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Abstract: Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory 
networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based 
on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important 
genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regula-
tory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the 
genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while 
downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators 
and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors 
weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.
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Background
Although many important genes responsible for the 
genesis of various cancers have been discovered, 
the molecular mechanisms underlying oncogenesis 
remain unclear. Recently, the use of systems biology 
approaches to understand the disease is generating 
extensive interest.1–4 The advent of microarrays has 
fueled investigations that use whole-genome expres-
sion profiles to understand cancer and to identify key 
cancer-specific gene regulatory networks.5–11

The construction of gene regulatory networks 
through microarrays is often called “reverse engineer-
ing.” There are two classes of reverse-engineering 
algorithms: one identifying true physical interac-
tions between regulatory proteins and their promot-
ers, and the other identifying regulatory influences 
between RNA transcripts.12 Here we limit our dis-
cussion to the second class: gene-to-gene interaction 
networks. The interaction between two genes in a 
gene network does not necessarily imply a physical 
interaction, but can also refer to an indirect regula-
tion via proteins, metabolites, and ncRNA that have 
not been measured directly.13 In general, there are 
two classes of gene-to-gene interaction networks: 
undirected and directed. The popular algorithms for 
reconstructing undirected networks are based on 
similarity measures, such as Pearson correlation14,15 
and mutual information,16–18 to name a few. One obvi-
ous deficiency of these methods is that the direction 
of interaction is not specified. As a result, the cause-
effect regulatory relations among genes cannot be 
well characterized. In contrast, directed gene regu-
latory networks are capable of depicting the cause-
effect regulatory relations, better providing insights 
into biological systems than the co-expression rela-
tion. The oft-used methods for inferring directed 
networks include Bayesian networks,19–23 Bool-
ean networks,24–26 ordinary differential equations 
(ODEs)27–33 et al. In the present study, we attempt 
to develop a method for inferring gene regulatory 
networks based on soft computing rules,34 by which 
directed regulatory relations between gene pairs can 
be induced. Although rule-based formalisms have 
been used for inferring gene regulatory networks by 
some investigators,35–39 the use of this kind of meth-
ods for inference of gene regulatory networks has 
not yet been sufficiently explored.

Most of the previous efforts toward the recon-
struction of cancer-specific gene networks utilized 
all gene expression data from microarrays to identify 
the intricate interplay between genes, some of which 
actually had nothing to do with the observed cancer 
phenotype. As a result, gene interactions essentially 
responsible for oncogenesis were difficult to detect. 
To better discover authentic gene interactions rel-
evant to cancer, in this work, we reconstruct cancer-
specific gene regulatory networks by focusing on a 
small number of relevant genes, each of which shows 
good performance in distinguishing cancerous tissues 
from normal ones. The main objective of this study is 
to observe the roles played by high class-discrimina-
tion genes in the context of cancer-specific gene reg-
ulatory networks. We suspect that genes with good 
classification ability have high centrality in the net-
works; that is, they are inclined to act as hub genes. 
We use one colon-cancer-related microarray dataset 
to validate our suspicion.

Results and Analysis
We use directed graphs to describe networks, in which 
each node represents a gene and the presence of a 
directed edge between two nodes indicates the exis-
tence of a regulatory relation between the connected 
genes. We construct all network graphs using Cyto-
scape software.40 We aim to analyze two classes of 
networks: one containing only the identified 18 genes 
(refer to Materials and Methods) (Network Type 1), 
and the other containing genes other than the 18 genes 
(Network Type 2). Clearly, the former appears as a 
subgraph of the latter for identical α values (refer to 
Materials and Methods).

