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Background: Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally. Patients 
with advanced HCC tend to have poor prognoses and shortened survival. Recently, data from bulk RNA 
sequencing have been employed to discover prognostic markers for various cancers. However, they fall short 
in precisely identifying core molecular and cellular activities within tumor cells. In our present study, we 
combined bulk-RNA sequencing (bulk RNA-seq) data with single-cell RNA sequencing (scRNA-seq) to 
develop a prognostic model for HCC. The goal of our research is to uncover new biomarkers and enhance 
the accuracy of HCC prognosis prediction.
Methods: Integrating single-cell sequencing data with transcriptomics were used to identify epithelial-
mesenchymal transition (EMT)-related genes (ERGs) implicated in HCC progression and their clinical 
significance was elucidated. Utilizing marker genes derived from core cells and ERGs, we constructed a 
prognostic model using univariate Cox analysis, exploring a multitude of algorithmic combinations, and 
further refining it through multivariate Cox analysis. Additionally, we conducted an in-depth investigation 
into the disparities in clinicopathological features, immune microenvironment composition, immune 
checkpoint expression, and chemotherapeutic drug sensitivity profiles between high- and low-risk patient 
cohorts.
Results: We developed a prognostic model predicated on the expression profiles of eight signature genes, 
namely HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, PGF, and INPP4B, aiming at predicting 
overall survival (OS) outcomes. Notably, patients classified with high-risk scores exhibited a propensity 
towards diminished OS rates, heightened frequencies of stage III–IV disease, increased tumor mutational 
burden (TMB), augmented immune cell infiltration, and diminished responsiveness to immunotherapeutic 
interventions.
Conclusions: This study presented a novel prognostic model for predicting the survival of HCC patients 
by integrating scRNA-seq and bulk RNA-seq data. The risk score emerges as a promising independent 
prognostic factor, showing a correlation with the immune microenvironment and clinicopathological 
features. It provided new clinical tools for predicting prognosis and aided future research into the 
pathogenesis of HCC.
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Introduction

Primary liver cancer stands as one of the most prevalent 
and lethal malignancies worldwide, posing significant 
threats to human health and well-being (1). Hepatocellular 
carcinoma (HCC) constitutes the predominant subtype, 
encompassing approximately 75–85% of primary liver 
cancer cases (2). Despite advancements in medical 
sciences, early surgical intervention remains paramount for 
mitigating mortality among HCC patients (3). Moreover, 
emerging therapeutic modalities such as interventional 
procedures, precision therapies, and immunomodulation 
offer promising avenues (4). Nonetheless, HCC patients 
continue to confront with grim prognoses, characterized 
by a dismal 5-year survival rate (3). The adverse outlook 
in HCC stems from multifaceted factors, including the 
insidious onset and heterogeneous nature of tumors, posing 
challenges in therapeutic stratification. Hence, there is an 
exigent imperative to delineate potential biomarkers that 
can accurately prognosticate diagnostic and prognostic 

trajectories in HCC patients.
Epithelial-mesenchymal transition (EMT) denotes a 

dynamic biological phenomenon wherein epithelial cells 
undergo a phenotypic shift from their polarized state, 
acquiring mesenchymal characteristics typified by enhanced 
migratory capacity, invasiveness, and resistance to apoptosis (5).  
Within selected cohorts afflicted by cancer, malignant 
cells have been shown to acquire stem-like properties, 
relinquishing epithelial polarity, diminishing intercellular 
adhesion, and augmenting metastatic propensity through 
pathways intricately linked with EMT (6). An accumulating 
body of evidence underscores the intricate interplay 
between the EMT cascade and various regulatory elements, 
encompassing transcriptional modulators such as Snail, 
Slug, Twist, ZEB, alongside the activation of pivotal 
signaling cascades including Wnt/β-catenin, TGF-β/Smad, 
and the Hedgehog pathway (7).

Single-cell RNA sequencing (scRNA-seq) represents a 
groundbreaking methodology facilitating the comprehensive 
interrogation of gene expression patterns across the genome 
at the level of individual cells. This innovative approach 
holds immense promise in elucidating cellular heterogeneity, 
intracellular signaling dynamics, and the intricate interplay 
of cellular pathways (8). In recent years, the application of 
single-cell genomics has been extensively leveraged, leading 
to unprecedented insights into the intricacies of HCC 
biology and its etiological underpinnings.

In the present investigation, we harnessed scRNA-
seq data to discern differentially expressed EMT-related 
genes (ERGs) at the cellular level, elucidate the expression 
profiles of differentially expressed EMT-related genes (DE-
ERGs) across diverse cell clusters, and conduct in-depth 
analyses pertaining to cell-cell communication and cellular 
trajectories. By integrating bulk RNA sequencing data, we 
devised a prognostic model predicated on an ERG signature 
comprising HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, 
ENG, PGF, and INPP4B. The robustness of our findings 
was substantiated through validation using datasets sourced 
from the International Cancer Genome Consortium 
(ICGC). Our study endeavors to unveil novel biomarkers 
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and bolster the accuracy of prognostic predictions in HCC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-521/rc).

