
Clonal hematopoiesis in diffuse large B-cell lymphoma: 
clinical impact and genetic relatedness to lymphoma and 
therapy-related myeloid neoplasm 
Clonal hematopoiesis (CH) is an age-related phenomenon 
characterized by the overrepresentation of blood cells de-
rived from a single clone, conferring an increased risk of 
myeloid neoplasms (MN), cardiovascular disease, and death 
from non-hematological malignancies.1,2 Recent work dem-
onstrated a high prevalence of CH that divergently evolves 
to lymphoma and MN in patients with angioimmunoblastic 
T-cell lymphoma (AITL).3 Several studies have shown CH 
occurs in 10-30% of patients with B-cell lymphoma (BCL).4,5 
Whether CH impacts the outcome of BCL remains contro-
versial.4,5 Moreover, whether CH clones divergently evolve 
to BCL and MN is unclear. Herein, we evaluated a cohort of 
patients with diffuse large B-cell lymphoma (DLBCL) and 
high-grade B-cell lymphoma (HGBCL) who were analyzed 
for mutations using a targeted next-generation sequencing 
(NGS) panel covering 400 genes (MSK-IMPACT).6 We aimed 
to investigate: i) the prevalence of CH and its impact on 
outcome; ii) the risk of t-MN in patients harboring CH mu-
tations; iii) the possibility of divergent clonal evolution from 
CH to BCL and MN.   
NGS data on diagnostic tissue between January 2015 and 
September 2021 were available for 362 (94%) DLBCL and 
23 (6%) HGBCL patients. Among DLBCL, 187 (48.5%) were 
of germinal center B-cell (GCB) subtype and 173 (45%) of 
non-GCB subtype and two (0.5%) without an available im-
munophenotype. Median age was 64 years (range, 19-95) 
at the time of lymphoma diagnosis and 65 years (range, 20-
95) at the time of CH detection. Time points for CH detec-
tion were variable due to the retrospective nature of the 
study: 206 and 179 patients were tested after and before 
chemotherapy, respectively. One hundred and twenty-
seven patients had paired MSK-IMPACT performed on un-
involved bone marrow (BM) or peripheral blood (PB) (Online 
Supplementary Figure S1). For cases with paired analysis, a 
0.01 variant allele frequency (VAF) cutoff in BM/PB was used 
for CH calling.5,7,8 In this subgroup, CH was present in 37 of 
127 (29%) patients and absent in 90 of 127 (71%) (referred 
to as CH+ and CH- cohorts, respectively). For the 258 cases 
without paired analysis, CH calling was performed using 
NGS data from lymphoma tissue and/or saliva samples 
based on the following criteria suggesting tissue infiltration 
by blood: i) variants were reported as common in CH genes 
in the literature;9 and ii) variants had a VAF <1/10 of the 
highest VAF of any DLBCL-associated mutation in lym-
phoma tissue. As a result, 17 (7%) and 241 (93%) patients 
were classified as CH+ and CH-, respectively. Overall, the 
CH prevalence was 14% (54/385). 

