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Abstract

Public cooperation plays a significant role in the survival and maintenance of biological species, to elucidate its origin thus
becomes an interesting question from various disciplines. Through long-term development, the public goods game has
proven to be a useful tool, where cooperator making contribution can beat again the free-rides. Differentiating from the
traditional homogeneous investment, individual trend of making contribution is more likely affected by the investment
level of his neighborhood. Based on this fact, we here investigate the impact of heterogeneous investment on public
cooperation, where the investment sum is mapped to the proportion of cooperators determined by parameter a.
Interestingly, we find, irrespective of interaction networks, that the increment of a (increment of heterogeneous investment)
is beneficial for promoting cooperation and even guarantees the complete cooperation dominance under weak replication
factor. While this promotion effect can be attributed to the formation of more robust cooperator clusters and shortening
END period. Moreover, we find that this simple mechanism can change the potential interaction network, which results in
the change of phase diagrams. We hope that our work may shed light on the understanding of the cooperative behavior in
other social dilemmas.
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Introduction

Understanding the sustenance and emergence of cooperation

within groups of egoistic agents represents one of long-standing

puzzles across various disciplines [1,2]. A theoretical framework

that sheds the light into this open question is the evolutionary

game theory [3,4]. Although the prisoner’s dilemma game (PDG)

and snowdrift game (SDG), as the metaphors, are often chosen to

characterize the social dilemma through the pairwise interactions

[5–19], the coordination and management of many common

resources, such as environment problems, climate change, public

traffic and financial markets, needs to be implemented and solved

by multiple sides or group interactions, which is best described by

the so-called public goods game (PGG) [20–29]. In the PGG

model [30], any participant simultaneously decides to contribute

(i.e., cooperate) or not contribute (i.e., defect) to the public pool.

After that, all contributions of cooperators are summed and

multiplied by a synergy factor rw1, and then uniformly

distributed among all participants regardless of their contributions.

Nevertheless, in this situation, there is a free-ride problem [31]:

why an individual makes contribution if he can reap the benefits

without bearing any cost, and why a agent chooses cooperation if

he can obtain higher payoff by defecting. Hence, the game theory

often predicts a very pessimistic conclusion: all participants take

the defective strategy and it eventually leads to the ‘‘tragedy of

commons’’ whereby nobody contributes [32].

However, to our surprises, the above-mentioned prediction is

different from many experimental findings in the literature [33]. In

fact, from the perspectives of the whole group or population, the

total cooperation is obviously optimal since it creates the greater

collective benefits. Thus, several mechanisms have been put

forward to illustrate the evolution of cooperation on the public

goods games. For example, a viable mechanism to facilitate the

public cooperation is to punish the non-cooperating participants

[34–37], but it can also evoke the so-called second-order free rider

problem in which the investment of publishers may be exploited

by cooperators [38]. Meanwhile, volunteering or voluntary

participation [39], reputation mechanism [40] and other theoret-

ical supplements [20] are also proposed as effective means to

promote the cooperation on spatial public goods games. In

addition, the heterogeneous topology has been ubiquitously found

in many natural, social, biological and engineering systems, and

this structural heterogeneity creates the social diversity within the

system which may greatly promote the collective cooperation [41].

Except for the well-mixing assumption, in reality the spatial

PGG also draws a lot of attention of statistical physicists who

focused on the phase transition behaviors in the evolution of

cooperation [20]. The results indicate that the pattern formation

or agglomeration may be responsible for the public cooperation on

the spatial PGG [42]. Interestingly, the nonhomogeneous teaching

activities play an important role in the promotion of cooperation

for the spatial public goods games [43]. Importantly, noise taking
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place in the strategy adoption can noticeably influence the

cooperative behaviors and even substantially change the outlay

of cooperators’ density in dependence on the noise intensity [44–

50]. Qualitatively similar findings are also discovered in the impact

of diversity on the cooperation of PGGs [51]. In particular,

Szolnoki et al [52] make use of two different types of regular

graph, square and honeycomb lattice, to explore the impact of

interaction topology and group size on the cooperation in spatial

PGG. It is shown that increasing group size leads to indirect

linkage or interaction among players participating in the same

PGG group, further changes the effective interaction topology and

substantially alters the cooperation behaviors on regular lattice

without any overlapping structures. However, in most works, the

contribution of a cooperator to all PGG groups is still assumed to

be identical, which is far from many realistic situations:

heterogeneous activity [20]. Inspired by this fact, an interesting

question takes place: if we allow cooperators hold heterogeneous

investment, how does cooperation varies?

