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With the development of 3C (chromosome conformation capture) and its derivative technology Hi-C
(High-throughput chromosome conformation capture) research, the study of the spatial structure of
the genomic sequence in the nucleus helps researchers understand the functions of biological processes
such as gene transcription, replication, repair, and regulation. In this paper, we first introduce the
research background and purpose of Hi-C data visualization analysis. After that, we discuss the Hi-C data
analysis methods from genome 3D structure, A/B compartment, TADs (topologically associated domain),
and loop detection. We also discuss how to apply genome visualization technologies to the identification
of chromosome feature structures. We continue with a review of correlation analysis differences among
multi-omics data, and how to apply Hi-C and other omics data analysis into cancer and cell differentia-
tion research. Finally, we summarize the various problems in joint analyses based on Hi-C and other
multi-omics data. We believe this review can help researchers better understand the progress and appli-
cations of 3D genome technology.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the completion of the Human Genome Project and the
progress of other model organisms’ genome projects, how to deal
with the massive amount of molecular biology information is a
considerable challenge. The existing multi-omics research is
divided into genomics, transcriptomics, proteomics, epigenomics,
and other omics research.

Transcriptomics studies how the same genome can result in dif-
ferent cell types and how gene expression is regulated. Among the
genome analysis ‘‘omics” technologies, RNA-Seq [1] can be used to
identify genes in the genome or to identify which genes are active
at a specific time point, and read counts can be used to simulate
relative gene expression levels accurately.

Epigenes are the genome’s supporting structure, including pro-
tein and RNA binders, alternative DNA structures, and chemical
modifications of DNA. Among technologies used to study epigenes,
MNase-seq [2], DNase-Seq [3], ATAC-Seq [4], FAIRE-Seq [5,6] are all
used to study open chromatin regions and determine chromatin
accessibility by detecting transcription factor (TF) footprints.
ChIP-seq [7] to study the interaction between proteins and DNA
in nuclei. Hi-C [8,9] is a technology to analyze the spatial structure
of chromatin in cells, quantifying the number of interactions
between genomic loci that are adjacent in 3D space, but may be
separated by many nucleotides in the linear genome (in this paper,
chromatin interactions may be just the product of the random liga-
tion of two DNA fragments detected by the Hi-C experiment, may
be an interaction of chromatin segments mediated by proteins,
etc.).

In recent years, multi-omics data analyses about diseases and
cell differentiation appeared as shown in Table 1 and Table 2. Gene
structure changes can lead to different diseases, for example, Holo-
prosencephaly (a forebrain disease caused by mutations in the
SBE2 enhancer element [10]); PPD2 (polydactyly of a triphalangeal
thumb caused by mutations in the ZRS enhancer [11]) and adeno-
carcinoma of the lung (caused by duplication of MYC gene enhan-
cer [12]). In addition to multi-omics data analysis, in 2015, Ya Guo
et al., [13] used CRISPR technology to invert the CTCF site, which
changed the genome topology and enhancer/promoter functions.
In each of these diseases, the underlying genetic defect could not
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Table 2
Multi-omics datasets for cell differentiation.

Species Cell line Sequencing method Data ID Reference

Homo sapiens Embryonic stem cell Hi-C, RNA-seq, Chip-seq GSE116862 [41]
Hi-C, RNA-seq GSE105028 [42]
Hi-C, RNA-seq GSE86821 [43]
ChIP-seq, Dnase-HiC GSE90680 [44]
Hi-C, HiChIP, ChIP-seq, ATAC-seq, eU-Seq GSE105028 [42]
Hi-C,RNA-seq and ATAC-seq GSE106687 [45]
Hi-C GSE107148
Hi-C GSE86821 [43]
Hi-C GSE52457

Mus musculus mESC Capture Hi-C GSE124698 [46]
ATAC-seq, Hi-C,RNA-seq, ChIP-seq GSE115933 [47]
RNA-seq, ChIP-seq, Hi-C and Promoter Capture Hi-C GSE100835 [48]
Hi-C, RNA-seq GSE89520
ChIP-seq,Hi-C GSE95533 [49]
ChIP-seq,RNA-seq, ATAC-seq, WGBS and Hi-C GSE138102 [50]
Hi-C GSE153884
ChIP-seq,Hi-C and 5C GSE156868 [51]
In situ Hi-C GSE118911 [52]
ChIP-seq,ATAC-seq,Hi-ChIP,Hi-C GSE113339
RNA-seq,ChIP-seq, Xist CHART-seq, and in situ Hi-C GSE116413 [53]
Hi-C GSE119805 [54]
HiC,STEM-seq and RNA-seq GSE109344 [55]
ChIP-seq,RNA-seq, Hi-C GSE119697 [56]
Capture Hi-C GSE114619 [46]
Chip-Seq,Gro-Seq,Mnase-Seq, ATAC-seq and Hi-C GSE82144 [57,58]
Hi-C GSE110061
Hi-C GSE125656 [59]
Hi-C GSE146001 [60]
Hi-C, RNA-seq GSE118263 [61]
Hi-C GSE133246 [62]
Hi-C GSM4386021
PLAC-seq. Hi-C, mRNA-seq and ChIP-seq GSE146449 [63]
Hi-C GSE119347
Hi-C GSE124342 [64]
Hi-C GSE59027 [65]
Hi-C, ChIP-Seq, RNA-Seq, DNase-Hypersensitivity GSE72164 [66]
DNA SPRITE, RNA-DNA SPRITE GSE114242 [67]
Hi-C GSE130723
Hi-C GSE130725 [68]
Hi-C, RNA-seq GSE136307
Hi-C GSE152918 [69]

