRQ/D

Chooses data-specific basic FS method(s) Yes No No No No Yes

Rank-Based Yes No Yes No No No
1
Fold change between all interclass pairs of samples. 2Most similar to a t-statistic, but includes an estimate of interstudy variation. 3Computes a variance-

weighted average of fold change. FC: Fold Change, T = t-statistic (t-test), SAM: significance analysis of microarrays, RS: rank sum test, mRMRQ/D: minimum
redundancy, maximum relevance with quotient/difference.

We compare the renal cancer clear cell subtype to three
other subtypes (i.e., chromophobe, oncocytoma, and pap-
illary) to identify DEGs. The top gene we identify is LOX,
which is an oncogene implicated in clear cell renal cancer
[37]. The ADFP gene, ranked at #3 in the combined list, is
especially interesting because it may be a potential urinary
biomarker for detecting renal cancer [38]. ADFP is ranked
favorably in all but the Higgins dataset, in which it is ranked
at number 75.

The rank average meta-analysis method identifies S100P
as the top pancreatic cancer gene, which has been implicated
in several studies [39, 40]. The S100P gene has a relatively
favorable ranking in the Pilarsky and Pei datasets and moder-
ate to un-favorable rankings in the other datasets, indicating
that analysis of individual datasets may not readily identify
the gene. Another example, LAMC2, is ranked favorably in
the Ishikawa and Pei datasets, but relatively higher in the
other datasets. Overall, LAMC2 is ranked second in the com-
bined results and is, according the to literature, a purport-
ed pancreatic cancer gene [41]. Weighted average ranks
for the pancreatic cancer results increase quickly compared
to the breast and renal cancer results, indicating increased
heterogeneity among the ranks of the individual datasets.
One explanation for this is the slight difference in dataset
subtype comparisons. For example, one of the datasets, Ishi-
kawa, extracted RNA samples from pancreatic juice rather
than from solid tumors.

The degree of differential expression (and consequently,
the rank) of a gene can vary significantly from dataset to
dataset. Combining DEG detection results by averaging
ranks across datasets reduces variability and improves statis-
tical confidence. Analysis of a single microarray dataset may
result in errors during DEG detection—for example, false
positives and false negatives (genes that should be differen-
tially expressed, but not favorably ranked). In general, these
errors can be reduced by increasing sample size. Combining
microarray datasets by averaging ranks effectively increases
sample size while enabling robust analysis of heterogeneous
data.

4. Discussion

In order to understand the differences in performance among
the six meta-analysis-based FS methods, we identify and list
the differences and similarities in Table 3. We focus on three
properties: (a) basic FS methods forming the basis of meta-
analysis, (b) the manner in which these basic FS methods are

chosen and applied to individual microarray datasets, and (c)
the use of ranks.

Among the five meta-analysis methods (not including
the naive control method) rank average and mDEDS are the
only methods that consider multiple basic FS methods—for
example, fold change, t-statistic, SAM, and rank sum—for
detecting DEGs (Table 3, row 1). The rank products, Choi
and Wang methods use modified forms of basic FS methods.
Moreover, rank average is the only method that chooses one
basic FS method for each dataset to maximize prediction
performance (Table 3, row 2). In contrast, mDEDS uses all
of the available basic FS methods for each dataset. Finally,
rank average and rank products are the only meta-analysis
methods that are rank-based (Table 3, row 3).

Among the basic FS methods, no method can be con-
sidered the best because of the data-dependent nature of
microarray analysis. Thus, rank average and mDEDS benefit
by considering multiple basic FS methods. However, some
basic FS methods can produce erroneous results when
inappropriately applied (e.g., using a t-statistic with gene
expression data that is not normally distributed). Rank
average meta-analysis further benefits from selecting a single
basic FS that optimizes prediction performance. On the
other hand, the performance of mDEDS meta-analysis can
degrade if it includes a basic FS method that is incompatible
with the data. Likewise, the performance of rank products
can degrade when the fold change FS method is not
appropriate for the data. The Choi and Wang methods may
also suffer from this problem. However, they seem to perform
fairly well when applied to the datasets in this study (see
Figure 3). Finally, rank-based meta-analysis methods that
consider multiple basic FS methods allow a fair comparison
among the basic FS methods. In light of these results, for
microarray meta-analysis, we recommend (1) to use rank-
based methods, (2) to consider a wide variety of basic
FS methods, and (3) to optimize the FS method for each
individual dataset based on application-specific criteria (e.g.,
prediction performance for diagnostic applications).

Despite the benefits summarized in Table 3, rank average
meta-analysis and the evaluation criteria presented in this
study are not without limitations. The limitations of this
study include (1) the scope of data and classifiers considered,
(2) the criterion for measuring performance of a meta-
analysis method, and (3) normalization and pre-processing
of gene expression data. First, the results of this study may
be dataset-specific. Although we have strived to provide a
wide range of scenarios to allow adequate assessment of
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these meta-analysis methods, results may differ when applied
to other dataset groups. Second, we use prediction AUC
as the performance criterion. However, microarray-based
clinical prediction is only one possible application. Other
applications may need to identify genes based on biological
relevance [15]. It is unclear which meta-analysis methods
would perform well in such applications. The rank average
meta-analysis method benefits from choosing a basic FS
method for each individual dataset that optimizes (via cross-
validation) prediction performance. Thus, there is a potential
bias in the performance of rank average meta-analysis. On
the other hand, the ability to choose basic FS methods that
perform well for a particular application, such as prediction,
could be considered a favorable property of rank average
meta-analysis. Finally, it is possible that normalization of
gene expression datasets (e.g., quantile normalization) can
improve the performance of meta-analysis by reducing
batch effect. Specifically, removal of batch effects (1) can
improve prediction performance when training and testing
are applied to independent, heterogeneous datasets and
(2) can improve the performance of simple meta-analysis
methods that aggregate samples from multiple heteroge-
neous datasets. However, we do not consider any batch-effect
normalization procedures in this study.

5. Conclusions

In order to address the sample-size problem in gene expres-
sion analysis as well as the need for accurate solutions for
clinical prediction problems, we proposed the rank aver-
age meta-analysis-based FS method. Rank average meta-
analysis identifies differentially expressed genes from mul-
tiple microarray datasets. We used a comprehensive study
of multiple factors and found that rank average performs
consistently well compared to five other meta-analysis meth-
ods in terms of prediction performance. This comprehensive
study enabled us to measure the robustness of rank average
to three factors that are often encountered in clinical
prediction applications. These factors include clinical appli-
cation (e.g., breast, renal, and pancreatic cancer), microarray
data platform heterogeneity, and classifier model (logistic
regression, diagonal LDA, and SVM). Rank average meta-
analysis, performs well because it selects dataset-specific
basic FS methods and then averages the ranks across all
individual datasets to produce a final robust gene ranking.
In comparison to five other meta-analysis methods the
rank average method is not always the best method for
some factor combinations. However, it is consistently among
the best performing in terms of its ability to identify
predictive genes. Although we presented results from analysis
of microarray gene expression data, the proposed methods
may be generalized for other bioinformatics problems that
require feature selection.
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