Methods

Data collection and process 

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). We extracted 
HCC data of 424 patients with analyzable clinical 
information from The Cancer Genome Atlas (TCGA) 
website (https://portal.gdc.cancer.gov/), and RNA-seq of 
HCC patients from the ICGC portal (https://docs.icgc-
argo.org/docs/data-access/icgc-25k-data) was used as the 
validation cohort. The gene expression profiling datasets 
[GSE14520 (9) and GSE76427 (10)] were obtained from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo). ERGs were attained from 
the Epithelial-Mesenchymal Transition Gene Database 
(https://bioinfo-minzhao.org/dbemt/download.cgi) (11). 
scRNA-seq data acquisition and processing was carried out 
using datasets from GSE202642 (12) in the GEO database. 
Moreover, the Human Protein Atlas (HPA) (https://www.
proteinatlas.org/) repository employs transcriptomic 
and proteomic methodologies for investigating protein 
expression across various tissues and organs at both RNA 
and protein tiers (13). 

Quality control at the single-cell level and annotation of 
cell types

Genes within cells were chosen based on cytoplasmic 
control criteria, necessitating counts exceeding 200 yet not 
surpassing 8,000, alongside unique molecular identifiers 
(UMIs) surpassing 200 through utilizing the Seurat package. 
Furthermore, mitochondrial content was mandated to 
remain below 20%. Identification of highly variable genes 
ensued, followed by application of “SCTransform” (14)  
for normalization, while addressing batch effects via 
harmony. Dimensionality reduction techniques included 
uniform manifold approximation and projection (UMAP), 
t-distributed stochastic neighbor embedding (t-SNE), and 
implementation of the Louvian clustering algorithm within 
Seurat. The method FindAllMarkers was utilized to identify 
genes that differed between cell types or clusters, with 
parameters set at a P value below 0.05 and a log2 fold change 

(FC) exceeding 0.25. Furthermore, the expression ratio was 
required to exceed 0.1. We used signatures from previous 
publications as well as CellMarker for annotation (15).

Cell-cell communication

To analyze cellular communication at the molecular level, 
we utilized the “Cellchat R package” (16). We quantified 
and visually represented the count of receptor-ligand pairs. 

Identification of epithelial subtypes

In order to delve deeper into the subpopulations of tumor 
cells in HCC, we isolated all epithelial cells from the single-
cell data of HCC. Subsequently, we re-executed the process 
of dimensional reduction and clustering utilizing Seurat 
software. 

Establishment and validation of the prognostic risk model

Utilizing DE-ERGs, we performed univariate Cox analysis 
to identify genes associated with prognosis, considering a 
significance threshold of P<0.05. These identified genes 
were integrated into a robust and accurate model using 
our machine learning-based integration algorithm. Within 
the TCGA dataset, we constructed 77 prediction models 
employing the leave-one-out cross-validation (LOOCV) 
technique. Subsequently, we evaluated the concordance 
index (C-index) of each model across all validation datasets. 
The model exhibiting the highest average C-index was 
selected as the optimal one. Then we calculated each patient 
a risk score based on the following formula: risk score = 
gene exp1 × β1 + gene exp2 × β2 + … + gene expression n × 
βn (gene expression refers to the value of gene expression, 
while β represents the corresponding coefficient in the 
multivariate Cox model). Survival curves and risk maps for 
patients were graphically represented using the R software, 
incorporating the “survival” and “survminer” (17). To 
evaluate the predictive performance of risk scores for overall 
survival (OS) at 1, 3, and 5 years in HCC patients, receiver 
operating characteristic (ROC) curves were generated 
employing the “timeROC” (18) package. Additionally, the 
prognostic model’s validity was confirmed through analysis 
of external ICGC datasets.

Gene set enrichment analysis (GSEA) enrichment analysis

Enrichment analysis via GSEA (19) was conducted utilizing 
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the “clusterProfiler” package (20) to scrutinize functional 
disparities and associated pathways among high- and low-
risk groups in TCGA, encompassing all genes. To delineate 
these distinctions, a compilation of 50 human cancer 
marker pathway genes was acquired from the Molecular 
Signature Database (MSigDB) (https://www.gsea-msigdb.
org/gsea/index.jsp). Additionally, gene set variation 
analysis (GSVA) (21) enrichment analysis was executed 
on gene samples from high- and low-risk groups, and 
discrepancies in GSVA scores were assessed utilizing the 
“limma” package (22).

Independent prognostic analysis

Univariate analysis was utilized to assess the risk model 
and clinical parameters. Next, multivariate Cox analysis 
was employed to identify independent risk factors crucial 
for predicting the OS of HCC patients. After identifying 
independent prognostic factors through multivariate Cox 
analysis, we constructed the nomogram model using the 
“cph” function in R. This model was designed to visualize 
the prediction and estimate potential survival rates at 
1, 3, and 5 years for patients. Calibration curves were 
subsequently utilized to assess the accuracy of the presented 
information.

Analysis of immune cell infiltration

For every HCC specimen, we computed the immunological 
score using the “ESTIMATE” package, and subsequently 
compared differences in immune scores among clusters. 
To evaluate immune-related pathway activity and the 
infiltration of immune cells, we employed single-sample gene 
set enrichment analysis (ssGSEA) algorithms. Moreover, 
the “CIBERSORT” tool was utilized to calculate the 
relative proportions of immune cells within heterogeneous 
cell clusters. Subsequently, samples were screened based 
on a significance threshold of P<0.05. Additionally, we 
explored the association between hub genes and immune 
cell infiltration, as well as their correlation with immune 
checkpoints. Finally, we retrieved the expression levels of four 
immune checkpoint markers in HCC. Mutational differences 
between high- and low-risk groups were investigated 
employing the “maftools” package (23).