aEach column denotes the key properties of multi-omics data analysis of cell differentiation using Hi-C technology. ‘Species’ denotes the species’ name, ‘cell line’ column
denotes the cell line that was analyzed, ‘sequencing method’ column denotes the sequencing methods that were used, ‘data ID’ column denotes the availability of the
sequencing data, data ID GSEXXX can be searched in the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi), ‘reference’ column denotes the references
where the data were published. Readers are encouraged to seek out these papers for further information.

Table 1
Multi-omics datasets for human cancer and disease.

Cancer/disease Cell line Sequencing method Data ID/data link Reference

liver, lung tumours, breast pancreas and
lymphoma samples

GM12878 WGS, Hi-C GSE63525 [35]

breast cancer, colorectal cancer, lung cancer GM06990, K562 (SNP)-arrays, Hi-C GSE19399,GSE18199,
GSE18350

[36]

melanoma, prostate cancer, lung cancer,
leukaemia

GM06990 SNVs, SNPs, Hi-C GSE18199 [37]

cardiovascular disease HCASMCs ATAC-seq, RNA-Seq, Hi-C GSE101498 [38]
the Crohn’s disease T cells ATAC-seq, RNA-Seq, Hi-C GSE101498 [38]
the celiac disease intestinal T cell ATAC-seq, RNA-Seq, Hi-C GSE101498 [38]
IDH mutant gliomas IMR90, NHEK, KBM7, K562, HUVEC, HMEC,

GM12878
ChIP-seq, RNA-seq,
Hi-C, DNA methylation
quantification

GSE70991 [39]

Pan-cancer analysis 3T3, HCC-15, CR, HCT116, IMR90 cell line Hi-C http://cancergenome.
nih.gov/

[40]

aEach column denotes the key properties of multi-omics data analysis with Hi-C technology for cancer and other diseases. ‘Cancer/disease column’ denotes the cancer or
disease’s name, ‘cell line’ column denotes the cell line that analyzed, ‘sequencing method’ column denotes the sequencing methods that were used, ‘data ID/data link’ column
denotes the availability of sequencing data, among them, data ID GSEXXX can be searched in the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi),
‘reference’ column denotes the references where the data acquisition and analysis were described. Readers are referred to these papers for further information.
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Fig. 1. A/B compartment visualization with annotation. From top to bottom, the following visualization is shown: RNA-seq, Dnasel, CTCF (Broad), H3K27ac annotation,
eigenvector, subcompartments and Hi-C contact heatmap. For Hi-C contact heatmap, we choose to show observed/expected balanced Hi-C data to visualize A/B compartment
with 500 kb resolution, blue means A compartment, red means B compartment, combined with RNA-seq, Dnasel and H3K27ac, we can see, the blue region had higher gene
expression and higher signals of h3k27ac, dnasel and CTCF. (Note: this Figure is drawn using the juicer box tool [87], Data Source: Rao and Huntley et al. [18] Cell GM12878
Hi-C in situ chr1: 0 MB-120 MB). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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have been identified without the use of multi-omics technologies
and analyses, so understanding the relationship between gene
structure changes and gene expression, combined with gene-
editing technology, is expected to treat various genetic diseases.
Hi-C technology, as the basis for studying genome structure, is fun-
damental among these technologies. So, this paper will concen-
trate on the analysis of Hi-C with other omics data.

Many authors have written relevant reviews on Hi-C data in
the past ten years, mainly divided into three types: Hi-C data
fundamental technical analysis, Hi-C structure analysis method,
and explanations of applications of Hi-C data. The first case
mainly focused on developing 3C technology [8,14–22] and fun-
damental analysis methods [23–25]. Some reviews summarize
2072
the various hierarchical analysis methods based on Hi-C
[26–31], while the others summarize the different hierarchical
structures of the 3D genome applications to human disease
development [31–34]. This review will focus on Hi-C technol-
ogy’s basic principles and the multi-level chromosome struc-
tures that can be identified based on Hi-C technology: overall
structure, A/B compartment, TAD, and loop. In addition, we will
briefly introduce how to combine Hi-C data with other epige-
nomic data and transcriptome data to study the relationship
with an understanding of human diseases. Finally, we will give
examples to illustrate the application of multi-omics joint anal-
yses to provide ideas for researchers who have just started 3D
genome research.