The most common CH mutations were DNMT3A (20/54; 
37%), TET2 (13/54; 24%), TP53 (12/54; 22%), PPM1D (7/54; 
13%) and ASXL1 (7/54; 13%). The VAF of the CH mutations 
ranged from 0.01 to 0.28 (Online Supplementary Figure S2). 
No significant association between the highest VAF and 
age at CH detection was seen (P=0.9). Twenty-seven pa-
tients had VAF ≥0.05 in any CH and 11 had >2 CH. Twenty-
one patients harbored CH in DNA-repair pathway genes 
(TP53, PPM1D, CHEK2 and ATM). 
CH+ patients were significantly older at the time points 
of DLBCL diagnosis (median age 70 years vs. 63 years; 
P<0.01) and CH detection (71 years vs. 64 years; P<0.01) as 
compared to CH- patients. There were no significant dif-
ferences in CBC, B symptoms, lactate dehydrogenase 
(LDH) levels, age-adjusted International Prognostic Index 
(IPI), disease stage, Ki-67, DLBCL subtype, treatment 
regimen, tolerance to chemotherapy (absolute neutrophil 
count [ANC] or BM reserve post chemotherapy) between 
CH+ and CH- patients (Table1).  
Effects of CH on overall survival (OS) were assessed using 
a multivariable Cox proportional hazard model adjusted for 
age at diagnosis (modeled with splines with 4 degrees of 
freedom) and stratified by CH calling method. Significance 
of associations was evaluated by likelihood ratio test. A P 
value <0.05 was considered significant. With a median fol-
low-up of 44 months after treatment initiation, the median 
OS was 69 months (95% confidence interval [CI]: 57-151) 
for all patients. CH+ patients had inferior survival com-
pared to CH- patients (median OS 46 months, 95% CI: 17-
not reached [NR] vs. 72 months, 95% CI: 61-NR). 
Differences in OS were also observed between CH- pa-
tients and CH+ patients without mutations in the DNA re-
pair pathway (51 months, 95% CI: 16-NR), and CH+ patients 
with mutations in the DNA repair pathway (30 months, 
95% CI: 14-NR). Patients harboring a CH with a VAF ≥0.05 
had inferior survival compared to those whose VAF were 
all <0.05 (16 months, 95% CI: 10-NR vs. 59 months, 95% 
CI: 51-NR). Similarly, although cases were limited, >2 CH 
(24 months, 95% CI: 13-NR vs. 58 months, 95% CI: 17-NR) 
and TP53 CH (24 months, 95% CI: 11-NR vs. 51 months, 95% 
CI: 17-NR) were associated with inferior outcomes (Figure 
1A-D). However, after age adjustment, the presence of CH, 
DNA repair pathway CH, and TP53 CH were not significantly 
associated with OS; although CH with a VAF ≥0.05 and >2 
CH showed strong trends towards worse OS (Figure 1E). 
Analysis on separated paired and unpaired cohorts showed 
similar impact on survival by CH (data not shown).  
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Entire cohort Total 
N=385

CH+ 
N=54

CH- 
N=331 P value

Age in years at DLBCL diagnosis, N (%) 
<55 
55-70 
>70

 
110 
157 
118

 
7 (6) 

21 (13) 
26 (22)

 
103 (94) 
136 (87) 
92 (78)

 
<0.01 

 

Age in years at CH testing, N (%) 
<55 
55-70 
>70

 
100 
150 
135

 
5 (5) 

20 (13) 
29 (21)

 
95 (95) 

130 (87) 
106 (79)

 
<0.01 

 

M/F 223/162 33/21 190/141 0.9
CBC at diagnosis, median (range) 

WBC (x109/L) 
ANC (x109/L) 
HGB (g/dL) 
PLT (x109/L)

 
7.0 (0.9-39.5) 
4.6 (0.1-29.5) 

12.6 (6.6-19.0) 
236 (23-785)

 
7.0 (1.0-39.5) 
3.8 (0.2-14.7) 

12.3 (8.8-16.0) 
209 (41-753)

 
7.0 (0.9-36.8) 
4.6 (0.1-29.5) 

12.7 (6.6-19.0) 
237 (23-785)

 
0.7 
0.1 
0.4 
0.1

Neutropenia post chemotherapy,* N (%) 
Severe 
Moderate 
Mild 
WNL

 
12 
12 
11 

281

 
1 (8) 

2 (17) 
3 (27) 

43 (15)

 
11 (92) 
10 (83) 
8 (73) 

238 (85)

 
0.7 

 
 

BM cellularity,** N (%) 
Hypocellular 
Normocellular or hypercellular 
na 

 
43 

142 
200

 
10 (23) 
25 (18) 
19 (10)

 
33 (77) 
117 (82) 
181 (90) 

 
0.1 

 
 