Aiming to answer this question, in this work we consider a

spatial PGG model, where the cooperator’s contribution will be

non-uniformly distributed over all PGG groups it involves. While

its contribution to each group can be mapped to a function of

proportion of cooperations tuned by the parameter a. Large-scale

numerical simulations demonstrate that the non-homogenous

distribution of cooperator’s contribution will largely promote the

evolution of cooperation. This trait becomes more obvious with

the increment of a, irrespective of interaction networks. Moreover,

we also find that this mechanism changes the potential interaction

networks.

Methods

Here, we consider the spatial PGG: all participants are placed

on a regular interaction graph which is a square lattice with Von

Neumann neighborhood as described in Ref.[52]. Each player will

participate in G~zz1 PGG groups where one PGG group is

centered around the focal player and other z ones are

correspondingly centered around z nearest neighbors. Among

them, z~4 is the size of neighborhood, coordination number or

number of all nearest neighbors, and G~zz1~5.

Initially, each participant or player on site x is equally probably

designated as a contributor (cooperator, sx~C) or a non-

contributor (defector, sx~D). Then, each player will participate

in G~zz1 PGG groups and collect its payoff Px by accumulating

the respective share of each PGG group to which it belongs. In

each PGG group, without loss of generality, the contribution of a

defector is always fixed to be 0 while the contribution of a

cooperator is not 1, which is the general assumption in many

previous reports [34–37,53]. Here, we hypothesize that the

contribution or investment of a cooperator into a PGG group in

which it participates depends on the fraction of cooperators inside

that group, and this investment quantity Ix(i) can be depicted as

follows,

Ix(i)~½Nc(i)

N(i)
�a ð1Þ

where Ix(i) stands for the investment of a cooperator x into the i

centered PGG group, Nc(i) and N(i) represent the number of

cooperators and all players inside i-centered PGG group. a is a

tunable parameter which characterizes, to some extent, the

heterogeneity of distribution of a cooperator’s contribution.

Noticeably, a~0 leads to the traditional PGG model [34–

37,53], and aw0 ensures that the investment will be beneficial

to the PGG group with higher cooperation level. After that, the

investment will be summarized from all cooperators inside i-

centered PGG group and multiplied by an enhancement factor r.

At last, the amplified investment will be evenly allocated among all

players inside that group. Thus, the net payoff of player x from the

i-centered PGG group will be equal to

Px(i)~
r
P

y[N i
Iy(i)

G
{Ix(i) ð2Þ

where N i denotes the set of player i and its z nearest neighbors.

Subsequently, the total payoff Px of player x can be calculated as

follows,

Px~
X

i[Nx

Px(i) ð3Þ

Since the system evolves according to the Monte Carlo

Simulation (MCS) procedure, the player’s strategy will be updated

by a specific rule after acquiring the total payoff. Here, within one

elementary MCS time step, we will randomly choose a player x

and one of its nearest neighbors y, and calculate their total payoffs

Px and Py based on the above-described order. Then, player x

will update its strategy sx by adopting the strategy sy of player y

with the following Fermi probability,

Prob(sx/sy)~
1

1zexp½(Px{Py)=K� ð4Þ

where K characterizes the uncertainty during the strategy

imitation [44,45]. For K?0z, the player x will deterministically

take the strategy of player y if PxvPy. While for Kw0, player x

can also imitate the strategy of player y even if player y performs

worse as far as the total payoff is concerned, which can mimic the

error or non-rationality during the course of decision making to a

certain extent. In addition, the strategy is asynchronously updated

during the system evolution, that is, the strategy of each player can

Figure 1. Fraction of cooperators rC as a function of
normalized enhancement factor r=G on square lattice with
Von Neumann neighborhood. Here, K~0:1, L~200 and other
linear sizes L are also verified not to change the qualitative results of
our PGG model. Among them, the fraction of cooperators rC within the
whole population is averaged over 104 MCS time step after discarding
the transient steps up to 104 MCS.
doi:10.1371/journal.pone.0091012.g001
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only have a chance to be updated on average within one full MCS

time step.

Results

We start by presenting how the heterogeneous investment

affects the evolution of cooperation on spatial cooperations.

Figure 1 depicts the dependence of rC on the normalized

enhancement factor r=G for different tunable parameters a. It is

obvious, compared to the standard case (a~0), that the evolution

of cooperation is greatly promoted when aw0. We can observe

the emergence of cooperation from two sides: on one hand, the

transition point rc1 of normalized synergy factor (r=G) between the

full defection (D) and mixing state of cooperators and defectors

(CzD) is largely reduced, and it means that the players easily

transcend the barrier of defection and are prone to cooperate

under the low cooperation cost; On the other hand, the critical

point rc2 from the mixing state (CzD) into the full cooperation

(C) has also become smaller than that in the traditional case. In

particular, the larger a, the smaller the critical point. The two

critical points are nearly same when a~2 and it means the

transition from the full defection into the full cooperation is almost

abrupt. In addition, according to Eq.(1), our PGG model with a

tunable parameter a~0 is reduced into the standard case in which

each cooperator will make a constant investment quantity, for

example, to be 1 in Ref.[52]. Meanwhile, our simulation results

with a~0 are totally identical with those in [52]. Thus, we can

conclude that the investment heterogeneity of a cooperator into

different PGG groups are responsible for the promotion of

cooperation.