Table 3
Tools to analyze Hi-C data at different structural levels.

Tool Function/algorithm/download link Resolution Reference

loop Detection loop detection 1 ~ 10 kb
HiCCUPS [18]
HOMER [115]
GOTHiC [116]
Fit-Hi-C [117]
HiC-DC [118]
SIP [119]
cLoops/cDBSCAN [120]
Mustache [121]
Chicago [122]
PSYCHIC [123]
diffHiC differential analysis [124]
FIND [125]
HICcompare [126]
TADs Detection ~40 kb
HMM Directionality Index [127]
DP Dynamic programming [128]
HicSeg Two-dimensional segmentation [129]
Arrowhead Arrow matrix [18]
insulation score Insulation Square Analysis [130]
DHDF Cluster-based [131]
TopDom IdentifyTD, evaluate quality [132]
TADtree hierarchical TADs [133]
TADs_Identification Spectral identification [134]
IC-Finder Hierarchical clustering [135]
MrTADFinder network modularity based [136]
3DNetMod network modularity based [137]
HiTAD domain-based alignment [138]
rGAMP Gaussian Mixture model and Proportion test [139]
HiCDB local relative, insulation metric [140]
deDoc graph structural entropy [141]
tadbit breakpoint detection algorithm
TADBoundaryDectector deepLearning-based [142]
EAST Haar-based algorithm [143]
TADBD Haar-based algorithm [144]
TADCompare Differential TADs [145]
TADpole hierarchy of TADs in intra-chromosomal interaction matrices [146]
SpectralTAD Spectral cluster [147]
ClusterTAD an unsupervised machine learning approach [148]
Matryoshka cluster [149]
A/B compartment
PCA A/B compartment 100 kb
HOMER [115]
juicebox [87]
CscoreTools https://github.com/scoutzxb/CscoreTool
HiCPro http://github.com/nservant/HiC-Pro [151]
3D structure
contact-based
Gen3D adaptation, simulated annealing, and genetic algorithm 200 kb [152]
MOGEN Gradient ascent 200 kb-1 Mb [153]
GEM manifold learning 1 Mb [114]
GEM-FISH polymer model 5 kb [154]
SuperRec multidimensional scaling 100 kb [155]
distance-based
AutoChrom3D considering the sequencing depth 8 kb [73]
ChromSDE semi-definite embedding approach 500 kb-1 Mb [103]
ShRec3D Short-path algorithm 3–150 kb [156]
FisHiCal SMACOF algorithm 1 Mb [100]
MBO manifold optimization unknow [107]
InfMod3DGen Gradient ascent unknow [104]
3D-GNOME Markov chain, Simulated annealing 1–2 Mb [93]
Chromosome3D Simulated annealing 500 kb-1 Mb [97]
LorDG lorentzian objective function 500 kb-1 Mb [111]
HSA Multi-track modeling, Markov chain, Simulated annealing 25 kb-1 Mb [157]
miniMDS Hierarchical modeling 10–100 kb [108]
TADbit https://github.com/3DGenomes/tadbit unknow [94]
mdsga genetic algorithm unknow [95]
ShRec3+ two-step algorithm 1 Mb [112]
3DMax maximum likelihood algorithm 1 Mb [88]
Hierarchical3DGenome Hierarchical modeling 1–5 kb [101]
EVR Error-Vector Resultant unknow [99]
ShNeigh Gaussian formula unknow [158]
Probability-Based
BAC, BACH-MIX Bayesian Inference 40 kb [159]

(continued on next page)
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Table 3 (continued)

Tool Function/algorithm/download link Resolution Reference

pastis multidimensional scaling 100 kb-1 Mb [90]
tRex Monte Carlo sampling etc. 1 Mb [92]
PGS simulated annealing 50 kb-1 Mb [159]
SIMBA3D Bayesian Estimation [160]
CHROMSTRUCT 4 Monte Carlo sampling [161]
online tools
NDB https://ndb.rice.edu/ [162]
Csynth https://csynth.org [163]
GSDB sysbio.rnet.missouri.edu/3dgenome/GSDB [164]
3D-GNOME 2.0 3dgnome.cent.uw.edu.pl/ [165]
3DGD http://3dgd. biosino.org/ [166]
3DIV http://3div.kr/ [167]
3DGB http://3dgb.cs.mcgill.ca/ [168]

aEach column denotes the key properties of available tools to analyze Hi-C data at different structural levels. ‘Tools’ denotes availability of open-source software for a method.
‘Function/algorithm/download link’ column denotes Function, algorithms used by a method or download link for access,’ Resolution’ column denotes the resolution of Hi-C
data described in the published method’s, ‘Reference’ column denotes the references where the methods were published.
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2. Demand for Hi-C data visualization analysis

2.1. Principle theory of Hi-C

The most commonly used Hi-C experiment was proposed by
Erez Lieberman Aiden as follows [9]: (1) formaldehyde cross-
linking so that the spatially adjacent chromatin fragments are
covalently connected; (2) restriction enzymes digestion to cut
the genome and the use of biotin to label the cut ends; (3) use of
DNA ligase to ligate the cut ends and create chimeric molecules;
(4) purify and break DNA chimeric molecules, and isolate DNA
fragments with the biotin tag; (5) sequence both ends of the frag-
ments of the DNA library; (6) construct the chromatin interaction
matrix by counting the number of chimeric molecules between
any two regions of the genome.