Network type 1
For Network Type 1, we use red circle nodes to repre-
sent upregulated genes in tumor, and blue circle nodes 
to represent downregulated genes in tumor. Thus, an 
edge connecting two nodes with identical colors indi-
cates a positive regulatory relation between the two 
genes. In contrast, an edge connecting two nodes with 
different colors indicates a negative regulatory rela-
tion between the two genes. When α = 1, no regula-
tory relation among the 18 genes is found, and when 
α = 0.95, three regulatory relations are identified 
(Figure 1). They are TPM3, CSRP1, and S100A11 
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positively regulating SPARCL1, DES, and PCBD1, 
respectively. The three regulatory relations are highly 
reliable because the confidences of all decision rules 
that infer them are no less than α (= 0.95).34 The cor-
responding regulatory networks when α = 0.85 and 
0.8 are shown in Figure 2 and Figure 3, respectively. 
Clearly, if we denote the network graph derived from 
α by G(α), then, for α1  α2, G(α2) must be a sub-
graph of G(α1); that is, as the α value decreases, addi-
tional nodes and edges will be added to the former 
graphs. Although the networks induced under greater 
α values are inclined to be more reliable, some impor-
tant interactions are possibly missed. Table 1 lists the 
connection degrees of all genes in the constructed 
gene regulatory networks under different α values 
and the average connection degrees. The indegrees 
are presented in parentheses. From the table, we can 
see that the connectivity of the majority of the nodes 
is close to each other, and a small number of nodes 
have relatively low connectivity. An interesting phe-
nomenon is that the upregulated genes are regulated 
by more other genes than the downregulated genes, 
while the downregulated genes regulate more other 
genes than the upregulated genes. This is particularly 
evident under such mean α values as 0.8 and 0.85. 
Actually, when α = 0.8, the average number of genes 
regulated by the downregulated genes is around nine 

while the average number of genes regulating the 
downregulated genes is around five. The P-value of 
the t-test of the difference is approximately 0.0142, 
indicating significance of the difference. In contrast, 
when α = 0.8, the average number of genes regulated 
by the upregulated genes is approximately four while 
the average number of genes regulating the upregu-
lated genes is approximately eight. The P-value of 
the t-test is approximately 0.0177, also suggesting 
that the difference is significant. When α = 0.85, the 
P-values of the t-test for the downregulated genes 

DESCSRP1

PCBD1

SPARCL1 TPM3

S100A11

Figure 1. Network Type 1 constructed under α = 0.95.
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Figure 2. Network Type 1 constructed under α = 0.85.
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and the upregulated genes are 0.0004 and 0.0366, 
respectively. In general, when α equals 0.8 or 0.85, 
we reach a more ideal balance between the identified 
gene-interaction numbers and the reliability of the 
identified interactions, relative to the other α values. 
Therefore, the above results revealing the difference 
in regulatory direction for the two classes of cancer-
related genes are meaningful.

As we know, one common property of biologi-
cal systems is robustness, which is a consequence of 
natural selection and facilitates the evolvability of 

biological systems.41–50 Robustness enables biological 
systems to withstand perturbations in the form of vari-
ous diseases, including cancer. Although the mecha-
nism underlying cancer remains unclear, accumulated 
evidence has revealed that cancer is caused by genetic 
perturbations.51–67 Therefore, biological systems may 
have evolved to become robust to genetic perturba-
tions to resist the occurrence of cancer.48–50 Here we 
refer to upregulated genes in tumor as activators and to 
downregulated genes as suppressors. We assume eight 
regulatory patterns, as shown in Figure 4. Pattern 1 
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Figure 3. Network Type 1 constructed under α = 0.80.
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represents one suppressor suppressing multi-activators; 
Pattern 2 represents one suppressor activating multi-
suppressors; Pattern 3 represents one activator sup-
pressing multi-suppressors; Pattern 4 represents one 
activator activating multi-activators; Pattern 5 rep-
resents one suppressor being suppressed by multi-
activators; Pattern 6 represents one suppressor being 

activated by multi-suppressors; Pattern 7 represents 
one activator being suppressed by multi-suppressors; 
and Pattern 8 represents one activator being activated 
by multi-activators. For robust biological systems, Pat-
terns 1, 2, 6, and 7 should be strong while the others 
should be weak; that is, the suppressors should func-
tion as the inhibitors of tumor as strongly as possible 

Table 1. Connection degrees of identified genes in Network Type 1.

