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The maize methylome influences mRNA splice sites
and reveals widespread paramutation-like switches
guided by small RNA
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The maize genome, with its large complement of transposons and repeats, is a paradigm for the study of epigenetic
mechanisms such as paramutation and imprinting. Here, we present the genome-wide map of cytosine methylation for
two maize inbred lines, B73 and Mo17. CG (65%) and CHG (50%) methylation (where H = A, C, or T) is highest in
transposons, while CHH (5%) methylation is likely guided by 24-nt, but not 21-nt, small interfering RNAs (siRNAs).
Correlations with methylation patterns suggest that CG methylation in exons (8%) may deter insertion of Mutator
transposon insertion, while CHG methylation at splice acceptor sites may inhibit RNA splicing. Using the methylation map
as a guide, we used low-coverage sequencing to show that parental methylation differences are inherited by recombinant
inbred lines. However, frequent methylation switches, guided by siRNA, persist for up to eight generations, suggesting
that epigenetic inheritance resembling paramutation is much more common than previously supposed. The methylation
map will provide an invaluable resource for epigenetic studies in maize.

[Supplemental material is available for this article.]

Maize exhibits a wealth of epigenetic phenomena, from trans-

poson silencing, cycling, and presetting, to gene imprinting and

paramutation. Furthermore, despite the complexity and sophisti-

cation of maize breeding, there is a large degree of ‘‘hidden’’ vari-

ation for many traits that is difficult to explain by allelic variation

alone (Gottlieb et al. 2002). At least some of this unexplained

variation might be due to epigenetic rather than genetic changes in

the maize genome (Richards 2011). A recent study using anti-

methylcytosine antibodies and microarray hybridization to detect

DNA methylation demonstrated clear differences between maize

inbred lines, lending support to this hypothesis (Eichten et al.

2011). Similarly, studies using genome-wide sequencing of meth-

ylation-dependent restriction fragments have revealed that most

methylation is found in transposable elements, prime sources of

such variation (Palmer et al. 2003; Wang et al. 2009). However,

neither method had the capability to detect individual cytosines in

their sequence context.

In plants, cytosine methylation occurs in symmetric (CG and

CHG, where H is A, C, or T) as well as asymmetric (CHH) contexts.

Methylation in each context is associated with DNA replication,

histone modification, and RNA interference, respectively, al-

though these mechanisms overlap (Law and Jacobsen 2010). The

maize genome comprises roughly 50,000 genes and more than 1

million transposons and related repeats (Schnable et al. 2009).

Approximately 29% of the cytosine residues are methylated as

5-methylcytosine (Montero et al. 1992), mostly in transposons

(Palmer et al. 2003). We have used very-high-coverage whole-ge-

nome bisulfite sequencing to explore DNA methylation at nucle-

otide resolution in genes, transposons, and other features of the

maize genome, as well as its heritability and potential contribution

to traits. We have found that methylation in different sequence

contexts is guided differentially by small RNA and is correlated

with transposon insertion and mRNA splicing. Heritable and pre-

dictable switches in DNA methylation were detected in recombi-

nant inbred lines. These shifts were apparently triggered by small

RNA, resembling paramutation, but then maintained by replica-

tion-dependent symmetric methylation.

We present a high-resolution and high-coverage map com-

prising the methylation status of individual cytosines throughout

the inbred maize genome. Using this resource, we demonstrate

that methylome sequencing of recombinant inbred lines at much

lower coverage is sufficient to detect widespread paramutation in

the maize genome. Future studies using low-coverage methylome

sequencing can take advantage of this resource to determine the

impact of differentially methylated regions on gene expression,

chromosome biology, and transgenerational inheritance. For ex-

ample, this will allow breeders to determine the contribution of

cytosine methylation to phenotypic variation among elite in-

breds and hybrids, artificially induced chromosomal variants

(such as doubled haploids), and clonally micropropagated

strains, which are subject to such epigenetic variation (Richards

2011). Thus, breeders could deploy a form of ‘‘epigenomic se-

lection,’’ analogous to genomic selection, by which individuals
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with desired epigenomic patterns could be retained in breeding

programs.

Results and Discussion

Bisulfite sequencing strategy

Treatment of DNA with sodium bisulfite converts unmethylated

cytosines into thymines and allows generation of ‘‘methylomes’’ at

single-base resolution (Harris et al. 2010). We used Illumina next-

generation instruments to sequence bisulfite-converted genomic

DNA from two reference maize strains, B73 and Mo17, at a cover-

age that allowed us to establish methylation states of individual

cytosines with high confidence (all libraries are listed in Supple-

mental Table S1). We also sequenced bisulfite-converted libraries

from nine recombinant inbred lines (RILs) at lower coverage to

investigate epigenetic heritability (Table 1). Finally, we sequenced

cDNA libraries from mRNA and small RNA from the same tissue as

the methylation libraries, namely, shoots at the coleoptilar stage 5

d after germination (Methods). Reads were aligned to the reference

genome of maize B73, taking into account conversion as well as

polymorphisms with Mo17 (Methods).

Genome-wide patterns of DNA methylation

The percentage of methylated cytosines varied depending on

the local sequence context (CG, CHG, and CHH) (Supplemental

Fig. S1) and on the surrounding genomic features. This can be vi-

sualized on a whole-genome scale with a chromosomal plot (Fig.