Using Hi-C technology, we obtain raw sequency data, but if
other visualization methods are needed, the following steps are
required: 1) Perform linker trimming processing on raw data to
obtain valid sequencing data; 2) Obtain comparison file (.sam for-
mat) by double-end sequence alignment to the reference genome;
3) Read alignment file and process it into a matrix, tuple or .hic for-
mat; 4) use normalization algorithms like KR [70], ICE [71] or
others [72–79] to normalize the data. After the above experiment
and data processing steps, we obtain the Hi-C contact matrix. With
the Hi-C data and other omics data, we can explore the chromo-
somes’ architecture and study the relationship between chromo-
some structure and transcriptional expression.

2.2. Hi-C enhancement

In the past few years, the 3D genome analysis methods have
rapidly improved, and a large amount of data appeared, but the
current resolution of most Hi-C data ranges from 25 kb to 1 Mb.
Some high-resolution Hi-C data (range from 1 kb to 10 kb) are only
available in a few tissues or cell lines, which affects our analysis of
structures at kilobase pair (kb) resolution. But the higher the data
resolution is, the deeper the sequencing depth required and the
greater the expense is. So, how to map existing low-resolution
Hi-C data to high-resolution Hi-C data has become a hot spot in
the past five years.

Many authors used the deep learning framework to enhance the
resolution of Hi-C data in recent years. In 2018, Yan Z et al. [80]
developed HiCPlus, a method based on a super-resolution convolu-
tional neural network (SRCNN). This algorithm, which can infer
from low-resolution Hi-C data, is highly similar to the original
matrix, a high-resolution Hi-C matrix, using only 1/16 of the orig-
inal sequence reads. In 2019, Tong L et al. [81,82] developed two
2074
new calculation methods to enhance the resolution of Hi-C data:
HiCNN, based on a 54-layer convolutional neural network, and
HiCNN2, inclusive of three different deep convolutional neural net-
work architectures. Liu Q et al. [83] proposed hicGAN to enhance
low-resolution Hi-C data through Generative Adversarial Networks
(GAN). Same as hicGAN [83], in 2020, Hong, Hao et al. [84] devel-
oped the DeepHiC method, which can reproduce high-resolution
Hi-C data from down-sampled reads as low as 1%. Zhilan L et al.
[85] developed SRHiC based on the ResNet and WDSR model. They
improved the Res-block in ResNet to increase the network’s non-
linearity and learning ability. Simultaneously, a small convolution
kernel is used multiple times to reduce the contact matrix’s size
instead of using a large convolution kernel at once. This method
has a strong generalization ability.

2.3. Hi-C data analysis

Many methods can be used to analyze Hi-C data, such as prin-
cipal component analysis, interaction network analysis, heat maps,
etc., to analyze Hi-C data:

1). cis–trans analysis to determine the quality of the Hi-C
library:

cis� trans interaction ratio ¼ sumof cis region frequency=sum
of trans region frequency Generally, the cis/trans ratio in high-
quality Hi-C experiments is between 40 and 60 [86].

2). chromatin interactions visualization using heat maps: a)
Whole-genome interactive heatmap; b) Interaction analysis
between chromosomes; c) Interaction analysis within chromo-
somes as shown in Fig. 1.

3). Structural analysis: a) 3D structure visualization for the
whole/local chromatin, available tools to reconstruct structure
can be seen in Table 3; b) compartments analysis to find the
open/closed regions as Fig. 1 shows, available tools to find A/B
compartments can be seen in Table 3; c) TADs detection to find
CTCF histone as shown in Fig. 2, available tools to detect TAD
boundaries can be seen in Table 3; d) loop calling mediated by
CTCF and other proteins, available tools to find loops can be seen
in Table 3.

2.4. Analysis methods for multi-omics data

As shown in Table 4, researchers can perform the following
analyses according to their actual research goals: chromatin fea-
ture structure identification, correlation analysis among different
samples, and Hi-C multi-omics joint analysis. We can analyze
RNA-seq, ChIP-Seq, and ATAC-seq data using visualization methods
such as box plots, scatter plots, heat maps, and volcano plots to do
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the following studies: 1) distribution of sequencing reads on the
whole genome; 2) statistical information on the enrichment area
of sequencing data (Peak); 3) difference analysis of multiple sam-
ples; and 4) motif identification.