Gene/α 1 0.95 0.9 0.85 0.8 0.75 0.7 Average

DES 0 1 (1) 2 (2) 10 (5) 14 (6) 17 (8) 22 (13) 9 (5)
MYL9 0 0 2 (1) 9 (3) 12 (4) 24 (13) 27 (15) 12 (5)
CSRP1 0 1 (0) 2 (0) 10 (4) 20 (12) 23 (13) 27 (16) 12 (6)
ACTA2 0 0 4 (3) 9 (3) 12 (3) 18 (5) 27 (13) 10 (4)
SPARCL1 0 1 (1) 4 (3) 10 (3) 15 (7) 20 (8) 27 (15) 11 (5)
KCNMB1 0 0 6 (3) 13 (4) 14 (4) 29 (15) 29 (15) 13 (6)
Mgp 0 0 4 (0) 11 (2) 16 (4) 26 (13) 27 (13) 12 (5)
SLC2A4 0 0 1 (0) 5 (1) 12 (2) 24 (11) 25 (11) 10 (4)
myosin 0 0 0 3 (0) 7 (3) 15 (10) 19 (14) 6 (4)
TPM3 0 1 (0) 4 (2) 13 (6) 18 (9) 22 (9) 22 (9) 11 (5)
IL8 0 0 1 (1) 3 (1) 6 (2) 21 (9) 22 (9) 8 (3)
S100A11 0 1 (0) 2 (0) 14 (12) 16 (13) 21 (13) 26 (15) 11 (8)
HSPD1 0 0 0 3 (2) 7 (5) 14 (6) 15 (6) 6 (3)
HNRNPA1 0 0 2 (2) 5 (3) 17 (12) 22 (13) 27 (13) 10 (6)
DARS 0 0 0 3 (1) 7 (3) 13 (5) 18 (5) 6 (2)
SRPK1 0 0 0 1 (1) 5 (3) 10 (4) 15 (5) 4 (2)
IPL1 0 0 0 13 (11) 14 (11) 20 (12) 25 (13) 10 (7)
PCBD1 0 1 (1) 2 (1) 14 (13) 17 (12) 21 (12) 26 (13) 12 (7)

The upregulated genes are formatted in boldface in table 1, 2 and 4.

A2…An S2…Sn

S S AA

S S AA

A1  A2…AnA1  S1 S2…SnS1

A2…An S2…SnA1  A2…AnA1  S1 S2…SnS1

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Figure 4. Eight regulatory patterns.
Abbreviations: S, suppressor; Si, the ith suppressor; A, activator; Ai, the ith activator, i = 1, 2, …, n.

http://www.la-press.com


Wang and Gotoh

24	 Gene Regulation and Systems Biology 2010:4

by suppressing more tumor activators and activating 
more tumor suppressors. In contrast, the activators 
should function as the enhancers of tumor as weakly 
as possible by suppressing less tumor suppressors and 
activating less tumor activators. To prove the conjec-
ture, for every identified gene, we calculate the value 
of n, which is the number of genes regulating the gene 
or being regulated by the gene under specific patterns 
with α = 0.8. We use n to indicate the strength of the 
patterns. The larger n is, the stronger the corresponding 
pattern is. Table 2 presents the value of n, suggesting 
that Patterns 1, 2, 6, and 7 are strong while Patterns 
3, 4, 5, and 8 are relatively weak. Here we choose to 
analyze the network constructed with α = 0.8 on the 
basis of mainly two considerations: first, we obtain the 
best classification accuracy when α = 0.8;34 second, 
the sensitivity and specificity of the induced regulatory 
relations could reach a better balance when α = 0.8 
relative to the other α values; that is, a substantial num-
ber of comparatively reliable gene regulatory relations 
can be identified when α = 0.8.

In general, much of a cell’s activity is organized 
as a network of interacting modules: sets of genes 
coregulated to respond to different conditions.68 
Modules constitute the ‘‘building blocks’’ of molecu-

lar networks.49 The modular organization of molecu-
lar networks ensures functionality and robustness of 
biological systems at some level. To explore the mod-
ularity of our colon-cancer-specific gene regulatory 
networks, we use the Cytoscape plugin MCODE69 to 
analyze the network constructed under α = 0.8. Two 
significant modules are detected. They are presented 
in Table 3. The first module is composed of 11 nodes 
and 66 edges. Its clustering coefficient is 0.6, which 
is rather high.70 The second module is composed 
of three nodes and three edges, forming a feedfor-
ward loop, which is one consensus motif detected in 
complex networks71 including transcriptional regu-
lation networks.72 The three nodes represent three 
upregulated genes, respectively. It possibly indicates 
that the co-regulations of multiple activators are at 
least partly, if not completely, responsible for the 
occurrence of tumor. Further, we use the Cytoscape 
plugin BiNGO73 to perform a GO (Gene Ontology) 
based enrichment analysis of the two modules (see 
Table S1 in the Supplementary Materials).

Network type 2
Network Type 2 exhibits the regulated relations of the 
identified genes within the genome. We use red circle 
nodes to represent identified upregulated genes, yel-
low circle nodes to represent identified downregulated 
genes, and blue diamond nodes to represent other genes. Table 2. Values of n for eight regulatory patterns detected 

when α = 0.8.