To further illustrate the origin favoring the cooperation in our

PGG model, Figure 2 depicts the evolution of characteristic

snapshots for three different tunable parameters a under the

prepared initial state. Here each row of patterns correspond to a

different a, and four columns denote the pattern at

MCS~0,100,1000,10000, respectively. Under these three cases,

the initial distribution of cooperators and defectors are totally

same, in which all cooperators are deployed in the middle row of

the lattice and defectors are placed on two sides of the lattice.

However, the evolutionary pattern exhibits the distinct features for

different a after enough time steps (MCS~10000). In the standard

case (a~0), the investment will be shared in all PGG groups and

the free-ride from the defectors thrives so that the cooperators

cannot resist the explorations of defectors and tend to be extinct in

the end. While for aw0, the cooperator’s investment will be

heterogeneously allocated among G PGG groups, the PGG group

with higher cooperation level will obtain the more investment and

then this effect will further encourage more players to take the

cooperative strategy within this group. The larger a, the stronger

this effect, hence the cooperators have enough power to create the

cooperative (C) clusters to inhibit the invasion of defectors.

Moreover, the fraction of cooperators in the population will

become higher and higher as a increases.

Moreover, it is also interesting to examine the time course of

cooperation under this novel mechanism. According to the recent

investigate prediction [19,54,55]: a typical evolution process can

be divided into two evident periods: the enduring (END) period

and the expanding (EXP) period. The shorter the END period (the

more perfect the formation of cooperator cluster), the higher the

final cooperation level. We expect that under the present

Figure 2. Characteristic snapshots of cooperators (red) and defectors (blue) under the prepared initial state for different times
steps. From top row to bottom panel, the tunable parameter a is set to be 0, 0.5 and 1.0, respectively. In all dynamical patterns, the synergy factor r
is 0.6, lattice size L is 200 and strategy adoption uncertainty K is 0.1.
doi:10.1371/journal.pone.0091012.g002
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mechanism the increment of a is beneficial for END period and

cooperators can converge into more robust clusters. Figure 3

shows the results obtained for r=G~0:6 under different a value.

What we first glance at is the evolution trend of a~0 (namely, the

traditional version), there exists only END period and cooperators

die out. However, with the increment of a, the tide changes: END

periods becomes shorter and shorter (the end of END period is

marked by arrows), and at the same time the remainder

cooperators form clusters and can expand in the subsequent

EXP period. Obviously, when a is sufficient large (a~2), the initial

invasion of defection becomes very difficult, hence END periods

vanishes and cooperators directly organize clusters. Along this line,

the cooperator clusters can expand effectively and reach full

cooperation state faster. To further support this point, we also

feature the corresponding snapshots under the same time steps. It

is obvious that the lager the value of a, the larger the reminder

cooperator cluster at the end of END period, which finally leads to

larger clusters. This observation validates our guess: heterogeneous

investment can change the evolution trend (i.e., accelerate the

Figure 3. Top panel: time courses depicting the evolution of cooperation for different values of a under the random distribution of
strategies. Note that the arrows denote the end of enduring (END) period and the beginning of expanding (EXP) period. Bottom panel: the
evolution snapshots of different values of a. From top to bottom, the values of a are 0, 0.5, 1.0 and 2.0, respectively. The colore code is the same with
Fig.2: cooperator (red) and defector (blue). From left to right, the time steps are 0, 10, 100, 1000 for each value of a.
doi:10.1371/journal.pone.0091012.g003
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END period) and promotes the formation of cooperator clusters,

which is the basic guarantee for the maintenance of cooperation.

The robustness of cooperation against the noise can be

discussed through the full r{K phase diagram in Fig. 4. Here

we depict the relationship between critical synergy factor rc and

noise strength K which are both normalized by the group size (G).