Chemotherapy drug sensitivity analysis

To delve deeper into the potential utility of risk scores in 

guiding chemotherapy, this study utilized the “oncoPredict” 
package (24) to acquire the half maximal inhibitory 
concentration (IC50) values of drugs from the Genomics of 
Drug Sensitivity in Cancer (GDSC) database.

Statistical analysis

All data processing, statistical analysis and plots were 
performed by R (version 4.3.2). Pearson’s correlation 
coefficients were employed to evaluate the associations 
between two continuous variables. To assess the statistical 
significance of normally distributed variables in comparing 
two groups with continuous variables, the independent t-test 
was employed. For non-normally distributed variables, 
analyses between the two groups were conducted utilizing 
the Wilcoxon test. The threshold for significance was 
defined as P<0.05.

Results

Identification of HCC cell subtypes

Utilizing an scRNA-seq methodology, we aimed to delineate 
the transcriptional profile of a considerable cell population 
within primary tumors. Post meticulous filtration, a total 
of 73,159 cells met the criteria for subsequent examination. 
Subsequent to normalizing gene expression, we executed 
dimensionality reduction and clustering procedures 
employing principal component analysis and UMAP, 
correspondingly. The cellular classification revealed the 
presence of 7 discernible cell phenotypes (Figure 1A) using 
known marker genes: epithelial cells (marked with EPCAM, 
ALDH1A1 and ALB); B cells (marked with MS4A1 and 
CD79A); T cells (marked with CD3D and CD3E); natural 
killer (NK) cells (marked with FGFBP2 and FCG3RA); 
monocytes or macrophages (marked with CD68, CD163, 
and CD14); dendritic cells (marked with ITGAX); fibroblasts 
(marked with ACTA2 and COL1A2); and endothelial cells 
(marked with PECAM1 and vWF). Observing variations in 
the cellular composition across individual samples, we found 
disparities in the proportions of cells within each sample while 
examining the distributions of the seven distinct cell clusters 
(Figure 1B). Upon analyzing all seven cell distributions, we 
discovered that the fraction of cells varied across all samples. 
In two samples (p5 and p7), the largest proportion belonged 
to epithelial cells, whereas in three samples (p1, p2, and p4), 
the highest percentage belonged to T cells. The dot plots 
displaying differentially expressed genes (DEGs) and marker 
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genes further validated the precision of cell characterization 
(Figure 1C,1D).

Identification of DE-ERGs

In order to elucidate the association between ERGs and 
various cell clusters, we conducted an intersection analysis 
between 5,144 differentially expressed cell markers and 
1,024 MRGs (table available at https://cdn.amegroups.cn/
static/public/TCR-24-521-1.xlsx). This analysis yielded 

421 DE-ERGs, as illustrated in Figure 2A. Subsequent 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were carried out to further 
characterize the DE-ERGs. GO results suggested that DE-
ERGs were mainly involved in epithelial to mesenchymal 
transition, Wnt signaling pathway, Ras protein signal 
transduction, SMAD protein signal transduction, ERBB 
signaling pathway, Toll-like receptor binding, epithelial 
cell migration, Notch signaling pathway (Figure S1). 
KEGG results suggested that DE-ERGs were mainly 

Figure 1 Cell type classification in HCC. (A) t-SNE plot of 7 cell clusters. (B) Cell proportion in 7 HCC samples. (C) Bubble plots of the 
expression of diagnostic marker gene in each cell cluster. (D) Heatmap of the top 5 genes in each cell cluster. UMAP, uniform manifold 
approximation and projection; HCC, hepatocellular carcinoma; t-SNE, t-distributed stochastic neighbor embedding.
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associated with AGE-RAGE signaling pathway in diabetic 
complications, PI3K-Akt signaling pathway, ECM-receptor 
interaction, HIF-1 signaling pathway, EGFR tyrosine 
kinase inhibitor resistance, MAPK signaling pathway, ERBB 
signaling pathway, TGF-β signaling pathway, NF-kappa 
B signaling pathway, TNF signaling pathway, Toll-like 
receptor signaling pathway, JAK-STAT signaling pathway, 
Ras signaling pathway, VEGF signaling pathway, Wnt 
signaling pathway, AMPK signaling pathway (Figure 2B).

Cell-cell communication analysis

CellChat was employed to illustrate complex networks of 
cell-to-cell communication. Within HCC samples, there 
was an observed augmentation in the interaction between 
epithelial cells and fibroblasts, endothelial cells, as well as 
monocytes or macrophages (Figure 3A). Hierarchical plot 
of the inferred TGF-β, EGF, MIF, NOTCH, VEGF and 
VTN signaling network identified that possible ligands 

Figure 2 Identification of DE-ERGs based on single-cell RNA sequencing. (A) Venn diagram analysis of DE-ERGs between cell markers 
and ERGs. (B) KEGG analysis of the DE-ERGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; EMT, epithelial-mesenchymal 
transition; DE-ERGs, differentially expressed EMT-related genes.
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Figure 3 Cell-cell communication analysis. (A) Number and strength of interactions between key cells. (B) Hierarchical plot shows inferred 
intercellular communication network. (C,D) Upregulated receptor-ligand interaction networks between different cell types in HCC. HCC, 
hepatocellular carcinoma.

E
pi

th
el

ia
l c

el
ls

 -
 >

 B
 c

el
ls

E
pi

th
el

ia
l c

el
ls

 -
 >

 B
 c

el
ls

Commun. Prob.