Pattern/ 1 2 3 4 5 6 7 8
Gene
DES 4 4 0 6
MYL9 4 4 0 4
CSRP1 4 4 5 7
ACTA2 4 5 0 3
SPARCL1 4 4 0 7
KCNMB1 4 6 0 4
Mgp 4 8 0 4
SLC2A4 4 6 0 2
myosin 3 1 1 2
TPM3 4 5 0 9
IL8 1 3 1 1
S100A11 1 2 10 3
HSPD1 1 1 0 5
HNRNPA1 0 5 8 4
DARS 1 3 0 3
SRPK1 1 1 0 3
IPL1 1 2 10 1
PCBD1   1 4   10 2

Table 3. Properties of two modules detected in network 
Type 1 with α = 0.8.

Module/ 1 2
Property
Genes  
contained in  
the module

PCBD1, TPM3, S100A11,  
SPARCL1, HNRNPA1,  
KCNMB1, ACTA2, IPL1,  
Mgp, SLC2A4, CSRP1

HSPD1, 
IL8, 
DARS

Node number 11 3
Edge number 66 3
Clustering 
coefficient

0.6 0.5

Upregulated  
genes

PCBD1, S100A11,  
HNRNPA1, IPL1

HSPD1, 
IL8, 
DARS

Downregulated 
genes

TPM3, SPARCL1, KCNMB1, 
 ACTA2, Mgp, SLC2A4,  
CSRP1

N/A

“N/A” indicates that there is no related gene contained in the corresponding 
modules.
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In addition, we label the nodes representing the identified 
genes with their gene names, and the other nodes with 
the attribute number of the corresponding genes in the 
microarray decision table (the attribute numbers begin 
from 0). The corresponding regulatory networks when 
α = 0.85 and 0.8 are shown in Figure 5 and Figure 6, 
respectively. Similar to the situation in Network Type 1, 
as the α value decreases, more and more nodes and 
edges will be added to the former graphs. Table 4 lists 
the connection degrees of all identified genes in the gene 
regulatory networks constructed under various α values 
and the average connection degrees. The indegrees are 
presented in parentheses.

Regarding Network Type 2, we mainly focus on dis-
secting the situation that the identified genes are regulated 
by the other genes. Table 4 shows that the upregulated 
genes are regulated by more other genes than the down-
regulated genes. Especially, when α equals 0.85 and 0.8, 
there are respectively three and four upregulated genes 
regulated by a large number of other genes so that they 
form the hubs of extremely dense module subgraphs. To 
quantitatively analyze the regulation difference between 

the upregulated genes and the downregulated genes, 
we respectively calculate the average numbers of genes 
regulating all upregulated genes and all downregulated 
genes under various α values as well as their individ-
ual averages in whole, and use the t-test to evaluate the 
significance of the difference. The results presented in 
Table 5 suggest that the difference is significant when 
α value is 0.85 and 0.8 with a P-value threshold of 0.05. 
Moreover, the average difference in whole is also sig-
nificant. As noted above, the choice of analyzing the 
regulatory relations induced under mean α values is 
relatively reasonable. Therefore, we can safely conclude 
that the upregulated genes are more strongly regulated 
by the other genes than the downregulated genes. It also 
implies that the upregulated genes instead of the down-
regulated genes are inclined to form a high degree of 
centrality in order to play key roles in cancer-specific 
gene interaction networks. Similar discoveries were 
made by other authors.8,74

Further, we use MCODE to analyze the network 
constructed under α = 0.8. Three significant modules 
are detected. They are presented in Table 6. It should 

Figure 5. Network Type 2 constructed under α = 0.85.
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Figure 6. Network Type 2 constructed under α = 0.8.

Table 4. Connection degrees of identified genes in Network Type 2.