1A) or as a browsable graphical interface (Fig. 1B). Methylation

patterns derived from bisulfite sequencing were validated by

comparison with those generated by propagation of sequencing

clones in McrBC+ Escherichia coli strains (a method known as

methyl filtration) (Fig. 1A; Palmer et al. 2003). In excellent agree-

ment with our bisulfite sequencing results, the mapping results

from methyl filtration confirm that regions of dense methylation

correspond to pericentromeric regions of each chromosome,

which have the lowest numbers of genes and the highest number

of repeats (Schnable et al. 2009). These regions, presumably het-

erochromatin, are most heavily methylated in symmetric CG and

CHG rather than asymmetric CHH contexts (Fig. 1B). Reported

results from methyl filtration had previously indicated that some

centromeric repeats were largely devoid of methylation (Palmer

et al. 2003). Our bisulfite sequencing shows that several domains

within the pericentromeric heterochromatin, including the cen-

tromeric repeats, are hypomethylated in asymmetric (CHH) con-

texts (Fig. 1A). Recently, chromatin immunoprecipitation with

antibodies to the centromeric histone CenH3 also recovered DNA

depleted for CHH methylation (Gent et al. 2012). However, cov-

erage was insufficient in these studies to detect the depletion of

CHH methylation in the pericentromeric region as a whole.

Methylation of transposable elements and repeats

The vast majority of transposons in the maize genome are found in

intergenic and nongenic regions and are highly variable between

different inbred strains (Baucom et al. 2009; Schnable et al. 2009;

Wei et al. 2009). We used a reference database (http://www.

maizetedb.org) to map reads onto ‘‘exemplar’’ elements of each of

the major transposon classes found in B73 (Baucom et al. 2009).

We compared the methylation levels of all transposon classes in

B73 and Mo17 as scatterplots in each methylation context (Sup-

plemental Fig. S2). Similar to previous results in inbred accessions

of Arabidopsis (Vaughn et al. 2007; Becker et al. 2011; Schmitz et al.

2011), transposon methylation was highly conserved between the

two inbreds, with fewer than 50 of 1526 transposon exemplars

showing differential methylation (Supplemental Tables S2–S4).

We note, however, that quantitative variation in expression of

individual copies of high-copy repeats remains difficult to detect.

CHG and CHH levels were more uniformly if less densely meth-

ylated than CG levels and varied mostly in DNA transposons, es-

pecially in miniature inverted-repeat transposable elements (MITES)

and their progenitors, which have relatively low copy numbers

(Baucom et al. 2009).

Next, we compared methylation levels in each context with

transposon copy number, which we estimated from the number of

transposon-matching reads in each library (Supplemental Fig. S3).

We found that TE copy number is not correlated with CHH meth-

ylation (B73: r = 0.0342, Mo17: r = 0.0253) as both high- and low-

copy TEs display high levels of methylation. In contrast, CHG and,

in particular, CG methylation is positively correlated with TE copy

number, even though copy number varied between the accessions

(B73: CHG r = 0.1102, CG r = 0.2144, Mo17: CHG r = 0.2792, CG

r = 0.4184). We then compared transposon methylation with mRNA

levels in RNA-seq libraries prepared from the same tissues. We found

most transposons to be expressed at very low levels, and mRNA

from methylated and unmethylated transposons accumulated

to similar levels, with only a moderate correlation between CG

methylation and TE expression (B73: r = 0.1072, Mo17: r = 0.2108)

(Supplemental Fig. S4), suggesting that higher copy number is

largely balanced by higher levels of repression.

Finally, we compared methylation levels with matching

small RNA isolated from the same tissues (Supplemental Fig. S5).

Asymmetric CHH methylation in Arabidopsis reflects persistent de

novo methylation guided by small RNA (Law and Jacobsen 2010),

and thus we anticipated a strong correlation between small RNA

and CHH DNA methylation levels in maize. For pericentromeric

and intergenic transposons, 24-nt siRNA was, indeed, positively

correlated with CHH methylation (Fig. 1A). In contrast, trans-

posons with high levels of 21-nt and 22-nt siRNAs had very low

levels of CHH methylation (Supplemental Fig. S5). We next ex-

amined small RNA and genome methylation in repetitive windows

across the entire genome, regardless of transposon annotation (Fig.

2). We found that the fraction of CHH methylation in each win-

dow had a strong positive correlation with levels of 24-nt siRNA

and a moderate negative correlation with levels of 21-nt siRNA

(Fig. 2). In Arabidopsis, transposons generate 21-nt siRNA when

they become unmethylated in rapidly dividing ‘‘immortalized’’

cell culture (Tanurdzic et al. 2008), and in mutants defective in

Table 1. Bisulfite sequencing summary

Strain
Total

bases (Gb)
Coverage

depth
Coverage

width
Bisulfite

conversion rate

B73 140 28.8 95.50% 98.20%
Mo17 134 19.7 88.20% 98.50%
RIL 1-9 170 3.7 74.40% 99.01%

Coverage depth is the average number of reads per base within the ge-
nomic space uniquely mapped with 50-bp reads. Coverage width is the
number of bases covered within the space mapped with 50-bp reads.
Bisulfite conversion rate was based on the percentage of the essentially
unmethylated chloroplast genome converted. For RILs, total bases cov-
ered by sequencing reads were from all nine RILs, but depth, width, and
bisulfite conversion rate are the average per RIL.
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DNA methylation (Slotkin et al. 2009). It is likely therefore that

21-nt siRNA in maize corresponds to active unmethylated trans-

posons in each inbred line.

The centromeric regions of maize chromosomes comprise

thousands of copies of the tandem repeat CentC, as well as hun-

dreds of copies of the conserved cereal retrotransposon CRM

(Schnable et al. 2009). Both 22-nt and 24-nt siRNAs could be

detected in both types of repeat but were rare in CRM, and CHH

methylation was very low (2%–5%) compared with CG and CHG

methylation (Fig. 1A; Supplemental Table S5). These results are in

agreement with previous results indicating that transcripts from

these repeats are abundant, but not necessarily processed into

small RNA (Topp et al. 2004).