Number of interactions

EGF signaling pathway network

MIF signaling pathway network

NOTCH signaling pathway network

TGFB signaling pathway network

VEGF signaling pathway network

VTN signaling pathway network

Interaction weights/strength

Commun. Prob.

P value

P value

P<0.01

P>0.05
P<0.01

VEGFB-VEGFR1

VEGFA-VEGFR2

VEGFA-VEGFR1R2

VEGFA-VEGFR1

MIF- (CD74 + CXCR4)

MIF- (CD74 + CD44)

max

min

max

min

E
pi

th
el

ia
l c

el
ls

 -
 >

 D
en

dr
iti

c 
ce

lls
E

pi
th

el
ia

l c
el

ls
 -

 >
 D

en
dr

iti
c 

ce
lls

E
pi

th
el

ia
l c

el
ls

 -
 >

 E
nd

ot
he

lia
l c

el
ls

E
pi

th
el

ia
l c

el
ls

 -
 >

 E
nd

ot
he

lia
l c

el
ls

E
pi

th
el

ia
l c

el
ls

 -
 >

 F
ib

ro
bl

as
ts

E
pi

th
el

ia
l c

el
ls

 -
 >

 F
ib

ro
bl

as
ts

E
pi

th
el

ia
l c

el
ls

 -
 >

 T
 c

el
ls

E
pi

th
el

ia
l c

el
ls

 -
 >

 T
 c

el
ls

E
pi

th
el

ia
l c

el
ls

 -
 >

 M
on

oc
yt

es
 o

r 
m

ac
ro

ph
ag

es
E

pi
th

el
ia

l c
el

ls
 -

 >
 M

on
oc

yt
es

 o
r 

m
ac

ro
ph

ag
es

A

B C

D



Chen et al. EMT genes as prognostic biomarkers in HCC4264

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4257-4277 | https://dx.doi.org/10.21037/tcr-24-521

between several cells and the main source (Figure 3B). 
Analysis was conducted on the network of interactions 
between ligands and receptors involving epithelial cells and 
various other cell types. Results indicated a notable increase 
in MIF-(CD74 + CXCR4), MIF-(CD74 + CD44), and 
VTN-(ITGAV + ITGB1) within HCC (Figure 3C). Further 
analysis of cell-cell communication among subgroups 
also revealed that multiple pairs of ligand-receptor pairs 
were activated in HCC tissues, such as MIF-(CD74 + 
CXCR4) and MIF-(CD74 + CD44) (Figure 3D). In general, 
communication patterns among cells within tumor tissues 
deviate from those observed in normal cells, a phenomenon 
potentially linked to the onset and progression of HCC.

Analysis of epithelial subtypes

For a more comprehensive investigation of the involvement 
of epithelial cells in HCC, we employed the “Seurat” 
software to downscale the epithelial cells within the 
HCC single-cell transcriptional profile, resulting in the 
identification of 10 distinct subsets of epithelial cells 
(Epi1–Epi10, Figure 4A). Utilizing the “FindAllMarkers” 
function, we identified the cellular signature genes within 
the 10 epithelial cell subsets. Subsequently, we employed 
the “scRNAtoolVis” software to visualize the volcano 
plots depicting the signature genes, showcasing the top 5 
upregulated and downregulated genes within each respective 
cell subset (Figure 4B). Furthermore, GSEA enrichment 
analysis of the marker genes within the Epi1–Epi10 subsets 
was conducted separately (Figure 4C). The upregulated 
genes in Epi5 are mainly enriched in the cytokine-cytokine 
receptor interaction and T cell receptor signaling pathway. 
The upregulated genes in Epi7 are mainly enriched in 
the PPAR signaling pathway and that in Epi8 are mainly 
enriched in the PI3K-Akt signaling pathway.

Construction and validation of model based on eight 
feature genes 

Conducting univariate Cox regression analysis, we 
identified 112 ERGs whose expression significantly 
correlated with OS among the DE-ERGs. Following this, 
the ERGs were integrated into an ensemble framework 
to construct a prognostic model. Within the TCGA 
cohort, we developed uniform models utilizing 77 different 
algorithmic combinations. Subsequently, the average 
C-index was computed for every model across all cohorts 
to evaluate their predictive capacity (Figure 5A, Table S1). 

Analysis of these 77 models revealed that the combination 
of least absolute shrinkage and selection operator (LASSO) 
and random survival forest (RSF) algorithms consistently 
retained the highest mean C-index, thereby serving as 
the foundation for constructing the ultimate model. 
Moreover, the multivariate Cox algorithm facilitated 
the identification of the most valuable model, which was 
characterized by the incorporation of 8 pivotal hub genes 
(Figure 5B-5D). The coefficients associated with each 
gene in the multiple regression model were calculated to 
assess their contributions (Figure 5E). Then, we calculated 
the risk score per sample for all cohorts: risk score = 
expression of HSP90AA1 × 0.2885370 + expression of 
CIRBP × (−0.4929703) + expression of CCR7 × (−0.4914148) 
+ expression of S100A9 × 0.1492653 + expression of 
ADAM17 × 0.7450708 + expression of ENG × (−0.2721958) 
+ expression of PGF × 0.5476513 + expression of INPP4B × 
(−0.9619075). In the TCGA and ICGC cohorts, individuals 
with high-risk scores had lower survival time (Figure 5F). 
ROC curves were built with an area under the curve (AUC) 
of 0.785 at 1-year, 0.778 at 3-year, and 0.79 at 5-year, 
demonstrating the superior OS prediction ability of our 
prognostic model. Our prognostic model concludes with 
good prediction efficiency in HCC (Figure 5G).