B Symptoms, N (%) 
Yes 
No 
na

 
110 
186 
89

 
15 (14) 
21 (11) 
18 (20)

 
95 (86) 

165 (89) 
71 (80)

 
0.8 

 

High LDH, N (%) 
Yes 
No 
na

 
163 
145 
77

 
24 (15) 
21 (14) 
9 (12)

 
139 (85) 
124 (86) 
68 (88) 

 
0.8 

 

DLBCL subtypes, N (%) 
GCB 
Non-GCB 
HGBCL 
na 

 
187 
173 
23 
2

 
22 (12) 
26 (15) 
6 (26) 
0 (0)

 
165 (88) 
147 (85) 
17 (74) 
2 (100)

 
0.9 

 
 

High Ki67 (≥70%), N (%) 
Yes 
No 
na

 
233 
116 
36

 
39 (17) 
12 (10) 

3 (8)

 
194 (83) 
104 (90) 
33 (92)

 
0.4 

 

Stages at diagnosis, N (%) 
I/II 
III/IV 
na

 
124 
216 
45

 
14 (11) 
38 (18) 

2 (4)

 
110 (89) 
178 (82) 
43 (96)

 
0.4 

 

≥2 age-adjusted IPI, N (%) 
Yes 
No 
na

 
173 
92 

120

 
24 (14) 
12 (13) 
18 (15)

 
149 (86) 
80 (87) 

102 (85)

 
1.0 

 

Initial chemotherapy, N (%) 
R-CHOP 
DA-R-EPOCH 
Clinical trial 
Others 

 
248 
70 
28 
39

 
29 (12) 
13 (19) 
4 (14) 
8 (21)

 
219 (88) 
57 (81) 
24 (86) 
31 (79)

 
0.2 

 
 

CH testing time point (to chemotherapy), N (%) 
Before 
After 

 
179 
206

 
12 (7) 

42 (20)

 
167 (93) 
164 (80)

 
0.001 

Auto/allo-SCT, N (%) 87 10 (11) 77 (89) 0.7

Table 1. Histopathological and clinical features of the 385 cases. 

Patients’ characteristics are summarized by frequency (percentage [%]). Associations between clonal hematopoiesis (CH) status and disease char-
acteristics were tested by Fisher’s exact test. High-grade B-cell lymphoma (HGBCL) refers to diffuse large cell pattern but with MYC, BCL2 and/or 
BCL6 gene rearrangements. *Severity of neutropenia post first-line diffuse large B-cell lymphoma (DLBCL) chemotherapy when available. Neu-
tropenia: severe (<0.5x109/L); moderate (0.5-<1.0x109/L); mild (1.0-<1.5x109/L); within normal limit (WNL): (≥1.5x109/L). **Bone marrow (BM) cellularity 
(hypocellular: reduced marrow cellularity after age-adjustment; normocellular or hypercellular: normal or increased marrow cellularity after age-
adjustment) at the time point of worst neutropenia (nadir) post DLBCL chemotherapy. M: male; F: female; CBC: complete blood count; LDH: 
lactate dehydrogenase; na: not available; GCB: germinal-center B cell; WBC: white blood cell; ANC: absolute neutrophil count; PLT: platelet; R-
CHOP: rituximab plus cyclophosphamide-doxorubicin vincristine prednisone; DA-R-EPOCH: dose-adjusted rituximab etoposide prednisolone vin-
cistrine cyclophosphamide doxorubicin; IPI: International Prognostic Index.
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Figure 1. Impact of clonal hematopoiesis mutations on patients’ survival. Overall survival (OS) was evaluated by Kaplan-Meier method 
with left truncation at the time of clonal hematopoiesis (CH) testing to account for CH detection performed after the start of first-
line chemotherapy for diffuse large B-cell lymphoma (DLBCL) and high-grade B-cell lymphoma (HGBCL). Although CH with a variant 
allele frequency (VAF) ≥5% and a higher number of CH mutations (>2) appeared to be associated with inferior OS; based on the cal-
culated P value (≥0.05) after age adjustment, the presence of CH, any CH in DNA repair pathway, and TP53 CH did not show a sig-
nificant association with OS while CH with a VAF ≥5% and a higher number of CH mutations (>2) showed strong trends towards 
inferior OS. (A) Impact of all CH mutations on OS (CH+: VAF≥1%; CH-: VAF <1% or absent). (B) Impact of TP53 CH mutations on OS 
(CH+(Y): CH+ and TP53 CH present; CH+(N): CH+ and TP53 CH absent; CH-: VAF<1% or absent). (C) Impact of VAF of CH mutations 
on OS [CH+(Y): CH+ with VAF ≥5% in any CH; CH+(N): CH+ with VAF<5% in all CH; CH-: VAF<1% or absent). (D) Impact of number of 
CH mutations on OS (CH+(Y): CH+ with >2 CH mutations; CH+(N): CH+ with ≤2 CH mutations; CH-: VAF<1% or absent). (E) Multivariable 
analysis of CH parameters associated with OS in the 385 DLBCL and HGBCL patients. All statistical analyses were performed using 
R.