Gene/α 1 0.95 0.9 0.85 0.8 Average

DES 0 2 (2) 4 (3) 15 (10) 33 (25) 11 (8)
MYL9 0 0 7 (6) 22 (17) 40 (33) 14 (11)
CSRP1 1 (1) 3 (2) 3 (2) 9 (5) 18 (13) 7 (5)
ACTA2 0 0 11 (10) 28 (22) 30 (22) 14 (11)
SPARCL1 1 (1) 2 (2) 6 (5) 20 (13) 36 (28) 13 (10)
KCNMB1 0 0 13 (10) 24 (15) 40 (29) 15 (9)
Mgp 0 0 12 (8) 30 (21) 47 (36) 18 (13)
SLC2A4 0 0 10 (9) 27 (23) 63 (54) 20 (17)
myosin 0 0 0 3 (1) 10 (6) 3 (1)
TPM3 0 0 6 (4) 24 (18) 53 (45) 17 (13)
IL8 0 0 1 (1) 2 (1) 8 (4) 2 (1)
S100A11 0 4 (3) 67 (64) 1369 (1367) 1401 (1399) 568 (567)
HSPD1 0 0 0 8 (7) 28 (27) 7 (7)
HNRNPA1 0 0 6 (6) 57 (55) 1752 (1747) 363 (362)
DARS 0 0 0 7 (5) 37 (33) 9 (8)
SRPK1 0 0 2 (2) 9 (9) 22 (21) 7 (6)
IPL1 0 6 (6) 57 (57) 1772 (1770) 1787 (1785) 724 (724)
PCBD1 0 13 (13) 84 (83) 1569 (1568) 1595 (1591) 652 (651)

be noted that the actual clustering coefficients may 
exceed the presented numbers because we do not take 
into account the possibility that the non-identified genes 
are regulated. The results of GO-based enrichment 

analysis of the three modules are presented in Table 
S2 in the Supplementary Materials.

Discussion and Conclusions
The complicated molecular mechanism underlying 
cancer lies in the perturbations of gene-interaction 
networks at some level. Therefore, identifying cancer 
genes and the pathways they control through the net-
works is a key step toward overcoming cancer. Gen-
erally speaking, directed gene regulatory networks 
reflect the gene interactions more genuinely than 
undirected gene co-expression networks in that the 
principal cause-effect relations between genes can be 
disclosed in directed gene regulatory networks. The 
present work aims at inferring directed gene regula-
tory networks under specific disease conditions using 
formalized rules, which facilitate the interpretability 
of the inference model. We first identify the genes that 
are relevant to a specific disease by supervised learn-
ing algorithms, and then infer the regulatory relations 
among the identified genes and their regulated rela-
tions by all other genes. Our approach for inferring 
regulation networks is based on soft computing rules. 
The reliability of inferred regulation relations depends 
on the confidence of corresponding rules, which is 
governed by the controllable parameter α. To ensure 
sufficiently high reliabilities of the inferred rela-
tions, we set a high threshold for α. When analyzing 
the properties of inferred networks, we often select 
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networks induced with a rational value of α, which 
contain substantial and reliable regulatory relations.

Our work results in several interesting findings 
on colon-cancer-specific gene regulatory networks. 
First, upregulated genes are regulated by more genes 
than downregulated ones, while downregulated genes 
regulate more genes than upregulated ones. Second, 
tumor suppressors suppress tumor activators and acti-
vate as many other tumor suppressors as possible. In 
contrast, tumor activators activate other tumor activa-
tors and suppress as few tumor suppressors as pos-
sible. This result reflects the robustness of biological 
systems at some level. For the first finding, we have 
presented some previous research reports which hold 
the similar notion. For the second finding, we have 
given statistical analysis pertinently. Therefore, to a 
certain extent, the biological results derived based 
on our assumption are reasonable and relevant. Of 
course, the reliability of these conclusions needs to 
be verified with more experimental data.

In terms of our inference rules, A⇒B while A⇐/ B 
imply a directed relationship of A toward B. If both A and 

B are concerned with gene expressions, this relationship 
can be taken as one kind of regulation relationship rather 
than simple correlation relationship between gene pairs. 
In effect, decision rules have been admittedly applied to 
mining cause-effect relations in machine learning and 
data mining community. Specifically, the decision logic 
language (DLL) introduced by Pawlak75 gives the for-
mal definition of decision rules, indicative of the cause-
effect relationship derived in decision rules.34

Further, according to our inference logic, the fact that 
from the up-regulation of gene A, we can infer the up-
regulation of gene B, and from the down-regulation of 
A, we can infer the down-regulation of B (but not the 
reverse) means that the expression of gene A can deter-
mine the expression of gene B (while the expression of 
gene B cannot determine the expression of gene A). From 
this correlation, we can infer the regulation direction, 
indicating that A regulates B. Thus, the inferred gene-to-
gene interaction networks are directed gene regulatory 
networks more than simple co-expression networks. It 
should be noted that our directed gene regulatory rela-
tions refer to one kind of wide interactions between gene 

Table 5. Contrast in regulatory circumstances of two groups of genes.