3. Identification of chromatin structure

3.1. 3D visualization of chromosomes

To better understand the relationship between chromosome
structure and function, many researchers have reconstructed the
3D structures of chromosomes based on population Hi-C data at
different resolutions, or on single-cell Hi-C data. Using the process
shown in Fig. 3, before modeling, we need to obtain clean data by
normalizing the raw Hi-C data [70–79]. These methods can be clas-
sified as probability-based, distance-based or contact-based.

1) Probability-based: some researchers assumed the contact
counts of Hi-C data follow a normal distribution [88,89] or Poisson
Fig. 2. TADs and loops visualization with annotation. From top to bottom, the following v
contact heatmap. For the Hi-C contact heatmap, Squares of contact frequency along with
heatmap indicate the chromatin loops. (Note: this Figure is drawn using the juicer box
63,820,000–72,460,000). (For interpretation of the references to color in this figure lege
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distribution [90–92] and designed a transfer function between the
distribution intensity and spatial distance to infer a genome
structure.

2) Distance-based: most reconstruction methods are based on
the principle that the frequency of chromatin interaction is
inversely proportional to the bin distance. Researchers
[73,88,89,93–109] determined the chromosomes structures based
on optimization functions, such as semi-definite embedding
[103,113], manifold-based [107,114], simulated annealing [97],
Lorentzian objective function [111], maximum likelihood function
[88], and shortest path [112].

3) Contact-based: some researchers set the biological charac-
teristics and physical forces of chromosomes as a priori conditions
[89,94,106,109,114,152–154,159,186–189], and directly use con-
tact data to optimize the chromosome structure of contacts. Gen3d
[152] reconstructs chromosomes with an adaptive, simulated
annealing and genetic algorithm. MOGEN [153] uses the optimized
scoring function to convert the Hi-C intrachromosomal and
isualization is shown: RNA-seq, Dnasel, CTCF (Broad), H3K27ac annotation and Hi-C
the diagonal (yellow squares) indicate the TADs, peaks (black points) in the contact
tool [87], Data Source: Rao and Huntley et al. [18] Cell GM12878 Hi-C in situ chr1:
nd, the reader is referred to the web version of this article.)



Table 4
Common tools for the joint analysis of omics datasets.

Tools Function/algorithm Omics data References

MACS peak calling ChIP-seq/RNA-seq/ATAC-seq [169]
ChIPseeker peak annotation ChIP-seq [170]
HOMER peak calling and Motif analysis ChIP-seq/ATAC-seq [115]

Calculate ChIP-Seq expression near TSS ChIP-seq
BEDtools Extracting promoter sequences ChIP-seq [171]

RNA-seq coverage analysis RNA-seq
SeqSite detect transcription factor (TF) ChIP-seq [172]
EdgeR Peak comparisons ChIP-seq/ATAC-seq [173]
DESeq2 Peak comparisons ChIP-seq/RNA-seq/ATAC-seq [174]
DiffBind Peak comparisons ChIP-seq/ATAC-seq [175]
methyKit DNA methylation analysis WGBS [176]
MethGo genomic and epigenomic analyses WGBS/RRBS [177]
GATK variant analysis WGS [178]
BGI Online variant analysis WGS/RNA-seq
SAMtools variant analysis WGS/RNA-seq [179]
limma differential expression RNA-seq [180]
Cufflinks RNA-Seq analysis workflow RNA-seq [181]
RNA-Cocktail RNA-Seq analysis workflow RNA-seq [182]
topGO GO/KEGG enrichment RNA-seq
DAVID GO/KEGG enrichment RNA-seq [183,184]
KOBAS GO/KEGG enrichment RNA-seq [185]

aEach column denotes the key properties of available tools to analyze other omics data. ‘Tools’ denotes availability of open-source software for a method. ‘Function/algorithm/
’ column denotes the primary function, algorithms used by a method. ’Omics data’ column denotes the omics data that serves as the input for the tool. ‘Reference’ column
denotes the references where the methods were published.
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interchromosomal contact data into a 3D conformation set by sat-
isfying as many contacts with high probability as possible. TADbit
[94], GEM [114], and GEM-FISH [153] reconstruct spatial organiza-
tion of chromosomes by combining their conformational energy.
Fig. 3. Process of simulating chromosomes’ 3D structure. First, data is preprocessed to g
we could choose or not choose some prior conditions (such as biological characteristics,
In the past ten years, most researchers chose to reconstruct chromosomes by probabil
analysis, we will have a 3D coordinate set for visualization.
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The above methods can be used at different resolutions. At Mb-
500 kb resolution, we can choose these methods [73,89–91,93,94,
96,98,102–105,107,109,152,153,156,187,190–194] to observe the
overall chromosome; at 5 kb resolution, we can choose the follow-
et distance matrix or contact data, which is used as the second step’s input. Second,
physical forces, and FISH data) to help us build chromosome reconstruction models.
ity-based inferential, distance-based or contact-based methods. At the end of the
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ing methods [88,95,101,108,110,112,114,154,195] to observe the
spatial structure of the whole chromosome or the local three-
dimensional structure.