Gene body methylation may deter transposon insertions

Gene body methylation has been widely observed in eukaryotes,

but its function is still unclear. Focusing on the genic regions and

surrounding promoters, we constructed a ‘‘metagene’’ methyla-

tion profile covering the exons of ‘‘gene bodies’’ and extending

from 2 kb upstream of to 2 kb downstream from the transcript (Fig.

3A). We found that CHG methylation was suppressed in gene

bodies in each inbred, while CG methylation accumulated at

low levels, relative to the surrounding DNA. CHH methylation

remained at low levels, but accumulated at the 59 and 39 ends (Gent

et al. 2012). To study the relationship between gene methylation

level and gene expression level, RNA-seq libraries were generated

in triplicate for both B73 and Mo17 samples. The RNA-seq reads

were processed using the working gene set (Methods) as the gene

model. We divided the genes into five levels and built methylation

profiles for each level (Fig. 3B–D). Genes with higher expression

levels had slightly lower CG methylation around the start and end

of the gene and elevated CG methylation in the middle of the

gene body (Fig. 3B), while the genes with a low expression level

had elevated levels of CHG methylation overall (Fig. 3C). A simi-

larly mixed correlation has been observed in Arabidopsis (Cokus

et al. 2008; Lister et al. 2008), and gene body methylation does not

greatly impact gene expression (Hollister et al. 2011; Yang et al.

2011). However, compared with Arabidopsis, we found that inter-

genic DNA in maize was much more highly methylated than gene

bodies, reflecting the high density of intergenic retrotransposons

(Baucom et al. 2009).

In a previous study, insertion sites of the extremely aggressive

transposon Robertson’s Mutator (Mu) were mapped genome-wide

and found to insert preferentially within unmethylated regions of

the B73 genome, although the methylation context could not be

determined (Liu et al. 2009). Mu transposons are well known to

insert preferentially within genes, and so we compared methyla-

tion in the sequences surrounding each insertion site with meth-

ylation in exons and entire gene bodies. We found that Mutator

insertion sites within genes were strongly depleted of CG meth-

ylation, but were not depleted of CHG and CHH methylation

relative to gene body methylation overall (Supplemental Table S6).

As in Arabidopsis (Hollister et al. 2011; Yang et al. 2011), we found

that CG methylation in maize was more prevalent in exons than

introns (Fig. 4A,B). It is therefore likely that CG methylation of

exons, such as those in highly expressed genes, deters transposon

insertions that might otherwise disrupt gene function, while

allowing insertions into introns and other noncoding regions.

Splice-site methylation inhibits alternative splicing

Like in Arabidopsis, CHH and CHG methylation was largely ex-

cluded from gene bodies (Hollister et al. 2011; Yang et al. 2011), but

a notable exception lay at the intron–exon junctions. The donor

and acceptor site consensus sequences in plants are AAG^GTAAG

and TTTGCAG^GT, respectively (Reddy 2007), with rare non-

consensus U12-splice donor sites CAG^GCAAG (Sheth et al. 2006).

Cytosines at these sites were sometimes methylated on the sense

and the antisense strands (Fig. 4A,B, respectively). We hypothe-

sized that this methylation might influence splicing efficiency

and/or alternate splicing.

To assess the influence of DNA methylation on splicing, we

first collected donor and acceptor sites genome-wide and divided

them into low and high methylation categories. Methylation was

measured at cytosines on both strands in each methylation con-

text within the donor GT (or GC) and acceptor AG dinucleotides

(Methods). Next, we scored the number of RNA-seq reads that

corresponded to spliced and unspliced transcripts at each site

(Supplemental Table S7). Strikingly, we found that acceptor sites

with high levels of CHG methylation were much less efficiently

spliced than sites with low levels of methylation. Next, we collected

those genes in the genome that were alternatively spliced in at least

one tissue (from ZmB73 4a.53 WGS; http://ftp.maizesequence.org/

release-4a.53/working-set/), for which we had sufficient RNA-seq

data to examine splicing, and for which the alternate exons dis-

played differing levels of methylation at their acceptor sites. Al-

though only 28 genes met these criteria, 23 of them preferentially

used the acceptor site with reduced CHG methylation (Fig. 4C). In

contrast, CHH methylation at the donor site did not correlate with

splicing efficiency.

Exon methylation in human cells has been proposed to in-

fluence splicing by recruiting the DNA binding protein CTCF and

slowing down transcription, favoring splicing of adjacent exons

(Shukla et al. 2011). However, plants do not possess CTCF, and the

CHG methylation we report here does not occur in mammals.

While the mechanism by which methylation influences splicing in

maize is unclear, CHG methylation in plants can be guided by small

RNA and by histone H3K9 methylation, and we speculate that splice

site methylation might be mediated by these mechanisms.