Statistics/α 0.95 0.9 0.85 0.8 Average

Average number of genes  
regulating upregulated genes

2.75 26.625 597.75 825.875 290.75

Average number of genes  
regulating downregulated genes

0.6 5.7 14.5 29.1 9.8

P-value (t-test) 0.1199 0.0679 0.0407 0.0178 0.0214

Table 6. Properties of three modules detected in Network Type 2 with α = 0.8.

Module/α 1 2 3
Property
Genes contained in  
the module

PCBD1, S100A11, Mgp, SPARCL1,  
SLC2A4, IPL1, HNRNPA1, TPM3, BCL3,  
MAOB, SDC2, SRF, PRDX6, VIP, CALD1,  
DELTA-CRYSTALLIN ENHANCER  
BINDING FACTOR

DES, KCNMB1,  
MYL9, ACTA2,  
CEBPD, CCND3,  
SRF

HSPD1, SRPK1, 
HNRNPM

Nodes number 16 7 3
Edges number 88 14 4
Clustering coefficient 0.37 0.33 0.25
Upregulated genes PCBD1, S100A11, IPL1,  

HNRNPA1, SDC2
N/A HSPD1, SRPK1, 

HNRNPM
Downregulated genes Mgp, SPARCL1, SLC2A4, TPM3, SRF,  

BCL3, MAOB, PRDX6, VIP, CALD1,  
DELTA-CRYSTALLIN ENHANCER  
BINDING FACTOR

DES, MYL9,  
ACTA2, KCNMB1,  
CCND3, CEBPD,  
SRF

N/A

“N/A” indicates that there is no related gene contained in the corresponding modules.
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pairs such as the upstream and downstream relations in 
a signaling pathway, not necessarily implying physical 
interactions or direct regulations between them. Cer-
tainly, we agree that the use of steady gene expression 
data gives rise to limitations in inference of directed gene 
regulatory networks, and if perturbation data or time-
series data are used in network inference, the inferred 
pair-wise regulation relations could be more convincing. 
This is our next study objective.

Our method belongs to the rule-based network 
inference. In this point, it is similar to decision tree. 
However, essentially differing from decision tree, 
our gene regulatory relations are induced by decision 
rules, which are based on the subset (set inclusion) 
relations and well formalized in the DLL. In addition, 
although our soft computing rule resembles to proba-
bilistic score thereby demonstrating the reliability of 
our inference rules, soft computing approach is essen-
tially different from probability theory in that soft 
computing exploits the given tolerance of imprecision, 
partial truth, and uncertainty for a particular problem, 
making it to model and analyze complex systems in a 
more flexible and robust manner and finally give use-
ful answers. Soft computing has the major advantages 
in inductive reasoning and uncertain reasoning.

Materials and Methods
Dataset
The microarray dataset we study is the Colon Cancer 
dataset,76 which contains 62 samples collected from 
colon cancer patients. Among them, 40 tumor biopsies 
are from tumors and 22 normal biopsies are from healthy 
parts of the colons of the same patients. Each sample 
is described by 2000 genes. In our previous work,34 we 
identified 21 genes or ESTs, each of which possesses 
fairly good classification performance. In this work, 
we choose to analyze 18 definitely annotated genes 

out of them, which include DES, MYL9, CSRP1, IL8, 
S100A11, ACTA2, HSPD1, HNRNPA1, SPARCL1, 
DARS, KCNMB1, MGP, SLC2A4, myosin, TPM3, 
SRPK1, IPL1, and PCBD1.

The microarray dataset studied by our methodology 
is organized in the form of decision tables. One decision 
table can be represented by S = (U, A = C ∪ D), where 
U is the set of samples, C the condition attribute set, and 
D the decision attribute set. Table 7 is the decision table 
representing the Colon Cancer microarray dataset. In 
the decision table, there are 62 samples, 2000 condition 
attributes, and one decision attribute. Every sample is 
assigned to one class label: Tumor or Normal.