Screening for independent prognostic variables and 
nomogram creation

In order to identify independent prognostic determinants, 
both clinical attributes and risk scores underwent univariate 
and multivariate Cox analyses. Our findings highlighted the 
risk score as a standalone prognosticator among patients 
(Figure 6A,6B). This independent prognostic determinant 
was integrated into the nomogram model (Figure 6C). 
Additionally, the calibration plot illustrated the significant 
predictive capability of the model (Figure 6D). Hence, 
our outcomes imply that the risk score could serve as an 
independent prognostic factor, and the nomogram exhibits 
a certain predictive performance in estimating the OS of 
patients with HCC. 

Analysis of risk scores and different clinical characteristics

It illustrates the heatmap depicting the risk model alongside 
clinical attributes (Figure 7A). In order to investigate the 
correlation between risk score expression and clinical 
attributes, we conducted separate assessments of patient 
risk score variations across different clinical characteristic 

https://cdn.amegroups.cn/static/public/TCR-24-521-Supplementary.pdf
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Figure 4 Epithelial cell subtype analysis. (A) Epi1–Epi10 cell subsets were obtained by dimension reduction and clustering of epithelial 
cells. (B) Marker genes of Epi1–Epi10 subsets. (C) GSEA results of marker genes in the Epi1–Epi10 subset. UMAP, uniform manifold 
approximation and projection; TRP, transient receptor potential; COVID-19, coronavirus disease 2019; ECM, extracellular matrix; GSEA, 
gene set enrichment analysis.
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Figure 5 The generation and prognostic value of model. (A) Through a comprehensive computational framework, a combination of 77 
machine learning algorithms was generated. The C-index of each model was calculated through the TCGA, GSE14520, and GSE76427 
cohorts and sorted by the average C-index of the validation set. (B) LASSO regression of DE-ERGs. (C) The variable relative importance of 
screened genes based on RSF. (D) The forest plot of the multivariate Cox. (E) The coefficients of eight genes measured by the multivariate 
Cox. (F) Kaplan-Meier survival curves for the TCGA and ICGC cohort to analyze and visualize the survival outcomes of the patients. (G) 
The AUC of the prediction of 1-, 3-, and 5-year survival rates of HCC. *, P<0.05; **, P<0.01; ***, P<0.001. LASSO, least absolute shrinkage 
and selection operator; RSF, random survival forest; GBM, gradient boosting machine; SVM, support vector machine; TCGA, The Cancer 
Genome Atlas; CI, confidence interval; AIC, Akaike information criterion; LIHC, liver hepatocellular carcinoma; ICGC, International 
Cancer Genome Consortium; AUC, area under the curve; C-index, concordance index; DE-ERGs, differentially expressed EMT-related 
genes; EMT, epithelial-mesenchymal transition; HCC, hepatocellular carcinoma.
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Figure 6 The nomogram model was constructed based on univariate and multivariate Cox regression analyses. (A) Univariate Cox analysis 
of risk scores and clinical characteristics. (B) Multifactorial Cox analysis. (C) Construction of the nomogram model. (D) The calibration 
curve of the nomogram. ***, P<0.001. CI, confidence interval; OS, overall survival. 

groups. Our findings indicated significant disparities in 
risk scores across T-stage, grade, and OS status categories  
(Figure 7B-7I). The risk score rises in proportion to the 
tumor’s advancement. In general, our prognostic model, 
based on eight distinctive genes, exhibited remarkable 
prognostic efficacy.

Analysis of GSEA between high and low risk groups

To evaluate  the  inf luence of  h igh-  and low-r i sk 
subcategories on cancer progression, we performed GSEA 
to identify the pathways showing substantial differences 

in enrichment between the high- and low-risk subgroups. 
Our analysis revealed a significant enrichment of epithelial 
mesenchymal transition, PI3K-Akt-mTOR signaling, and 
Wnt β-catenin signaling pathways within the high-risk 
subgroup (Figure 8A). HALLMARK showed that low-
risk group was enriched in metabolic functions such as bile 
acid metabolism, and fatty acid metabolism (Figure 8B). 
Additionally, we conducted GSVA analysis to reveal PI3K-
Akt-mTOR signaling, G2M checkpoint, and DNA repair 
was activated in the high-risk group. As the low-risk group 
displayed activation in marker entries related to myogenesis, 
peroxisome function, bile acid metabolism, KRAS signaling, 
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Figure 7 Correlation analysis of risk scores with clinical characteristics. (A) A heatmap of risk model and clinical characteristics. (B-I) 
Relationship between survival status, age, gender, grade, stage, M stage, N stage, and T stage with the analysis model. OS, overall survival.
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and other associated marker entries (Figure S2A,S2B).