It is observed that the phase boundaries display the distinct

behaviors for three different a. In the traditional case (i.e., a~0),

the boundary between the full defection D and mixed phase CzD

(i.e., lower boundary rc1) will monotonically decrease as K?0z,

but the boundary separating the mixed phase CzD from full

cooperation D (i.e., upper boundary rc2) takes on a bell-shaped

outlay which means that there is an optimal noise strength

ensuring the coexistence of cooperators and defectors. As aw0,

the lower boundary is nearly similar to the traditional one and only

the critical value is much smaller, which means the cooperator is

easier to sustain in the sea of defectors. However, the upper

boundary will continuously increase in the limit of strong selection

(i.e. K?0z), and introducing the noise will benefit the emergence

of cooperators. In particular, the upper and lower boundaries will

almost collapse into the same curve under the weak selection limit

(i.e. K??), which means that it is impossible for the cooperators

and defectors to coexist within the same population. Thus, the

heterogeneous investment will lead to the phase transitions which

differ from the traditional case, and is responsible for the

promotion of cooperation in the spatial PGG model. Moreover,

we can observe that optimal cooperation dies out with the

increment of a, while the actual topology network does not have

any change. Similar to the previous literatures [45,46], we deduce

that this may caused by the fact that the topology interaction

network has changed. The square lattice obviously lacks overlap-

ping triangles and thus enables the observation of an optimal K ,

trimming the likelihood of who will act as a investor seems to

effectively enhance linkage among essentially disconnected triplets

and thus precludes the same observation.

Finally, it is still of interest to examining the universality of this

simple mechanism under different topologies. To answer this

question, in Fig. 5 we consider one type of triangular lattice

depicted as in Ref.[52], in which the coordination number z is 3 so

that each player will participate in G~4 different PGG groups. It

can be clearly shown that the promotion of cooperation is very

obvious and similar to that on the square lattices. Again, under the

heterogeneous payoff distribution mechanism, the fraction of

cooperators can be greatly elevated when compared to the

traditional PGG model in which the total payoff will be equally

allocated within a group. Likely, the critical synergy factors rc1 or

rc2 will also be decreased into a lower value, below which the

cooperators will completely disappear, or the cooperators and

defectors will coexist. Thus, irrespective of the interaction

networks, the heterogeneous investment can be regarded as an

universally effective in promoting the evolution of cooperation.

Conclusions and Discussions

To sum, a novel spatial PGG model with heterogeneous payoff

investment is proposed to illustrate the public cooperation

behavior among selfish agents. Distinguishing from the traditional

version, the investment of cooperator for a given PGG group (i.e.,

Ix(i)) is mapped to the fraction of cooperators inside tuned by a

parameter a. (i.e., ½Nc(i)

N(i)
�a). In this case, a cooperator tends to give

a larger investment share into a group with the higher cooperation

Figure 4. Full normalized r=G{K phase diagrams for different
tunable parameters a. From top to bottom, panels (a), (b), (c)
correspond to a~0,1 and 2, respectively. The lattice size is L~200 and
PGG group size is fixed to be G~5.
doi:10.1371/journal.pone.0091012.g004

Figure 5. Fraction of cooperators rC as a function of
normalized enhancement factor r=G on triangular lattices in
which z~3 and G~zz1~4 as that in Ref.[52]. Other parameters
are identical with those in Fig.1.
doi:10.1371/journal.pone.0091012.g005
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level. On one hand, the cooperative groups will receive the more

investment; On the other hand, the cooperator who gives this

group will also obtain the higher payoff. This duplicate mechanism

to promote the cooperation encourages more players to adopt the

cooperation strategy and enhance the collective cooperation.

Large scale numerical simulations display that the cooperation can

be greatly promoted under the heterogeneous resource investment

scheme, regardless of the interaction topology and initial state.

Compared with the traditional PGG model, the critical values rc1

and rc2 will be largely reduced, which will be beneficial to the

cooperators to resist the defective temptation. In particular, the

phase diagrams are largely changed and the coexistence region

between cooperators and defectors are absent under the weak

selection limit. Altogether, current findings help to understand the

persistence of cooperation within many real-world systems.
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20. Perc M, Gómez-Gardeñes J, Szolnoki A, Florı́a LM, Moreno Y (2013)
Evolutionary dynamics of group interactions on structured populations: a

review. JR Soc Interface 10: 20120997.
21. Santos FC, Santos MD, Pacheco JM (2008) Social diversity promotes the

emergence of cooperation in public goods games. Nature 454: 213–216.
22. Wang Z, Szolnoki A, Perc M (2012) Evolution of public cooperation on

interdependent networks: The impact of biased utility functions. Europhys Lett

97: 48001.
23. Zhang HF, Liu RR, Wang Z, Yang HX, Wang BH (2011) Aspiration-induced

reconnection in spatial public-goods game. Europhys Lett 94: 18006.
24. Wang Z, Xu ZJ, Huang JH, Zhang LZ (2010) Maintenance of cooperation

induced by punishment in public goods games. Chin Phys B 19: 100204.
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