In the decision table, we define a function Ia that 
maps a member (sample) of U to the value of the 
member on the attribute a (a ∈A), and an equivalence 
relation R(A’) induced by the attribute subset A’⊆ A, 
as follows: for x, y∈U, xR(A’)y if and only if Ia(x) = 
Ia(y) for each a∈A’.34

α Depended Degree, Decision Rules,  
and Learning Algorithm
In,34 we identify one high class-discrimination feature 
based on the α depended degree, which is a generaliza-
tion of the depended degree proposed in rough sets.77 
Here we restate the concept briefly. The α depended 
degree of condition subset P by decision attribute set 
D is defined by:

	
γ α

α
P

PD POS D
U

( , ) =
| ( , )|

| |
,

where 0  α  1, 

	 | ( , )| = | (
/ (

|POS D pos P
X U R D

XP α α,
)

,
∈
∪ )  

and pos P X Y U R P Y X Y( , , ) = { / ( ) | | | | | }α ∪ ∈ ∩ α  .
Here |*| denotes the size of set * and U/R(•) denotes the 

Table 7. Colon cancer microarray dataset decision table.

Sample Condition attribute (gene) Decision attribute (class)
Gene 1 … Gene 249 … Gene 2000 Class label

1 8589.4163 … 500.425 … 28.70125 Tumor
2 9164.2537 … 335.69 … 16.77375 Normal
… … … … … … …
61 6234.6225 … 272.92875 … 23.265 Tumor
62 7472.01 … 2699.1925 … 39.63125 Normal

http://www.la-press.com


Inferring gene regulatory networks using soft computing rules

Gene Regulation and Systems Biology 2010:4	 29

belong to the same equivalence class of U/R(D) if and 
only if they have the same value on D. For each ci(g) 
(i = 1, 2, …, n), if there exists some value of dj(D) 
( j∈{1, 2, …, m}), satisfying ci( g)⊆dj(D) in light of 
the depended degree or |ci( g)∩dj(D)|/|ci(g)|α in 
light of the α depended degree, we then generate the 
following decision rule: A(ci(g)) ⇒ B(dj(D)), where 
A(ci(g)) is the formula describing the sample set ci(g) 
by the g value, and B(dj(D)) is the formula describing 
the sample set dj(D) by the class value. We ensure 
sufficient reliability of the derived decision rules by 
setting a high threshold for the α value.

Because our method is suitable for handling dis-
crete data, we discretize the original microarray 
dataset decision table before carrying out the learn-
ing algorithm. We use the entropy-based discretiza-
tion method78 and implement the discretization in the 
Weka package.79 Table 8 is the discretized decision 
table of Table 7. From Table 8, we can infer that Gene 
1 and Gene 2000 cannot distinguish different classes, 
while Gene 249 can distinguish different classes by 
two decision rules: if the expression level of Gene 
249 in one sample is not greater than 1696.2275, 
then the sample is Tumor (89% confidence); other-
wise, the sample is Normal (86% confidence); that is, 
if Gene 249 is downregulated in one sample, then the 
sample is Tumor; if Gene 249 is upregulated in one 
sample, then the sample is Normal. Using the two 

set of equivalence classes induced by the equivalence 
relation R(•). The depended degree is a specific case of 
the α depended degree when α = 1.34

In,34 we create classifiers based on decision rules. One 
decision rule in the form of “A ⇒ B” indicates that “if 
A, then B,” where A is the description of condition attri-
butes and B, the description of decision attributes. The 
confidence of a decision rule A ⇒ B is defined as follows:

	 confidence A B support A B
support A

( ) =
( ) 

( )
⇒ ∧

,  

where support(A) denotes the proportion of samples 
satisfying A and support(A ∧ B) denotes the propor-
tion of samples satisfying A and B simultaneously. 
The confidence of a decision rule indicates the reli-
ability of the rule.

In,34 for each determined α value, we select only 
the genes with γP(D,α) = 1 to build decision rules. 
Suppose g is one of the selected genes and U is the 
sample set. U/R(g) = {c1(g), c2(g), …, cn(g)} represents 
the set of the equivalence class of samples induced 
by R(g). Two samples, s1 and s2, belong to the same 
equivalence class of U/R(g) if and only if they have 
the same value on g. In addition, we represent the set 
of the equivalence class of samples induced by R(D) 
as U/R(D) = {d1(D), d2(D), …, dm(D)}, where D is the 
decision attribute. Likewise, two samples, s1 and s2, 

Table 8. Discretized colon cancer microarray dataset decision table.
Sample Condition attribute (gene) Decision attribute (class)

Gene 1 … Gene 249 … Gene 2000 Class label

1 ‘All’ … ‘(-inf-1696.2275)’ … ‘All’ Tumor
2 ‘All’ … ‘(1696.2275-inf)’ … ‘All’ Normal
… … … … … … …
61 ‘All’ … ‘(-inf-1696.2275)’ … ‘All’ Tumor
62 ‘All’ … ‘(1696.2275-inf)’ … ‘All’ Normal

“ ‘All’ ” indicates that one gene has the same value in all samples; “ ‘(-inf-x)’ ” indicates “=x”; “ ‘(x-inf)’ ” indicates “x”.