Inheritance and functional significance of differential
methylation

In addition to determining methylation profiles for the individual

inbreds, we also sought to identify differences in methylation be-

tween different maize lines. In unique regions of the genome, we

identified 9635 highly differentially methylated regions (HDMRs)

Figure 1. Genome-wide patterns of DNA methylation. (A) Circle diagram of all 10 maize chromosomes. The tracks represent sequence scaffolds with
centromeric regions labeled in red (A), read coverage (B), methylation at CG (C), CHG (D), and CHH (E), 24-nt (F), 22-nt (G), and 21-nt (H) small RNAs.
Within each pair, the outer track is B73, the inner track is Mo17. Track I represents methyl filtration reads, J genes, and K repeats from the B73 genome.
‘‘High’’ on the Density scale means a high density of features presented in a given track. (B). An image from the Integrative Genomics Viewer software
(Robinson et al. 2011) showing information from an 8-kb region on chromosome 4 (7,224757–7,232785 bp). The first eight data tracks show methylation
levels for B73 and Mo17 in different sequence contexts. Methylation levels are displayed on a scale from 0 to 1. The 24-nt small RNA coverage graphs
indicate coverage depths for positions with 24-nt small RNA sequencing data for B73 and Mo17, respectively.
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with a substantial difference in CG, and 6671 HDMRs in CHG

context between B73 and Mo17 (Supplemental Tables S9, S10).

HDMRs were chosen such that they were <10% methylated in one

line and >70% methylated in the other, at least 200 bp long, and

had at least 20 m5C sites with data (Methods). DNA methylation in

the CHH context in maize is qualitatively different from in the CG

and CHG contexts. Whereas in the CG and CHG contexts the

genome is largely methylated at ;70% with sparsely distributed

regions of a few hundred bases with very low levels of methylation,

typically <5%, in the CHH context the genome is mostly methyl-

ated at a very low level with narrow peaks of methylation where

a few cytosines are methylated above 50%. Owing to these quali-

tative differences, we analyze methylation in the CHH context by

different methods. HDMRs represent clusters of DNA methylation

differences and may potentially serve as a foundation for epige-

netic biomarkers (Schmitz et al. 2011). HDMRs with elevated

methylation in all contexts have been previously shown to behave

as epialleles in Arabidopsis (Vaughn et al. 2007; Becker et al. 2011;

Schmitz et al. 2011) and arise along with the presence of 24-nt

siRNA (Teixeira et al. 2009). In this respect, epialleles resemble cy-

cling transposons in maize that arise in a spontaneous or in

a developmentally programmed fashion (Martienssen and Colot

2001) and are regulated by RNA-dependent DNA methylation

(Slotkin and Martienssen 2007).

To investigate the inheritance of these HDMRs, we compared

their distribution in parents and in nine matched recombinant

inbred lines (RILs) derived from the intermated B73 3 Mo17 (IBM)

population (Sharopova et al. 2002). Methylation profiles were gen-

erated for each of these lines, and the 9635 epipolymorphic regions

were scored for HDMRs as before. One line was sequenced three

times to assess reproducibility, and no significant differences were

found (r2 = 0.95–0.97). Chromosome-wide analysis revealed a

close correlation of CG methylation patterns in B73 and Mo17

with corresponding SNP haplotypes in RILs on all 10 chromo-

somes (Supplemental Fig. S6). To examine this more closely, we

mapped 1335 genetic markers in the RILs and were able to identify

the parental origin of each segment, with distinct breakpoints

reflecting recombination (Fig. 5A). Interestingly, while the majority of

methylation polymorphisms were inherited along with the parental

segment, there were many exceptions in which a gain (or occa-

sionally, a loss) of methylation shifted the methylation level to the

other allele within a large epihaplotype. Specifically, 1772 HDMRs

switched epigenotypes: 5.1%–7.2% gained methylation in an RIL,

while only 2.1%–2.3% lost methylation (Supplemental Table S10).

For both Mo17 and B73, RILs switching to hypermethylated are

more common than RILs becoming hypomethylated. Addition-

ally, RILs becoming hypermethylated from a Mo17 background are

more frequent that RILs becoming hypermethylated from a B73

background. In all cases, the P-value is <2.2 3 10�16 by a x2 test. In

total, ;6 Mb of DNA was differentially methylated between the

two parents, of which 0.9 Mb switched methylation state in the

RILs. Many HDMR switched in more than one RIL, with up to

seven out of 10 RILs gaining methylation at the same HDMR

(Supplemental Table S11). To assess predictability of frequency of

these switches, a simulation was run in which methylation levels

in each segment were sampled randomly with replacement

(Methods). A t-test indicated that each class of switch was much

more recurrent than expected by chance (P < 10�16). HDMRs that

consistently switch in the RILs from unmethylated to methylated

are potential candidates for epialleles. These can be investigated

by looking at how many of the HDMRs become hypermethylated

in all the RILs we have the opportunity to observe. In the CG

Figure 2. Genome methylation and small RNA. Each point represents
a contiguous window of sequence that matches increasing numbers of
smRNA reads in size classes of 21 (A), 22 (B), or 24 nt (C ) on the x-axis
(small RNA count). (Small RNA count) Number of smRNA reads that
map to this window and nowhere else with the same number or fewer
mismatches. The average methylation level (0–1.00) of each window is
plotted on the y-axis (see Methods). Methylation was calculated in CG
(green), CHG (blue), and CHH (red) contexts. (r) Spearman’s rank
correlation coefficient (P-value < 0.001).
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context there are 8543 HDMRs where at least three of the RILs are

hypomethylated in either B73 or Mo17 genetic backgrounds. Of

these, 1392 have at least one RIL hypermethylated, and 207 of these

are hypermethylated in all RILs observed. In the CG context, there

are 5920 HDMRs where at least three of the RILs are hypometh-

ylated in either B73 or Mo17 genetic backgrounds. Of these, 944

have at least one RIL hypermethylated, and 96 of these are hyper-

methylated in all RILs observed.

Scatterplots were constructed of small RNA levels for each

HDMR in each parental inbred (Fig. 5B). While some HDMRs were

restricted to CG methylation, most also affected CHG methylation

(data not shown), and very strong positive correlations between

small RNA presence and methylation context were observed (Figs.