3.2. A/B compartment

In 2009, Erez Lieberman-Aiden, et al. [8] found the A/B compart-
ments using principal component analysis. As shown in Fig. 1, the
Hi-C heatmap region can be divided into A and B compartments,
corresponding to the positive (the blue region) and negative (the
read region) parts of the principal eigenvector. Through the study
of gene expression levels, histone modifications, and DNase
enzyme hypersensitivity sites corresponding to positive and nega-
tive regions, they found that in the regions with positive eigen-
value, there are more genes, and the corresponding gene
expression levels are relatively high. The signal of the Dnase-
sensitive DNA site is also relatively high. These characteristics indi-
cate that these regions are more open and accessible, and the
region of transcriptional activation is defined as the A compart-
ment, which corresponds to the open chromatin region; on the
contrary, the B compartment corresponds to the closed chromatin
region.

In the next few years, most researchers verified the relation-
ships between the structures of the A/B compartments and their
functional characteristics by predicting chromosome A/B compart-
ments [196–198], other researchers developed tools to analyze the
A/B compartments, such as HiC-Pro [151] and CscoreTool [150].

3.3. TADs detection

In 2012, the concept of TADs was first proposed by E. P. Nora
et al [200] and Dixon et al. [127], to explain the squares in the
Hi-C matrix diagonal. They thought the interaction frequency
within the TADs was significantly higher than the interaction fre-
quency between two adjacent regions. In 2019, E. D. Wit [201] gave
Fig. 4. Analysis of multi-omics data. The superscripts 0, 1, and 2 represent the stru
corresponding analysis methods. From the loop level, we can do KEGG pathway and CTC
transcription factor sites or do variant calling and histone modification analysis; from t
detect promoter, enhancer, transcription factor sites or conduct gene expression analysi
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a definition of TADs that considers the mechanisms that shape
them: TADs are an emergent property of an underlying biological
mechanism, i.e. loop extrusion or compartmentalization and are
dynamic genomic regions rather than a static structural feature
of the genome. As shown in Fig. 2, a heat map is used to perform
TADs boundaries identification analysis. The heat map indicates
the chromatin interaction at 10 kb resolution. The genome interac-
tion map is a symmetric matrix, so the information on both sides of
the diagonal is equal in Fig. 2. As shown in this figure, let’s just see
the upper right corner of heat map, the interaction intensity
changes from weak to strong, which is indicated by the color of
the cell changing from white to red. We can see some small trian-
gular regions appear on the bottom edge repeatedly, which are
depicted in red, indicating that the interaction frequency between
chromatin fragments within these regions is high, and the fre-
quency of interaction between adjacent triangular regions is lower.
In this heatmap, these regions (yellow boxes in Fig. 2) are called
TADs.

In the past ten years, most researchers identified the TADs by
extracting one-dimensional features from the two-dimensional
interaction matrix for segmentation, or by using the clustering
algorithm. Regarding the first method: in 2012, to identify TADs
in chromatin, DI (directionality index proposed by J. R. Dixon
et al. [127]) was used to quantify the degree of bias in upstream
or downstream interactions of genomic regions. By determining
DI in the genome, we can determine the location of TAD bound-
aries in the genome. In the next ten years, many authors continued
to improve the TADs recognition algorithm. Dynamic program-
ming [128] has been used to reveal the TADs hierarchical structure.
In addition two-dimensional segmentation [129], insulation score
[130], laplacian graph clustering method [134], hierarchical clus-
tering [137], unsupervised machine learning methods [148], the
modular concept of network science [136], Gaussian Mixture
model [139], local relative insulation metrics and multi-scale
aggregation methods [140], have all been developed to detect con-
cture, epigenetic regulation, and expression related sequencing technology and
F analysis; from the TAD level, we can use ChIP-seq, ATAC-seq, and WGBS to detect
he A/B compartment level, we can use ChIP-seq, ATAC-seq, WGBS, and RNA-seq to
s.



Fig. 5. Differential analysis of data from the GM12878 and K562 cell lines. A. Differential heatmap of all chromosomes between the GM12878 lymphocyte line and the K562
cell line. The red color in the figure indicates sites with stronger interactions in the GM12878 cell line than the K562 cell line, and the blued ones indicate weaker interactions
in the GM12878 cell line than in the K562 cell line. B. Differential heatmap of chromosome 1 between the GM12878 lymphocyte line and the K562 cell line. The points on the
diagonal lines are the identified loops. The dark purple points represent the loops of GM12878, and the dark blue points represent the loops of K562. C-D. The loops and
differential loops’ location of the GM12878 lymphocyte line and the K562 cell line chromosome 1 from 0 to 20,000,000 bp. Each arc indicates chromatin interaction from the
start site to the end site. E. ChIP-Seq data is used to visualize the H3K27me3 and H3K4me1 histone modification peaks in the GM12878 and K562 cell lines, chromosome 1
range of 0–20,000,000 bp. (note: GM12878 Hi-C in situ and K562 Hi-C in situ data is from reference [18], A-D are drawn with the juicer box tool [87], and the G is drawn with
the IGV tool [204]). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tact domain boundaries. Based on structural information theory, a
method called deDoc [141] proposed a solution to predict the
structure of high-resolution TADs from low-resolution data.