Table 9. Colon cancer microarray dataset decision table.

Sample Condition attribute (gene) Decision attribute (class)
Gene 1 … Gene 245 … Gene 2000 Gene 249

1 8589.4163 … 475.27885 … 28.70125 Downregulation
2 9164.2537 … 1648.4596 … 16.77375 Upregulation
… … … … … … …
61 6234.6225 … 191.33846 … 23.265 Downregulation
62 7472.01 … 1240.5846 … 39.63125 Upregulation
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rules, we achieve 84% leave-one-out cross-valida-
tion (LOOCV) accuracy. Among the aforementioned 
18 genes, DES, MYL9, CSRP1, ACTA2, SPARCL1, 
KCNMB1, MGP, SLC2A4, myosin, and TPM3 
belong to downregulated genes in Tumor, while IL8, 
S100A11, HSPD1, HNRNPA1, DARS, SRPK1, 
IPL1, and PCBD1 belong to upregulated genes in 
Tumor.

Inference of gene regulatory network
If the decision attribute is one gene instead of the 
class, then we can induce the decision rules infer-
ring regulatory relations among distinct genes. For 
example, if we substitute “Gene 249” for “Class 
label” in Table 7, that is, we regard Gene 249 as the 
decision attribute, which has two distinct values: 
upregulation and downregulation, we obtain 
Table 9.

Likewise, we implement the discretization of 
Table 9 to obtain Table 10. Applying the same learn-
ing algorithm to Table 10, we can induce the decision 
rules linking Gene 245 to Gene 249: if the expres-
sion level of Gene 245 in one sample is not greater 
than 1048.3779, then Gene 249 is downregulated 
(96% confidence); otherwise, Gene 249 is upregu-
lated (100% confidence). In other words, if Gene 
245 is downregulated, then Gene 249 is downregu-
lated; if Gene 245 is upregulated, then Gene 249 is 
upregulated. They are not necessarily true in reverse. 
Therefore, we infer a directed regulatory relation of 
Gene 245 to Gene 249, which is positive.

In the same way, we regard each of the 18 identi-
fied genes as the decision attribute in turn, and infer 
the regulatory relations that the other genes exert on 
them. We infer those networks with α value equal to 
1, 0.95, 0.9, 0.85, 0.8, 0.75, or 0.7.
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Table S1. GO terms significantly enriched with two modules in Network Type 1 (α = 0.8).

GO/Module Category GO-ID Description P-value
1 Molecular function 48306 Calcium-dependent  

protein binding
0.00003

2 Biological process 42221 Response to chemical  
stimulus

0.005

Molecular function 5524
32559

ATP binding
Adenyl ribonucleotide  
binding

0.02
0.02

  30554 Adenyl nucleotide binding 0.02

GO terms shared by more than one gene with P  0.05 are identified.

Supplemental Materials

Table S2. GO terms significantly enriched with three modules in Network Type 2 (α = 0.8).

GO/Module Category GO-ID Description P-value
1 Biological process 51239 Regulation of multicellular  

organismal process
0.001

51170 Nuclear import 0.002
51098 Regulation of binding 0.003
45941 Positive regulation of  

transcription
0.003

10628 Positive regulation of gene  
expression

0.003

45935 Positive regulation of  
nucleobase, nucleoside,  
nucleotide and nucleic acid  
metabolic process

0.003

10557 Positive regulation of  
macromolecule biosynthetic  
process

0.004

9891 Positive regulation of  
biosynthetic process

0.005

6913 Nucleocytoplasmic transport 0.005
51169 Nuclear transport 0.005
10604 Positive regulation of  

macromolecule metabolic  
process

0.006

Molecular function 48306 Calcium-dependent  
protein binding

0.00007

2 Cellular component 44449 Contractile fiber part 0.0004
43292 Contractile fiber 0.0004

3 Biological process 6395 RNA splicing 0.001
6394 RNA processing 0.003

 Molecular function 166 Nucleotide binding 0.002

GO terms shared by more than one gene with P  0.05 are identified.
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