A B

C

E

D
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Figure 2. Mutational profiles of lymphoma, clonal hematopoiesis and myeloid neoplasm clones. (A) Mutational profiles of clonal 
hematopoiesis (CH) and lymphoma clones in 54 CH+ patients. Bone marrow/peripheral blood (BM/PB): cases with paired next-
generation sequencing (NGS) study on patients’ uninvolved BM or PB samples; unmatched: cases without paired NGS study on 
patients’ BM or PB samples. (B) Mutational profiles of lymphoma (gray), CH (orange) and myeloid neoplasm (MN) (blue) clones in 
7 patients with MN. NS: saliva. Time intervals between CH detection and MN development are shown.

A B

We observed seven patients with concurrent or sub-
sequent diagnosis of MN (t-MN [n=5], CML [n=1], Ph-
negative MPN [n=1]). Four of five t-MN cases were CH+ (7% 
vs. 0.3% in CH- cohort) with time to t-MN development 
significantly shorter for CH+ patients (P<0.001), suggesting 
an increased risk of t-MN in CH+ patients. Risk of MN de-
velopment appeared to be higher in CH+ patients with 
TP53 CH alone (17% [2/12] vs. 5% [2/42]), although statis-
tical analysis was not performed due to limited t-MN 
cases. Of note, the CH- patient who developed t-MDS 29 
months post CH detection harbored a TP53 mutation (VAF 
=0.90) in the diagnostic BM. Review of the patient’s prior 
lymphoma and saliva samples demonstrated the same 
TP53 with a VAF of 0.002, below the 0.01 cutoff for CH cal-
ling (Figure 2).  
In order to study the clonal relationship between CH and 
BCL, corresponding lymphoma tissue were assessed for 
the CH mutations detected in BM/PB of CH+ patients with 
paired analysis. Although some CH genes were also mu-
tated in the lymphomas, such as TP53, ASXL1, TET2, SF3B1 

and ZRSR2, these mutations were not identical to those 
detected in BM/PB. All CH mutations present in unin-
volved BM/PB were either absent or present at extremely 
low VAF (<0.005) in lymphoma samples, suggesting blood 
infiltration of the tissue. In addition, none of the muta-
tions identified in the lymphoma samples were seen in 
normal BM/PB (Figure 2; Online Supplementary Table S1). 
We also did not detect shared mutations among t-MN and 
DLBCL in the same patients. These results indicate clonal 
unrelatedness between CH/t-MN and DLBCL. NGS studies 
on all lymphoma tissue (Figure 2A; Online Supplementary 
Figure 2F) demonstrated a similar mutational profile to 
those reported in litereature.10 
Limited studies are available on the prevalence and clini-
cal significance of CH in DLBCL patients. CH was ident-
ified in 12% of HGBCL patients at diagnosis, using a VAF 
cutoff of 0.05, who demonstrated a trend towards inferior 
PFS and OS,4 and in 6.5% of DLBCL patients (VAF cutoff 
0.1), which was associated with inferior EFS but not OS.11 
In our cohort, the high CH prevalence (29%) in patients’ 