3.4. Loop calling

People often refer to chromatin interactions as chromatin loops.
But there are subtle differences between the two concepts. The
chromatin loop is a circular structure formed by folding and wrap-
ping chromatin due to protein and other mediation, the chromatin
interaction may only be the product of the random connection of
two DNA fragments detected by 3C-based experiments. Loops
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bring promoters and enhancers to closely together in space to reg-
ulate gene expression. With dynamic changes of the loop struc-
tures, such as new formation or disappearance, genes’ regulation
will be affected to a certain extent [18] [202].

The chromatin loop can be identified by constructing Hi-C maps
with a resolution of less than 5 kb. In 2014, S. S. Rao et al. [18] iden-
tified the positions of chromatin loops by using HiCCUPS (inte-
grated into the developed juicer [87]) to search for pairs of loci,
whose pixels with higher contact frequency than typical pixels in
their neighborhood. (These pixels are defined as ‘‘peaks” in the
Hi-C contact matrix and the corresponding pair of loci are called
‘‘peak loci”). As shown by the black mark in Fig. 2, we used the
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juicerbox software to mark the loops. Many other tools to find
loops, such as HOMER [203] and GOTHiC [116], are available and
are listed in Table 1.
4. Applications of integrated omics data analysis

As described in section 3 and shown in Fig. 4, we can combine
Hi-C data of different resolutions with other omics data regarding
epigenetic regulation at different structural levels and gene expres-
sion analysis.
4.1. Multi-omics data analysis at the loop level

As discussed in subsection 3.4, we can identify whether the two
ends of chromatin loops are regulatory elements and gene loci by
determining the locations of loops, so as to obtain a list of genes
specifically regulated by different loops [18] [202]. As can be seen
in Fig. 4, analyses from a variety of data sets such as DNase-seq,
ChIP-seq, RNAseq or ATAC-seq may be combined to draw a
whole-genome loop model. Comparing loops of multiple samples,
finding loops that have changed at the genome-wide level, and
using RNA-Seq to count the expression of related genes, can helps
explain the relationship between loops and the potential differ-
ences in transcription regulation among different samples.

As shown in Fig. 5, Fig. 5(A) represents the differential interac-
tion map of the whole genome map of GM12878 and K562 cells,
Fig. 5(B) represents the differential interaction map of the two cell
lines GM12878 and K562 in the region of chromosome 1:
0:2,000,000 bp and the corresponding identification of differential
loops, Fig. 5(C, D) uses arc diagrams to visualize the interaction
loop’s location and corresponding differential loops of the
GM12878 and K562 cell lines in the 0:2,000,000 bp of chromosome
1. After statistically analyzing the differential loops between sam-
ples, we find loops that have changed at the genome-wide level,
and use RNA-Seq to do differential expression analysis, which
helps explain the relationship between loops and gene transcrip-
tion regulation among different samples.

Let’s give an example: Rao et al. [18] found 9448 loops in the
GM12878 cell line, of which 2854 loops are related to known
promoter-enhancer functions. The expression of the gene’s pro-
moter with a loop was significantly higher than without a loop.
For example, there is a loop in the GM12878 cell line, which is con-
nected to the SELL promoter and a distal enhancer SELP, where the
gene transcription is turned on, and the expression is increased.
However, there is no loop in the same location in the IMR90 cell
line, and the gene is not expressed. Greenwald, et al. [202] used
a Hi-C experiment to generate high-resolution chromatin loops
of pancreatic islets in three samples, as well as ATAC-seq, and
ChIP-seq data to identify the target genes of pancreatic islet enhan-
cers. Finally, these loops were annotated with target genes of islet
enhancer, which shows that enhancer looping is correlated with
islet-specific gene expression.
4.2. Multi-omics data analysis on TADs level

As section 3.3 has described, although TADs are statistical con-
structs rather than structural components of the 3D genome, TADs
are an emergent property of an underlying biological mechanism,
i.e. Loop extrusion or compartmentalization [201], if TADs bound-
aries are destroyed, the loops structure may change. so, analyzing
differential TADs boundaries along with many other omics data as
described below can help to understand the relationship between
changes in loops/compartments and their functions.
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1) Differential TADs boundaries region gene expression can be
analyzed by using RNA-seq and Hi-C data, as described in reference
[205].

2) Differential TADs boundaies and CNV identification and anal-
ysis of gene expression in related regions by using RNA-seq, WGS
and Hi-C data can be done as in references [206,207].