1, 5). At high resolution, it was clear that the regions corresponding

to abundant small RNA matches were also highly methylated at

CHH sites (e.g., Fig. 1B), as expected from the genome-wide cor-

relation (Fig. 2), but the flanking regions were methylated in

a symmetric CG or CHG context. This pattern is consistent with

RNA-dependent DNA methylation being triggered by small RNA in

hybrids and then spread by symmetric DNA methylation. Focus-

Figure 3. Exon methylation. (A) Methylation levels in each context, CG (green), CHG (blue), and CHH (red), are summed across all exons via the
‘‘metagene’’ analysis (see Methods) for each inbred. Genes were divided according to expression levels ([1] high; [5] low), and CG methylation (B), CHG
methylation (C ), and CHH methylation (D) was plotted for each inbred.

Figure 4. Splice site methylation. (A) Metagene analysis of splice junctions on the antisense strand, in CG (green), CHG (blue), and CHH (red) contexts.
(B) Metagene analysis of splice junctions on the sense strand, in CG (green), CHG (blue), and CHH (red) contexts. (C ). Alternatively spliced genes (n = 28)
analyzed for CHG methylation levels at alternative acceptor sites (Supplemental Table S7B). The number of RNA-seq reads is plotted at alternate acceptor
sites with high (blue, above the line) and low (red, below the line) methylation for each individual gene.

Regulski et al .
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Figure 5. Inheritance and stability of DNA methylation patterns. (A) 9635 regions in the genome where B73 and Mo17 have different CG methylation
levels were found using a moving window and a x2 test based on C and T counts at CG sites. The regions were chosen so that one parent is <10%
methylated and the other >70%. The regions are at least 200 bp long and have at least 20 CG sites. There is one point on the plots for each of these 9635
regions. The x-axis is the region number in chromosome order. The y-axis value is (%C in RIL�%C in B73)/(%C in Mo17�%C in B73). Thus, data points
approaching 1 are similar to Mo17, and those approaching 0 to B73 in methylation level. Mapped (orange) and unmapped (red) markers indicate
recombination break points. (B) Scatterplots of small RNA levels that match HDMR in each inbred. Error bars represent variation in small RNA levels found in
three biological replicates.
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ing only on splice acceptor sites, we found that 1241 acceptors in

Mo17 retained high CHG methylation and 249 switched to low

methylation. The ratio of spliced-to-unspliced transcripts at these

junctions was 4.1 and 64.9, respectively, indicating that differen-

tial methylation between inbreds has profound effects on splicing.

We have also checked for potential association between the

methylation state of HDMRs and expression levels of nearby genes.

We have identified 4071 genes located within 1 kb of HDMRs, and

1598 were differentially expressed between B73 and Mo17. We

found a significant correlation between hypomethylated regions

and overexpression of genes within a 1-kb range, for both CG and

CHG contexts (Fisher’s exact test, CG: P < 2.20 3 10�16; CHG: P <

2.20 3 10�16) (Supplemental Table S8).

Conclusions

We have determined the nucleotide-resolution high-coverage meth-

ylation map of the maize genome. Methylation of transposons and

repeats is highly conserved between inbred lines, but methylation

of gene bodies is much more variable and includes splice site and

exon methylation in differing contexts. CHG acceptor splice site

methylation is correlated with reduced splicing efficiency, while

CG methylation of exons seems to deter disruption of highly

expressed genes by transposon insertion. Differential methylation

between inbred lines is largely heritable, and correlated with ex-

pression of nearby genes, but thousands of HDMR throughout

the genome shift from one epiallele to the other and are stably

inherited in recombinant inbred lines.

While the mechanism that guides these shifts remains un-

known, we considered the possibility that they might be under

genetic control of unlinked regulatory loci. An example of such

a locus is the PAI1-4 locus in Arabidopsis, which has allelic forms

that regulate methylation of the unlinked PAI2 locus in trans via

small RNA (Bender 2004; Schmitz et al. 2013). However, if HDMRs

were under genetic control, they should segregate among the RILs.

With only nine RILs, it is difficult to exclude this possibility for

all HDMR, but cosegregation was not generally observed, and

transgressive methylation (differing from both parents) was ex-

tremely rare. Instead, we found that HDMR shifts were recurrent,

biased toward one parent or the other, and correlated with

matching parental small RNA. For these reasons, we favor the idea

that the shifts in HDMR methylation we have observed are due to

interactions between the parental alleles in heterozygous hybrid

individuals.

In maize, certain heteroallelic combinations result in a heri-

table shift from the expressed toward the silent allele. This process

is known as paramutation (Arteaga-Vazquez and Chandler 2010;

Erhard and Hollick 2011) and depends on RNA interference

(Alleman et al. 2006) and on RNA-dependent DNA methylation

(Hale et al. 2007; Erhard et al. 2009). Paramutation at the R, B, P,

and Pl loci is restricted to individual alleles associated with re-

peated sequences, and these alleles are not present in B73 or Mo17,

so that these loci are not affected in our RILs (data not shown).

Nonetheless, our results suggest that paramutation-like methyla-

tion changes affect >10% of all HDMRs in the maize genome and

are heritable for up to eight generations. Increases in methylation

outnumbered decreases by more than 2:1. Programmed epigenetic

changes of this magnitude would have profound implications

for maize breeding. For example, traits associated with epialleles

would arise in doubled haploids or clonal apomicts just as readily

as in sexual progeny and would not be detected in association with

single nucleotide polymorphisms (SNPs) (McMullen et al. 2009).