Haematologica | 108 March 2023 
920

LETTER TO THE EDITOR



uninvolved BM/PB is related to low VAF cutoff (0.01) and 
post-treatment testing. The negative impact on outcomes 
by CH was largely attributed to the older age of CH+ com-
pared to CH- patients as shown in previous studies.4,11 
Nevertheless, our data showed evidence suggestive of an 
association between OS and CH mutations with VAF ≥0.05 
and a higher number of CH (>2), which is similar to 
another study with all types of BCL undergoing autologous 
stem cell transplant.12 Although CH was not associated 
with the degree of post-chemotherapy cytopenia in our 
study, a recent study has shown that CH mutations es-
pecially DNMT3A, TET2 and ASXL1 are associated with in-
creased neurotoxicity in BCL patients treated with 
chimeric antigen receptor (CAR) T-cell therapy.13 Therefore, 
the impact of CH on treatment related toxicity warrants 
further study. 
Our study showed that CH may increase the risk for t-MN 
in DLBCL/HGBCL, consistent with the well-recognized 
elevated risk of hematologic malignancy in CH.1,7 Not sur-
prisingly, all five t-MN in our study evolved from CH clones 
detected at earlier time points at low levels (VAF 0.002-
0.02), indicating selective pressure of chemotherapy for 
expanding pre-existing CH clones, leading to t-MN devel-
opment. In contrast to the divergent evolution described 
in AITL,3 we found no evidence of clonal relatedness be-
tween CH/MN and BCL. Although a recent study of CH in 
classic Hodgkin lymphoma showed one case with 
DNMT3A/TET2 double mutations present both as tissue 
CH and in EBV+ neoplastic clone, evidence of CH in PB/BM 
myeloid cells was not demonstrated and it is unclear 
whether EBV infection played an etiologic role.14 Similarly, 
although a common stem cell origin of both MDS and 
plasma cell neoplasm (PCN) has been proposed, a recent 
study didn’t show evidence of shared mutations between 
MDS and PCN.15 DNMT3A and TET2 mutations in CH have 
been differentially detected in normal T cells, but also in 
myeloid and B-cell lineages at equally high rates.16 There-
fore, the lack of evidence for divergent clonal evolution of 
CH to myeloid and B neoplasms is intriguing and warrants 
sequencing studies on purified populations. Of note, a re-
cent study showed incompatibility between TET2 defi-
ciency and AID-induced demethylation, which may 
partially explain the lack of clonal relatedness between 
CH and lymphoma.17 
The uniform diagnoses, NGS analyses and treatment 
among our patient cohort is a strength of this study. How-
ever, due to its retrospective nature, time points of CH 
testing were variable and not all patients had sequencing 
data from uninvolved BM/PB, limiting accurate measure-
ment of CH prevalence and the statistical power of out-
come analysis. The prevalence of CH based on lymphoma 
and saliva sequencing data is likely to be underestimated 
due to low-level or lack of blood infiltration in such 
samples. Nevertheless, our study has addressed several 

questions including: i) the prevalence of CH in 
DLBCL/HGBCL patients is high; and a higher number of CH 
mutations (>2) and CH with VAF ≥0.05 show strong trends 
towards inferior clinical outcome after age adjustment; ii) 
patients harboring CH mutations have an increased risk 
of developing t-MN; iii) there is no evidence of clonal re-
latedness between CH/t-MN and DLBCL. Collectively, our 
study provides new insights into the impact of CH in 
DLBCL, risk of t-MN development and the clonal relation-
ships among these entities.  
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