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Abstract: The atomic and electronic structure of vanadium phosphide one- to four-atomic-layer thin
films and their composites with zinc oxide substrate are modelled by means of quantum chemistry.
Favorable vanadium phosphide to ZnO orientation is defined and found to remain the same for all
the structures under consideration. The electronic structure of the composites is analyzed in detail.
The features of the charge and spin density distribution are discussed.

Keywords: ZnO; vanadium phosphide; thin films; nanocomposite; photocatalysts; density functional
theory

1. Introduction

Zinc oxide has been of particular interest to the researchers during the last several
decades due to its chemical stability and non-toxicity along with the low cost. This material is
promising for a number of potential applications such as photoelectric elements [1–7], light-
emitting diodes (LEDs) [8–12], gas sensors [13–15], biosensors [16], photodetectors [17,18] and
photocatalytic devices [19,20].

Electronic properties of ZnO are strongly affected by the synthesis conditions and
method. This fact is associated with the point defects (oxygen/zinc vacancy and oxy-
gen/zinc interstitials) acting as dopants and influencing physical and chemical character-
istics of material [21–24]. ZnO doping enhances its physical properties—namely, electric
conductivity [25], and transparency [26]—and decreases the electron work function [27].
Ferromagnetic properties [28,29] may also occur in doped ZnO while the pristine material
is non-magnetic.

n-doping of ZnO is usually reached by XIII group elements (i.e., B [30], Al [31,32],
Ga [33,34], In [35]) as well as transition metals such as Ti [36]. On the other hand, XV
group elements (N [37,38], P [39,40] and Sb [41]) are promising p-type dopants substituting
oxygen atoms in ZnO structure. ZnO doped by transition metal atoms arouses great
interest due to the opportunity to obtain diluted magnetic semiconductors (DMS) for new
device applications.

Besides the doping of ZnO with different elements of periodic table, the formation of
thin films-based composites is another popular way to tune its properties. For instance,
synthesis and enhanced photocatalytic properties have been recently reported for ZnO-
based composites with graphene [42–45]. Another way to improve ZnO photocatalytic
activity is using MXenes, a promising family of materials defined by Mn+1XnTx composition
where M is an early transition metal, X is carbon and/or nitrogen atom and T represents
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the surface-terminating functional groups [46–48]. Thus, investigations of zinc oxide-based
metamaterials obtained by its doping as well as growing thin films of transition metals
compounds on ZnO substrate are a promising direction of modern materials science.

Transition metal phosphides (TMP), one more promising family of two-dimensional
transition metal compounds, have gained significant research interest due to their unique
properties and catalytic activity in hydrogen evolution reaction [49–53]. Some of them
have even been predicted to be comparable with Pt (111) surface [54]. Extensive theoretical
studies of M2P monolayers have shown them as promising candidates for catalysis and
electrode materials [55–57]. The most recent study of tetragonal VP monolayer reveals its
half-metallicity and interesting optical properties [58].

The present paper aims to show how ZnO electronic structure changes when forming
nanoscale composites with VP thin films. First, thin films of vanadium phosphide with
various thickness and composition are characterized by means of density functional theory.
After that, ZnO/VP stacking, electronic and magnetic properties are discussed.

2. Computational Methods

All quantum chemical calculations were performed within the framework of den-
sity functional theory using the plane wave basis set and projector-augmented wave
method [59,60], as implemented in Vienna Ab-initio Simulation Package [61–64]. GGA-
PBE spin-polarized exchange-correlation functional [65] and Grimme correction [66] for
van der Waals interactions were used for electronic and structural optimization. The
residual forces acting on atoms being less than 10−3 eV/Å were used as stopping criteria
for cell vectors and geometry optimization. Monkhorst-Pack k-point first Brilloin zone
sampling [67] was used with k-point mesh containing 12 × 12 × 6 points along three
translation vectors for bulk ZnO and VP calculations. When calculating the slabs and
interfaces, the vacuum interval of 15 Å was used to guarantee the absence of interactions
between slab images in periodic boundary conditions. For these structures, 12 × 12 × 1
k-point mesh was used.

The surface energy for all slabs was estimated as:

Esur f = (Esc − n · Euc)/(2 · S) (1)

where Esur f , Esc, Euc, n, S correspond to the surface energy, total energy of the surface
supercell, total energy of ZnO unit cell, number of unit cells in the supercell, and the area
of ZnO slab unit cell, respectively.