Epiallele interactions could lead to altered gene regulation in hy-

brids, as well as to inbreeding depression, thereby contributing to

heterosis (Hollick and Chandler 1998).

Methods

Biological materials
For DNA and RNA preparations, all seeds were grown in the in-
cubator at 25°C in darkness on wet paper towels set in glass Pyrex
dishes. After 5 d, shoots at the coleoptilar stage were excised and
stored at �80°C.

Genomic DNA preparation, library construction,
and bisulfite conversion

DNA was prepared from nuclei as described in Bedell et al.
(2005). In brief, coleoptiles were ground with mortar and pestle
in LN2, and nuclei were washed and separated from organelles
by centrifuging through 30% OptiPrep (Axis-Shield PoC, Oslo,
Norway, catalog no. 1114542) solution. Library construction and
bisulfite conversion were carried out, essentially, as described in
Hodges et al. (2009). For each library, 1–5 mg of genomic DNA was
sheared using Covaris S220 Adaptive Focused Acoustics ultra
sonicator. Libraries were constructed following standard protocol
using the NEBNext DNA Sample Prep Master Mix Set 1 (NEB
E6040) and Illumina-compatible paired-end adaptors in which all
cytosines were methylated. Each library (50 ng) was treated with
sodium bisulfite using the EZ DNA Methylation-Gold Kit (Zymo
Research D5005) according to the manufacturer’s protocol. Each
purified library (5–10 ng) was amplified using the Expand High
Fidelity PLUS PCR system (Roche 03300242001), which is ca-
pable of efficiently amplifying uracil-containing templates.
PCR reactions (50 mL final volume) containing 200 mM each
dNTP, 1 mM each primer, 2.5 mM MgCl2, and 2.5 units of Expand
HiFi enzyme were performed according to the manufacturer’s
instructions for 18 cycles. Amplified libraries were run on 2%
MetaPhor agarose (Lonza 50108) gel. Fragments of 220–350 bp
were excised from gel and purified using the QIAquick PCR Pu-
rification Kit (Qiagen 28104).

DNA sequencing on Illumina platform

DNA concentrations were quantified on a Bioanalyzer (Agilent),
diluted to 10 nM, and loaded on flow cells to generate clusters.
Libraries were sequenced on Illumina GAII or HiSeq2000 machines
using the paired-end 50 cycle protocol.

RNA preparation and RNA-seq library construction

Total RNA was prepared by grinding tissue in TRIzol reagent
(Invitrogen 15596-026) on dry ice and processed following the
protocol provided by the manufacturer. To remove DNA, an ali-
quot of total RNA was treated with RQ1 DNase (Promega M6101),
followed by phenol:chloroform:isoamyl alcohol extraction,
chloroform:isoamyl alcohol extraction, and ethanol precipitation.
Total RNA (20 mg) was used for poly(A)+ selection using oligo(dT)
magnetic beads (Invitrogen 610-02), eluted in water, and used for
RNA-seq library construction with the ScriptSeq Kit (Epicentre
SS10906) or mRNA-seq Sample Prep Kit (Illumina RS-100-0801)
according to the manufacturer’s protocol. Three libraries from B73
and Mo17 (biological replicates) were each amplified with 15 cycles
of PCR generating 485002759 and 636007745 reads, respectively,
that aligned to the B73 genome.
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Small RNA library construction

Small RNA fractions (up to 40 nt in length) were isolated by run-
ning 20 mg of total RNA (prepared as described above) using the
FlashPAGE Kit (Ambion AM10010 and AM9015) followed by eth-
anol precipitation. RNA was resuspended in 8 mL of water and
processed using the ScriptMiner Kit (Epicentre SMMP101212). The
library was amplified using 15 cycles of PCR. Alternatively, samples
of total RNA were sent to FASTERIS (Switzerland) for library con-
struction and sequencing. Three libraries from B73 and Mo17 each
(biological replicates) generated 14,234,461 and 10,761,747 reads,
respectively, that aligned to the B73 genome uniquely. The same
libraries generated 4,841,242 and 4,816,161 reads, respectively,
that aligned to the TE exemplar database uniquely.

Processing of bisulfite sequencing data and mapping of reads

Reads from the IlluminaGA pipeline were trimmed to remove the
low-quality bases at the 39 end using the same algorithm as used
in BWA and then, adaptor/linker sequences at the 39 ends were
trimmed using the FASTX-Toolkit. Reads were then mapped to
maize reference genome v1 and the transposable element se-
quence library from the maize transposable element (TE) database
(http://maizetedb.org/;maize/) using RMAP (Smith et al. 2008)
with a maximum of four mismatches. Sequences that mapped to
more than one position were removed to retain only reads that
mapped uniquely. Duplicate reads (PCR duplicates) starting and
ending at the same positions were removed from each data set.

Single-base methylation levels were calculated as the number
of cytosines (C) called divided by the sum of Cs and thymines (T)
called at each cytosine site in the target region. For context-specific
methylation levels, only the cytosines in that context were used in
calculations. The bisulfite conversion rate was calculated using
reads that mapped to the chloroplast genome (which were present
at a very low level due to DNA preparation protocol). Since the
chloroplast genome is not methylated, cytosines mapping to the
chloroplast genome were measured for conversion into thymines.
High conversion rates were regularly achieved (98%–99%) and
considered maximal, given that a small proportion of the chloro-
plast genome is included in the nuclear genome and is methylated.
Overall levels of methylation are highly comparable to the results
of HPLC analysis (Montero et al. 1992).