Evaluation of the possibility of HCC immunotherapy

Utilizing the CIBERSORT methodology, we generated 
22 distinct immune cell profiles in patients with HCC. We 
assessed the proportions of immune subtypes infiltrating 
the tumor to establish the connection between the risk 
score and the immunological aspect (Figure 9A,9B). The 
low-risk group exhibited higher levels of immunological 
infiltration in terms of CD8 T cells, monocytes, and M1 
macrophages. On the other hand, the high-risk group 
had greater levels of immune infiltration in terms of M0 
macrophages and regulatory T cells. Utilizing ssGSEA, 
we evaluated the infiltration scores of 28 distinct immune 
cell types across different risk categories. Our examination 
uncovered notable differences in the levels of infiltration 
among activated CD4 T cells, activated CD8 T cells, and 
NK T cells (Figure 9C). The Pearson correlation assessment 
unveiled a significant correlation linking infiltrating immune 
cells with both prognostic genes and risk assessments  
(Figure 9D). Box plot analysis depicted discernible 
dissimilarities in the expression levels of PD-L1 between 
the high- and low-risk groups (Figure 9E). Our investigation 
disclosed a prevalence of missense mutations and single 
nucleotide polymorphisms (SNPs) among patients with 
HCC (Figure 10A). Comparing mutation patterns between 
high- and low-risk cohorts indicated a predominance of 
missense mutations in both groups. The TP53 mutation 

rate of 42% in the high-risk group and 15% in the low-
risk group was displayed in the waterfall plot. Notably, the 
high-risk cohort exhibited a higher mutation frequency 
compared to the low-risk cohort, with an overall increase in 
the mutation load index TMB index observed in the high-
risk group relative to the low-risk group (Figure 10B). In 
summary, our findings suggest promising prospects for the 
advancement of HCC treatment through immunotherapy.

Prediction of chemotherapy effects by risk score

To explore the predictive capacity of the risk score in 
determining the response to chemotherapy, we initially 
obtained data from the GDSC database. Our findings 
revealed significant discrepancies in the efficacy of 
several common HCC chemotherapy drugs among high-
risk groups (P<0.05). Notably, sorafenib, a prevalent 
chemotherapy option for HCC, exhibited substantially 
lower IC50 values in the low-risk group compared to the 
high-risk group (P<0.05), indicating a potentially higher 
efficacy of sorafenib in the low-risk population (Figure 11).

RNA and protein expression level of ERGs

The expression of S100A9  was found to be down-
regulated in the eight ERGs utilized to construct the risk 
model from the TCGA cohort, but HSP90AA1, CIRBP, 
ADAM17, PGF, and INPP4B expression was up-regulated  
(Figure 12A). Subsequently, we delved deeper into the 

Figure 8 Biological characteristics between high- and low-risk groups. (A,B) GSEA analysis of KEGG between high- and low-risk groups. 
GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 9 Analysis of the TIME in high- and low-risk groups. (A) A barplot was constructed to visualize the relative proportions of  
22 different types of tumor-infiltrating immune cells in HCC tumor samples. (B) A Violin plot visualizing the cibersort scores of  
22 immune cells between high and low-risk groups. (C) A Violin plot visualizing the ssGSEA scores of 28 immune cells between high- and 
low-risk groups. (D) Correlation analysis of risk scores with significantly different immune cells. (E) Expression analysis of PD-1, PD-L1,  
CTLA-4, and TIGIT between high- and low-risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. TIME, tumor immune microenvironment; 
HCC, hepatocellular carcinoma; ssGSEA, single-sample gene set enrichment analysis; PD-1, programmed cell death-1; PD-L1, 
programmed cell death ligand-1; CTLA-4, cytotoxic T-lymphocyte antigen-4; TIGIT, T cell immunoglobulin and ITIM domain; ITIM, 
immunoreceptor tyrosine-based inhibition motif. 
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Figure 10 Mutation landscape analysis in HCC. (A) Overall description of the TCGA-LIHC patient mutation landscape. (B) The TMB in 
the high- and low-risk groups was predicted by the risk model. SNP, single nucleotide polymorphism; ONP, oligonucleotide polymorphism; 
INS, insertion; DEL, deletion; SNV, single nucleotide variant; TMB, tumor mutational burden; HCC, hepatocellular carcinoma; TCGA, 
The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma.
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Figure 11 Correlation analysis between risk groups and drug sensitivity. (A) Axitinib. (B) Gefitinib. (C) Sorafenib. (D) Erlotinib. (E) 
Afatinib. (F) Lapatinib.
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expressions of HSP90AA1, CCR7, S100A9, ADAM17, 
ENG, and INPP4B using immunohistochemistry methods 
from the HPA database. Protein levels of CCR7, ADAM17, 
ENG, and INPP4B were elevated in HCC tissues compared 
to paracarcinoma tissues, while no notable distinction was 
observed in the protein levels of HSP90AA1 and S100A9 
between paracarcinoma and HCC tissues (Figure 12B).

Discussion

HCC stands as a formidable global health challenge, 
characterized by pronounced recurrence rates and 
mortality. The selection of optimal therapeutic strategies 
constitutes a pivotal aspect of clinical decision-making 
for individuals afflicted with HCC. Consequently, there 
exists an urgent imperative to unearth novel prognostic 
biomarkers and therapeutic targets tailored to address this 
pressing clinical need. To date, EMT is recognized as a pre-
metastatic cellular event that facilitates tumor cell invasion 
and metastasis. This process similarly plays a pivotal role in 
HCC metastasis (25). Consequently, genes associated with 
EMT hold significant promise as biomarkers for monitoring 
liver cancer progression and predicting patient prognosis. 
Within the purview of this investigation, predictive models 
were meticulously constructed based on the distinct 

expression profiles of eight ERGs, leveraging data gleaned 
from the TCGA cohort. Robust validation endeavors were 
undertaken utilizing the ICGC cohort, yielding congruent 
outcomes. Remarkably, patients stratified with elevated 
risk scores evinced diminished prognostic outlooks and 
heightened mortality rates relative to their counterparts 
with lower risk scores. Noteworthy associations were 
discerned between escalated risk scores and augmented 
Phase T, grade, and clinical stage parameters. These 
findings underscore the utility of risk scores derived from 
the aforementioned eight ERGs as formidable independent 
prognosticators for individuals afflicted with HCC.