The most favorable orientation of VP slab with respect to ZnO surface was determined
by comparing stacking energies of each configuration estimated using the equation:

Estack = Ecomp − EZnO − EVP (2)

where Ecomp, EZnO, EVP correspond to the total energies of composite, pure ZnO slab and
pure VP slab, respectively.

3. Results and Discussions

At the first step, the correspondence of the ZnO (0001) surface and vanadium phos-
phide hexagonal lattices was proved. The zinc oxide hexagonal unit cell belongs to the
space group P63mc with lattice parameters a = b = 3.25, c = 5.21 Å [68] while the VP hexag-
onal unit cell belongs to the space group P63/mmc with lattice parameters a = b = 3.180,
c = 6.220 Å [69]. A set of free-standing ZnO (0001) slabs with the number of atomic layers
varying from 7 to 12 were modelled. It was found that the values of Esurf are close to each
other and lie in the range of 1.854 to 1.883 J/m2. Thus, the one with the smallest number of
atoms was used as the surface unit cell for further calculations. Next, VP slabs cut from the
bulk crystal with the number of layers decreasing from four to one were modelled.

Lattice parameter a as well as the corresponding magnetic moments for VP are pre-
sented in Table 1. Structural parameters of bulk VP are in good agreement with experimen-
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tal data [69]. The structure stoichiometries correspond to the number of each element’s
atomic layers. Thin films of two or more layers are close to the original bulk structure while
monolayers demonstrate fluctuations of a parameter which can be explained in terms of
structural instability. The stoichiometric compositions of VP thin films are characterised by
larger magnetic moments on vanadium atoms caused by the V dangling bonds while their
non-stoichiometric counterparts have magnetic moments close to zero (Figure 1 illustrates
atomic structure for stoichiometric and non-stoichiometric bilayer of VP). In this work,
we mainly focus on stoichiometric structures as V-terminated surfaces possessing larger
magnetic moments. Magnetic catalysts are considered to be environmentally friendly
as they can be easily and completely separated from reactants using an external magnet
without any loss, unlike other heterogeneous catalysts requiring filtration, centrifugation
and other techniques that might be quite sophisticated [70]. It is also known that not
only charge transfer but also spin transfer may occur when the molecule is adsorbed on
magnetic surface, enhancing its catalytic properties [71] and expanding the area of potential
applications in spintronic devices [72]. Non-stoichiometric ones are presented both for the
reference and as an intermediate step of thin films formation.

Table 1. Lattice parameter a, magnetic moment and stability of stoichiometric and non-stoichiometric
configurations of VP from one to four layers.

Configuration Magnetic Moment, µB a, Å

Bulk VP 0.000 3.130

VP monolayer 2.000 2.962

VP2 0.756 3.214

V2P2 1.636 3.058

V2P3 0.000 3.058

V3P3 1.511 3.078

V3P4 0.147 3.111

V4P4 1.791 3.086

V4P5 0.025 3.115
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below the atom A of VP). 

Figure 1. Atomic structure of VP thin films. (A) stoichiometric (V2P2) and (B) non-stoichiometric
(V2P3) VP bilayer.

The manifold of composite structures considered included different VP film orienta-
tions with respect to ZnO (see Figure 2 for the notations: A_top_B corresponds to the atom
A of VP being on top of the atom B of ZnO; A_hex represents hexagonal hollow site below
the atom A of VP).

The [P_top_Zn:V_hex] configuration of VP/ZnO composite was found to have the
lowest stacking energy for both V4P4/ZnO and VP monolayer/ZnO structures (−1.273 eV
and −1.167 eV, respectively, see Table 2). This configuration is also characterized by the
largest values of magnetic moments, and the VP monolayer possesses the largest among all
(2.285 µB). According to the common trend in stacking energies for one- and four-layer VP
films, only [P_top_Zn:V_hex] configuration was constructed for two- and three-layer ones.
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(B) [P_top_O:P_hex]; (C) [P_top_Zn:V_hex]; (D) [V_top_O:P_hex].

Table 2. Stacking energies and magnetic moments for different VP slab orientation in structures with
one and four VP layers.