B73 reads covered 89 million of Cs in CG, 81 million in CHG,
and 306 million in CHH context, which represented 94.25%,
94.61%, and 93.55% of Cs in each context, respectively, that could
be mapped with 50-bp paired-end reads. There were 77, 70, and
257 million Cs in each respective context that were covered by at
least three reads, representing 89.58%, 89.98%, and 86.22% of
the mappable Cs.

Mo17 reads covered 84 million of Cs in CG, 76 million in
CHG, and 282 million of Cs in CHH context, representing 82.04%,
82.84%, and 82.50% of Cs in each context, respectively, that could
be mapped with 50-bp reads. There were 61, 56, and 200 million Cs
in each respective context that were covered by at least three reads,
representing 71.21%, 72.08%, and 66.96% of the mappable Cs.

The overlap in sequenced Cs between two inbreds was 72, 66,
and 244 million Cs in the CG, CHG, and CHH context, re-
spectively, ;80% and 85% of the mapped Cs for B73 and Mo17,
respectively, in each context.

RNA-seq data analysis

Sequenced mRNA reads were processed by using TopHat (Trapnell
et al. 2009)/Cufflinks (Trapnell et al. 2010) with default parame-
ters. The maize reference genome v1 was used as the reference ge-
nome and the working gene set (gene build 4a.53; maizesequence.
org) was used as the gene model with no novel junction.

Methylation profiles for ‘‘metagenes’’ were generated by
combining the profiles in three regions: 2 kb upstream of tran-
scription start sites (TSS), gene body, and 2 kb downstream from
transcription termination sites (TTS). Gene body methylation
consisted of concatenated exons only. Maize introns were ex-
cluded to avoid confusion with methylated transposons, which are
frequently inserted in introns. For each region, sequences from
all genes in ZmB73 v1 (4a.53) filtered gene set were divided into
100 bins, then the average methylation of each bin across each
region was calculated and plotted.

For the analysis of gene expression levels against methylation
in genes, the expression level was based on the FPKM value for
each gene (ZmB73 v1 filtered gene set) derived from cufflinks.
Genes were divided into five groups according to FPKM values: 1 is
FPKM > 100, 2 is 100 $ FPKM > 10, 3 is 10 $ FPKM > 1, 4 is 1 $

FPKM > 0, 5 is FPKM = 0. Methylation profiles for each group of
genes was done as described above.

Splicing data analysis

All splice junctions in the 4a.53 filtered gene set were stacked (50
bp exon + 50 bp intron for donor, 50 bp intron + 50 bp exon for
acceptor). Then the methylation level of each base pair was cal-
culated as C/(C + T).

The methylation of the donor site was calculated from the
first nucleotide of both strands on the 59 end of the intron as the
ratio of C/(C + T), and the methylation of the acceptor site was
calculated from the last nucleotide of both strands on the 39 end of
the intron using the same formula. We categorized $0.8 as high
methylation and #0.2 as low methylation.

To find splicing sites that were skipped in alternatively spliced
genes, RNA reads covering at least 10 bp of exon or intron across
the splice junctions were identified. To find used splice sites, RNA
reads covering at least 10 bp of both exons flanking the intron were
identified. Only reads in correct strand and direction regarding
transcription orientation of each gene were kept. We did x2 tests on
the contingency table of unspliced read counts and spliced read
counts in high and low methylation. The P-value of the x2 test
shows the significance of the hypothesis that the proportion of
unspliced read count increase is associated with methylation state.

Calculation of methylation in transposable elements

Reads mapped to exemplar TEs were normalized as follows: TE =

(109 * C)/(N * L), where C is the number of reads mapped to the TE
exemplar sequence, N is the total number of mapped reads, and L is
the length of TE in base pairs (adapted from Mortazavi et al. 2008).
Methylation in TEs was estimated using methylation data calcu-
lated as described above.

The TE copy number was estimated from the number of reads
matching each exemplar.

For testing correlation between TE expression and methyla-
tion, RNA-seq reads were mapped to TE exemplar sequences using
Bowtie with a maximum of two mismatches. Sequences mapped to
more than one position were removed. The calculations of nor-
malized read count and methylation were described above.

Small RNA data analysis

The smRNA reads were mapped to maize reference genome v1
and the transposable element exemplar database using Bowtie
(Langmead et al. 2009) with a maximum of two mismatches. Se-
quences that mapped to more than one position were removed.

To estimate correlations between methylation in TEs and
small RNA abundance, smRNA reads were plotted for each TE, and
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the normalized read count was calculated as above and plotted
against methylation data.

For plotting genome-wide distributions of small RNA read
counts against methylation, small RNA reads were mapped to
the maize B73 v1 ref genome, and the cytosines were grouped
according to small RNA read depth as follows: all cytosines covered
by only one smRNA read as one group, all cytosines covered by two
smRNA reads as another group, and so on. The average methyla-
tion was calculated for each group as (C)/(C + T). In Figure 2, each
point represents a group of cytosines with the smRNA read depth
of the group (x-axis) plotted in respect to the average methylation
of the group (y-axis).

Calculation of methylation in centromeres

To estimate methylation levels in centromeric regions, bisulfite-
treated reads were mapped against maize CRM retrotransposons
(from the exemplar database) and maize CentC1 repeats (Gen-
Bank; AY530216.1) using RMAP, and methylation was calculated
as above.

Analysis of Mutator insertion sites

To test the effect of exon methylation on Mu insertion preference,
the midpoint coordinate of each target site duplication for all
uniquely mapped Mu insertions in all.Mu.2chr.uniqIns.#49125E.txt
were used (Liu et al. 2009). Insertion sites outside genes annotated
in the ZmB73 4a.53 filtered gene set were removed. The target site
duplication midpoint was extended 50 bp both upstream and
downstream. Then, the average cytosine methylation levels in
CG/CHG/CHH contexts were calculated for those regions based on
B73 and Mo17 whole-genome methylation data.