Regarding methodology, our research employs a 
unique way. Machine learning performs better at handling 
complicated data structures and interactions than traditional 
statistical methods, which makes it easier to identify 
probable features and patterns from a variety of clinical and 
gene expression data. Furthermore, by using LASSO and 
RSF for gene characterization and optimization methods, 
we were able to determine the most pertinent markers for 
the prediction of HCC patients. By using this technique, 
the feature space’s dimensionality is successfully decreased, 
and the model’s predictive capabilities are enhanced. 
Crucially, our research takes advantage of machine 
learning’s generalizability to evaluate the accuracy and 
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dependability of models using a variety of datasets from 
several sources, such as TCGA and GEO. Initially, scRNA-
seq was conducted on seven HCC specimens, facilitating 
the delineation of distinct cell clusters comprising epithelial 
cells, B cells, T cells, NK cells, monocytes or macrophages, 
dendritic cells, and endothelial cells. Subsequent GO 
and KEGG analyses of DE-ERGs sourced from TCGA 

revealed predominant enrichment in critical signaling 
pathways such as the PI3K-Akt and MAPK pathways, 
implicated in the proliferation and progression of HCC. 
Further, an 8-gene prognostic model was devised through 
a rigorous analytical framework encompassing univariate 
Cox regression analysis, machine learning algorithms, and 
multivariate Cox regression analysis, incorporating the 

Figure 12 Validation of genes expressions of four hub genes. (A) Box plots of HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, 
PGF, and INPP4B expression in TCGA tumor and normal tissues. (B) Representative immunohistochemistry staining of HSP90AA1, 
CCR7, S100A9, ADAM17, ENG, and INPP4B in HCC tissue obtained from the Human Protein Atlas. The links to the individual 
normal and tumor tissues of each protein are provided for HSP90AA1 (https://www.proteinatlas.org/ENSG00000080824-HSP90AA1/
tissue/liver#img; https://www.proteinatlas.org/ENSG00000080824-HSP90AA1/pathology/liver+cancer#img), CCR7 (https://www.
proteinatlas.org/ENSG00000126353-CCR7/tissue/liver#img; https://www.proteinatlas.org/ENSG00000126353-CCR7/pathology/
liver+cancer#img), S100A9 (https://www.proteinatlas.org/ENSG00000163220-S100A9/tissue/liver#img; https://www.proteinatlas.org/
ENSG00000163220-S100A9/pathology/liver+cancer#img), ADAM17 (https://www.proteinatlas.org/ENSG00000151694-ADAM17/tissue/
liver#img; https://www.proteinatlas.org/ENSG00000151694-ADAM17/pathology/liver+cancer#img), ENG (https://www.proteinatlas.org/
ENSG00000106991-ENG/tissue/liver#img; https://www.proteinatlas.org/ENSG00000106991-ENG/pathology/liver+cancer#img), and 
INPP4B (https://www.proteinatlas.org/ENSG00000109452-INPP4B/tissue/liver#img; https://www.proteinatlas.org/ENSG00000109452-
INPP4B/pathology/liver+cancer#img). ns, P≥0.05; *, P<0.05; ****, P<0.0001. TCGA, The Cancer Genome Atlas; HCC, hepatocellular 
carcinoma.
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genes HSP90AA1, CIRBP, CCR7, S100A9, ADAM17, ENG, 
PGF, and INPP4B.

Indeed, the prognostic model includes eight ERGs that 
have demonstrated associations with EMT processes across 
various malignant tumors, each fulfilling distinct roles 
within the tumor microenvironment (TME). Specifically, 
the HSP90AA1 gene encodes heat shock protein α 
(HSP90α), which, upon activation, functions to stabilize 
downstream proteins like mutant P53, EGFR, BRAF, 
and hTERT, consequently fostering tumor progression 
indirectly. Investigations into colorectal, ovarian, and renal 
cancers have elucidated HSP90α’s capability to modulate the 
EMT pathway, leading to the downregulation of epithelial 
markers E-cadherin and Vimentin, thereby facilitating 
lymph node metastasis in tumors (25). CCR7 is a G-coupled 
cheekiness receptor that has been identified as a mediator 
of Epstein-Barr virus (EBV) effects on B lymphocytes. 
Thus, CCR7 is mainly involved in the migration/trafficking 
of immune cells. Regarding metastasis, recent studies have 
found that high expression of CCR7 correlates with lymph 
node metastasis and promotes cell invasion and migration 
processes through the Akt signaling pathway in breast cancer 
(26-28). S100A9 exhibits affinity for Ca2+, Zn2+, RAGE, 
TLR4, and MMPs in a highly selective manner. It assumes 
regulatory roles both intracellularly and extracellularly, 
participating in cellular differentiation, signal transduction, 
migration, and adhesion processes (27). Numerous prior 
investigations have demonstrated the potential of S100A9 
as a biomarker for various tumors, including HCC (29,30), 
gastric cancer, and neuroblastoma (31). Moreover, S100A9 
facilitates HCC growth and metastasis via RAGE-mediated 
activation of ERK1/2 and P58 MAPK pathways (30).  
Increased serum levels of S100A9 expression are indicative 
of an unfavorable prognosis for patients following radical 
resection for HCC (31,32). Belonging to the ADAMs 
family, ADAM17 facilitates the shedding and maturation 
of multiple membrane proteins thus playing a role in 
cancer progression. Specifically, ADAM17 is involved 
in the cleavage of E-cadherin, promoting EMT and 
cellular motility (33,34). Within our investigation, we 
observed elevated levels of both RNA and protein for 
CCR7, ADAM17, and INPP4B in HCC. However, the 
protein levels of CIRBP and PGF were not confirmed. 
Further exploration is warranted to elucidate the specific 
mechanisms and functions of these genes.