3) Analysis of the distribution of transcription factors and bind-
ing sites, histone modifications in differential TADs’ boundaries
region by using ChIP-seq and Hi-C data, can be performed as in ref-
erences [208,209].

For example, in 2017, Rubin et al. used Hi-C and ChIP-seq data
[209] to jointly analyze the interaction patterns of enhancers and
promoters throughout the genome during the differentiation of
isolated and cultured human primary keratinocytes. They con-
firmed two types of enhancers-promoter interactions: one is a
‘gaining’ interaction, which is enhanced during differentiation
and is consistent with the enhancer obtaining H3K27ac activation
marker; the other is a ‘stable’ interaction with enhancers constitu-
tively marked by H3K27ac. Furthermore, these two interactions
were not detected in pluripotent cells, suggesting that this
lineage-specific chromatin structure was established in precursor
cells and remodeled during terminal differentiation.

In reference [207], the authors performed Hi-C, whole-genome
sequencing (WGS), ChIP-seq, and RNA-seq on two multiple aneu-
ploidy myeloma (MM) cell lines to study the 3D genome structure
of multiple myeloma (MM) and its relationship with genomic vari-
ation and gene expression. The authors found that the average
interaction count inside each CNV block was positively correlated
with its copy number, which indicates that raw interaction counts
in cancer Hi-C data are biased by CNVs. This suggests that we can
detect CNV by inferring the interaction counts of Hi-C data. Simi-
larly, combining Hi-C and WGS data can improve the detection of
translocations. The CNV breakpoints and TAD boundaries signifi-
cantly overlapped. Compared with normal B cells, the number of
TADs in MM increased by 25%, the average size of TADs was smal-
ler, and about 20% of the genomic regions switched their chro-
matin A/B compartments type.

4.3. Multi-omics data analysis on the A/B compartment level

On the A/B compartment level, RNA-seq, ChIP-seq, ATAC-seq,
WGS, or WGBS data is analyzed with Hi-C data as follows. For
example, biological changes in myocardial cells are a mainly cause
of heart failure. M. Rosagarrido et al. [210] found that this prob-
lematic cell function failure results from gene expression changes
and is affected by transcription factors and chromatin remodeling
enzymes. In reference [210], a chromatin conformation study of
myocardial cell lines induced by load stimulation and mouse
myocardial cell lines lacking CTCF function was conducted with
Hi-C and RNA-seq. The analysis explores the effect of the entire
genome structure on heart failure—generally, changes in A/B com-
partments correlated with gene expression. A change from the A
compartment to the B compartment correlated with the down-
regulation of gene expression, while a change from the B compart-
ment to the A compartment correlated with the up-regulation of
gene expression. This study’s transcriptome data showed that most
genes in regions with changed A/B compartments occurred in dis-
eased cell lines, and the regulation of the expression of the sera
changed, including the activation of some pathogenic marker
genes.

Reference [211] used mouse embryonic stem cells to compre-
hensively study the effects on the three-dimensional structure
(Hi-C) and on the chromatin accessibility (ATAC-seq), caused by
the knockout of the methyltransferase complex subunit MLL2.
Authors also studied alterations in protein modification (ChIP-
seq), and gene expression levels (RNA-seq) casued by the MLL2
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knockout. They found that the deletion of MLL2 increased the Poly-
comb complex’s occupation, reshaped long-distance gene interac-
tion and histone modification, reduced the transcription levels of
critical genes, and ultimately caused abnormal embryonic
development.
5. Conclusion

Overall, the Hi-C and other omics data analysis methods have
appeared in different ways to help researchers understand the
relationship between function and genome structure. However,
there are still many improvements that could be made to the Hi-
C analysis methods.

For the 3D structure analysis, although we have many methods
to simulate the 3D structure of the genome, we still face many
obstacles: (1) How can we simulate the genome structure of at a
resolution even higher than 1 kb? Maybe we can apply deep learn-
ing methods to 3D structure simulation; (2) How can we improve
microscope resolution to see the genome structure at kb resolu-
tion, to verify the accuracy of the three-dimensional simulated
structure? Maybe we can use image super resolution technology
to enhance the images from microscope; (3) How can we verify
the accuracy of the 3D reconstructed model, and not just compare
with FISH (Fluorescence in situ hybridization) data? (4) How can
we detect TADs or loops when obtaining 3D structures in order
to understand the relationship between structure and function?

Many methods were proposed to detect TADs and loops, but
how can we detect TADs or loops from low-resolution Hi-C data?
One way is by detecting them from enhanced Hi-C data. How can
we detect them more accurately, faster and with fewer parame-
ters? These problems still need to be solved.

There are many problems to deal with in order to observe an
accurate genome structure, we still have additional methods to
help us understand the relationship between function and genome
structure using multi-omics analysis, for example, CRISPR/CAS9
genome editing technology. Ultimately these approaches will help
us to develop cancer treatments and accelerate drug development.
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