Highly differentially methylated regions (HDMRs)

Highly differentially methylated regions were identified in the CG
and CHG contexts by computing a x2 statistic over moving win-
dows with 15 cytosine sites from either strand in both B73 and
Mo17. Cytosine (C) and thymine (T) counts at cytosine sites in the
reference genome were used. Additionally, sites determined to be
possible C-to-T mutations were removed from analysis. These were
determined by looking at the sequence calls on the strand oppo-
site to the cytosine site. If more than half the calls in either B73
or Mo17 were adenine (A) rather than guanine (G), the site was
deemed to be a possible mutation site. Initial regions were found
by grouping adjacent windows with a x2 value over 100. Regions
with at least 20 cytosine sites, at least 200 bases long, where one
sample had a methylation level below 10% and the other above
70%, are referred to as highly differentially methylated regions
(HDMRs).

Sequence genotyping RILs

RILs were genotyped at 1335 sequence markers. These were
mapped to the zmb73v1 genome by using the best BLAST match.
Genotypes were one of four values: B73, Mo17, heterozygous,
or no call.

Scoring RILs at HDMRs

RILs were assigned similarity scores to B73 or Mo17 at each of the
HDMRs. For each HDMR, the percent methylation level is com-
puted by counting the number of Cs and Ts on reads in each
sample at cytosine sites within each HDMR and then computing

the percent of Cs in these bases. The similarity score is (%C in RIL�
%C in B73)/(%C in Mo17�%C in B73). This will give a score near
0.0 when the methylation level in the RIL is close to B73 and near
1.0 when similar to Mo17.

RILs switching methylation state

The similarity scores were segmented into contiguous regions
matching one or the other parental line using a segmentation
algorithm based on the Kolmogorov Smirnov (KS) test statistic
(Grubor et al. 2009). Segmentation values less than 0.4 and greater
than 0.6 were rounded to zero and one, respectively. Segments
with values between 0.4 and 0.6 are considered regions of either
heterozygous or mixed methylation. RILs with a similarity score
more than 0.80 away from the methylation segment were con-
sidered as switching to the state of the other parental line. HDMRs
where more than one RIL switched methylation state will be re-
ferred to as recurrent switch HDMRs. To test if there were more
recurrent switch HDMRs than would be expected if these switches
were occurring randomly, a bootstrap test of significance (Effron
1979) was used to compute a P-value for the number of recurrent
switch HDMRs observed. This was done by resampling with re-
placement the methylation levels of the HDMRs, recomputing
the similarity scores, and counting the number of recurrent
HDMRs repeated 1000 times. The resampling distribution was
not significantly different from a normal distribution, assessed
by a KS test. Then a t-test with equal variance was used to com-
pute a P-value for the observed recurrent count compared with
the bootstrap samples. All statistical tests were computed using R
version 2.13.1 (R Development Core Team 2011).

False-positive HDMRs

We estimate an upper bound on false-positive detection of large
methylation state changes in the RILs by analyzing regions where
both B73 and Mo17 are either highly methylated or hypomethyl-
ated and the RIL is in the opposite state. The median size of the
CG HDMRs is 508 bases. We split the maize genome into non-
overlapping 500-base regions and count for each RIL how many of
these regions are above 60% methylated in B73 and Mo17 or below
10% methylated in both and also have more than 60 C/T base calls
in the RIL. These are regions that might potentially have detectable
false-positive methylation state changes similar to what is ob-
served in the HDMRs. Regions of significant difference were found
using a x2 test and tested for parents above 60% methylated and
RIL below 10% and reverse. In the CG context, there are between
289,000 and 1.03 million windows that meet these criteria in the
nine RILs, and between 67 and 453 regions where the RIL is dif-
ferentially methylated compared with the parent lines, giving es-
timated false-positive rates between 0.000232 and 0.000485. In
the CHG context, there are between 208,000 and 1.01 million
windows that meet these criteria in the nine RILs and between 47
and 492 regions where the RIL is differentially methylated com-
pared with the parent lines, giving estimated false-positive rates
between 0.000226 and 0.000474.

Hypomethylated regions in B73 and Mo17

We applied a hidden Markov model (Durbin et al. 2007) to divide
the genome into contiguous segments of hypermethylation and
hypomethylation. The model includes a two-parameter transition
matrix, measuring the frequency of transitioning from a hypo-
methylated to a hypermethylated state set at 0.0001 and from
a hypermethylated to a hypomethylated state set at 0.00001 for
both the CG and CHG contexts, two probability parameters pU
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and pM, corresponding to the expected proportion of unconverted
cytosine observed in a hypomethylated or hypermethylated re-
gion, respectively. The parameter pU is initialized as the mean
proportion of Cs in B73 at C sites with an observed proportion
<50%, and pM is initialized as the mean proportion of Cs in B73 at
C sites with an observed proportion at least 50%. We then compute
the posterior probabilities and determine the maximum likelihood
parameters to update the transition and emission parameters and
iterate until the emission parameters converge to within a toler-
ance of 0.001. For regions containing at least 10 cytosine sites,
there is a total of 116 Mb and 109 Mb of hypomethylated DNA,
with a median region size of 823 and 806 bases, in the CG context
in B73 and Mo17, respectively, and 182 Mb and 186 Mb total
hypomethylated DNA, with a median region size of 1118 bases
and 1029 bases, in the CHG context.

Data access
The data from this study have been deposited in the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
and are accessible through GEO Series accession number GSE39232.
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