Moreover, the samples underwent categorization into 
low-risk and high-risk cohorts determined by computed risk 
scores. Through studying the relationship between riskscore 

and clinical pathological features, we found that the risks 
were higher in G2 than G1, higher in G3 than G1, higher 
in G4 than G1, T2 than T1, higher in T3 than T1, higher 
in T4 than T1, higher in clinical stage II than clinical stage I, 
and higher in clinical stage III to clinical stage I. In terms of 
clinical relevance, the risk score was correlated with TNM 
stage, grade, and clinical stage suggesting a potentially 
higher risk score in patients with advanced HCC. Utilizing 
GSEA, it emerged that the high-risk cohort exhibited 
pronounced enrichment in pathways closely associated with 
tumorigenesis, notably encompassing EMT, PI3K-Akt-
mTOR signaling, TNFα signaling via NF-kappa B, and 
Wnt/β-catenin signaling. This delineation underscores the 
heightened aggressiveness inherent in tumors within this 
high-risk stratum. Intriguingly, these findings mirror the 
clinical profile typifying the high-risk cohort, characterized 
by advanced pathological and clinical staging, dismal 
prognostic outlooks, and elevated mortality rates. In stark 
contrast, pathways enriched in the low-risk subgroup 
predominantly center on the liver’s physiological metabolic 
processes, including bile acid, fatty acid, and xenobiotic 
metabolism. Given the liver’s pivotal role as a nexus for fatty 
acid metabolism, encompassing β-oxidation, ω-oxidation, 
and fatty acid synthesis, among others, a more favorable 
clinical trajectory is anticipated relative to their high-risk 
counterparts. Furthermore, the liver plays a pivotal role in 
primary bile acid biosynthesis and histidine metabolism, 
further underscoring its multifaceted metabolic significance. 
HCC demonstrates considerable resistance to multiple 
chemotherapeutic agents, either alone or when combined. 
Hence, the selection of suitable chemotherapeutic agents 
for patients with varying risk levels becomes crucial. 
Utilizing oncoPredict, we found individuals categorized as 
high-risk exhibited heightened responsiveness to sorafenib, 
while gefitinib might yield more favorable outcomes in low-
risk patients.

The TME denotes the intricate cellular milieu enveloping 
a neoplasm, encompassing not only the tumor per se but 
also proximal vascular structures, the extracellular matrix, 
neighboring normal cells, and associated signaling 
molecules (35). Among the most prevalent tumor-infiltrating 
immune entities within the TME, tumor-associated 
macrophages (TAMs) occupy a central position (36). TAMs 
have been delineated as pivotal accelerators of HCC 
progression, owing to their secretion of an array of cytokines 
that incite EMT and potentiate tumor proliferation, 
invasion, and migration (37). Specifically, IL-6 secretion by 
TAMs has been documented to foster tumor dissemination 



Translational Cancer Research, Vol 13, No 8 August 2024 4275

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4257-4277 | https://dx.doi.org/10.21037/tcr-24-521

via activation of the downstream JAK/STAT3 signaling 
axis, concurrent with the downregulation of E-cadherin 
and upregulation of EMT-associated transcription factors 
such as vimentin, snail, and twist (38). Moreover, TAMs are 
implicated in the release of exosomes and S100A9, which, 
in turn, modulate the stemness attributes of tumor cells. 
Our study’s findings delineate a discernible correlation 
between the 8-gene prognostic model and the infiltration 
of immune cells, alongside immune subtypes. We posit that 
the discernible prognostic disparity between high- and low-
risk cohorts may, in part, be attributed to variances in the 
immune landscape of patients.

The dissemination of cancer cells through invasion 
constitutes a pivotal determinant of malignancy, exerting 
a profound impact on patient prognosis. Consequently, 
EMT has garnered considerable attention as a putative 
facilitator of tumor metastasis. Initially, our investigation 
focused on evaluating the expression levels of eight genes 
in HCC. Nonetheless, further refinements are requisite to 
enhance the robustness of our findings. The formulation 
and validation of our prognostic model, comprising 
eight genes, relied exclusively on data sourced from 
two databases, underscoring the necessity for additional 
experimental validation utilizing cellular or animal models 
to elucidate the precise regulatory mechanisms governing 
prognostic attributes. Furthermore, it is imperative to 
underscore that our conclusions predominantly emanate 
from transcriptomic profiling, and the prognostic model 
delineated for ERGs is yet to be translated into clinical 
practice or widely adopted.

Conclusions

Leveraging both scRNA-seq and RNA-seq datasets, we 
harnessed diverse machine learning methodologies to devise 
a novel prognostic framework aiming at predicting OS in 
HCC patients. This model represents an advancement, 
facilitating the estimation of survival probabilities among 
individuals grappling with HCC. Our discernments afford 
augmented insight into the pivotal prognostic determinants 
within the realm of HCC, thereby envisaging their 
prospective utility as diagnostic and therapeutic biomarkers. 
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