Structure
V4P4 VP Monolayer

Estack, eV µ, µB Estack, eV µ, µB

[P_top_O:V_hex] −0.637 1.159 −0.465 1.390
[P_top_O:P_hex] −0.644 1.206 −0.655 2.163
[P_top_Zn:V_hex] −1.273 1.242 −1.167 2.285
[V_top_O:P_hex] −0.705 1.250 −0.772

Figures 3–6 illustrate the total (TDOS) and partial (PDOS) densities of states for the
VP/ZnO composites in favorable configuration. As can be clearly seen from A and B parts
of Figures 3 and 4, the ZnO slab mostly contributes to the states in the valence zone while
the conduction zone is formed predominately by VP film. Analysis of C and D parts of the
same figures shows how the slabs affect each other in comparison with isolated ZnO and
VP thin films.
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monolayer and PDOS of VP in the composite structure, respectively.
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Figure 4. DOS for V3P3/ZnO composite. (A) Black and red lines correspond to composite TDOS
and ZnO PDOS; (B) black and green lines correspond to composite TDOS and VP PDOS; (C) black
and red lines correspond to TDOS of pristine ZnO slab and PDOS of ZnO fragment in V3P3/ZnO
composite; (D) black and green lines correspond to TDOS of pristine V3P3 slab and PDOS of VP in
the composite structure, respectively.
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ZnO slab and PDOS of ZnO fragment in V4P4/ZnO composite; (B) black and green lines correspond
to TDOS of pristine V4P4 slab and PDOS of VP in the composite structure, respectively.

Composite formation leads to the shifting and broadening of DOS peaks, which is
more prominent for the VP monolayer in VP/ZnO composite while VP thickness up to
three layers leads to the change mostly in the ZnO valence zone (see Figure 4). However,
the levels of zinc oxide thin film above the Fermi level are much less affected (see insets in
Figures 3C and 4C).

Figure 5 demonstrates element-resolved PDOS for V4P4/ZnO structure. While Zn
and O states are highly hybridized, V contribution is dominating for VP and PDOS of P
are almost negligible. Figure 6, similarly to Figure 3C,D, demonstrates more prominent
redistribution of ZnO valence band states and less that of its conduction band.

For the reference, non-stoichiometric configurations of one and three-layer thick
VP/ZnO hybrid structure were modelled (see Table 3). The calculated stacking energies
revealed that favorable configuration of VP and ZnO slabs’ mutual arrangement remains
the same ([P_top_Zn:V_hex]). These values, however, should not be compared to those
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obtained for stoichiometric structures directly as uniform adsorption of a whole P layer is
required to turn from one to another.

Table 3. Stacking energies (Estack) for non-stoichiometric VP/ZnO composites, eV.

Composite Structure VP2 V3P4

[P_top_O:V_hex] −1.861 −3.975
[P_top_O:P_hex] −1.651 −3.781

[P_top_Zn:V_hex] −2.204 −4.388
[V_top_O:P_hex] −1.662 −3.781

In addition, the charge and spin density distributions were analyzed. The negative
charge on VP slab demonstrates the electron transferred to it from the ZnO slab (Figure 7).
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Figure 7. Charge density distribution in V2P2/ZnO composite. Blue and yellow areas correspond to
the lack and excess of charge, respectively.

The amount of charge transfer estimated by the AIM (Bader) method [73–75] is listed
in Table 4. The same non-uniform trend is observed for both charge and spin distribution as
the number of layers increases. The latter is generally in agreement with values calculated
for pristine VP slabs.

Table 4. Charge (QVP) and magnetic moment (µVP) of VP slab in VP/ZnO composites according to
Bader analysis.

Number of Layers QVP, e− µVP, µB

4 −0.117 1.896
3 −0.186 1.355
2 −0.177 1.842
1 −0.079 2.254

According to Figure 8, which demonstrates spin density spatial distribution, the top-
most V layer gains the most of the magnetic moment while the magnetism in deeper-lying
V atoms is rather quenched with the increase in the number of VP layers in the composite.
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4. Conclusions

The atomic and electronic structure of VP thin films was calculated and the possibility
of VP/ZnO composite formation was proven by quantum chemical modelling. Configu-
ration characterized by phosphorous atoms being atop the Zn ones and vanadium atoms
placed above the hexagon centre was found to be favourable for all structures considered
regardless of the number of VP layers and stoichiometry of structure. The valence band
is mostly formed by the ZnO slab while VP states are more prominent in the conduction
band. Zinc and oxygen states are highly hybridized whereas VP DOS rises mainly from
vanadium atoms. The topmost V atoms are visibly spin-polarized which opens opportuni-
ties for various applications of these structures in spintronics as magnetic substrates for
organic molecules or metal complexes adsorption and in catalysis as magnetic catalysts
that can be removed from the solution with external magnet. These applications are to be
further investigated.
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