Ulrych et al. BMC Microbiology (2016) 16:247
DOI 10.1186/512866-016-0865-6

Characterization of pneumococcal Ser/Thr

BMC Microbiology

@ CrossMark

protein phosphatase phpP mutant and
identification of a novel PhpP substrate,
putative RNA binding protein Jag

Ales Ulrych, Nela Holeckova, Jana Goldova, Linda Doubravova @, Oldfich Benada, Olga Kofrofiové, Petr Halada

and Pavel Branny’

Abstract

Background: Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary
mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr
protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and
cell division. However, the role of its cognate phosphatase, PhpP, is not well defined.

Results: Here, we report the successful construction of a AphpP mutant in the unencapsulated S. pneumoniae Rx1
strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein
phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation
of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP

substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence
deficiency. The morphology of the AphpP cells resembled the StkP overexpression phenotype and conversely,
overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the
phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding
protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag

confers a phenotype similar to the phpP mutant strain.

Conclusions: Our results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and

phosphorylate putative RNA binding protein Jag.
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Background

Signal transduction via protein phosphorylation is one of
the basic mechanisms that modulate numerous cellular
processes in both prokaryotes and eukaryotes. Signal
transduction in prokaryotes has been considered to
occur primarily by two-component systems consisting of
a histidine protein kinase and its cognate response regu-
lator [1]. However, studies published in the last two de-
cades have clearly demonstrated that this paradigm
requires modification. Eukaryotic-type Ser/Thr protein
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kinases (ESTKs) as well as Ser/Thr phosphatases
(ESTPs) operate in various bacterial species in parallel or
overlapping signaling networks and regulate various cel-
lular functions [2]. A distinct group of ESTKs which
regulate cell cycle and cell division in many Gram-
positive bacteria are conserved transmembrane proteins
with a cytoplasmic kinase domain and repeated PASTA
(penicillin-binding  protein and Ser/Thr kinase-
associated) domains in their extracellular region [2-6].
ESTKs are often co-expressed with their cognate phos-
phatases which are necessary for regulation of ESTK ac-
tivity and quenching of signaling cascades; however,
their physiological function in bacteria is still poorly
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understood. The ESTPs associated with PASTA-
possessing ESTKs are Mg>*- or Mn”**-dependent en-
zymes of the PPM family of Ser/Thr phosphatases,
which share homology with the eukaryotic PP2C phos-
phatase [7]. Unlike ESTKs, only a few cognate ESTPs
have been studied in detail, in part because several of
them have been reported to be essential [8—10]. How-
ever, other detailed studies have demonstrated that
knock-out mutants of phosphatase genes are viable and
that ESTPs play a role in virulence, cell wall metabolism
and cell segregation [11-16].

S. pneumoniae encodes a single PASTA-containing
ESTK named StkP and a co-transcribed phosphatase,
PhpP [8, 17]. Unlike PhpP, StkP has been extensively
studied in past years, and its pleiotropic function in the
regulation of different cellular processes has been de-
scribed. StkP is a virulence determinant that is important
for lung infection and bloodstream invasion in vivo and
regulates pilus expression and bacterial adherence in
vitro [8, 18]. StkP is essential for the resistance of S.
pneumoniae to various stress conditions and compe-
tence development. Microarray analysis has revealed that
StkP affects the transcription of a set of genes involved
in cell wall metabolism, pyrimidine biosynthesis, DNA
repair, iron uptake and oxidative stress response [8, 19].
StkP localizes to the division sites and plays important
role in the regulation of cell division [20-22]. Cells with
stkP mutations demonstrated disrupted cell wall synthe-
sis and displayed elongated morphologies with multiple,
often unconstricted, cell division septa, which suggest
that StkP coordinates cell wall synthesis with cell div-
ision and thus helps pneumococcus to achieve its char-
acteristic ovoid shape. Consistent with its role in cell
division, StkP was found to phosphorylate several pro-
teins involved in cell wall synthesis and cell division. The
cell division proteins DivIVA [21, 23], LocZ (named also
MapZ) [23-25] and the phosphoglucosamine mutase
GImM [17] are phosphorylated by StkP in vitro and in
vivo. The cell division proteins FtsZ [22] and FtsA [20]
and the cell wall biosynthesis enzyme MurC [26] are
substrates of StkP in vitro; however, their phosphoryl-
ation by StkP in vivo has not been confirmed.

StkP is dephosphorylated by the cognate phosphatase
PhpP, which is a PP2C-type Mn>*-dependent enzyme.
The PhpP catalytic domain contains 11 conserved signa-
ture motifs [27], and mutations of the highly conserved
residues D192 and D231, which have been implicated in
metal binding, completely abolish PhpP activity in vitro
[17]. GEFP-PhpP fusion protein is localized in the cyto-
plasm; however, the protein is often enriched in the mid-
cell. The localization of PhpP to cell division sites
depends on the presence of active StkP, indicating that
both enzymes form a signaling couple in vivo [20]. Pre-
viously, phpP was reported to be essential for the
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viability of the unencapsulated Rx1 and R800 strains [10,
21]. According to global analysis performed by Thanassi
et al. [28], both phpP and stkP genes were found to be
essential; however, in the other global studies, phpP was
not recognized as an essential gene [29, 30]. A recent re-
port generated nonpolar markerless phpP knock-out
mutants in two encapsulated pathogenic strains, S. pneu-
moniae D39 and 6A, indicating that PhpP is dispensable
for pneumococcal survival [11]. Characterization of
these mutants demonstrated the strain-specific role of
PhpP in cell wall biosynthesis, adherence and biofilm
formation. The StkP/PhpP signaling couple has been
demonstrated to regulate the two-component system
HKO06/RR06, which modulates the expression of a major
pneumococcal adhesin, CbpA [11].

In the present study, we show that the unencapsulated
Rx1 phpP knock-out strain is viable. The morphology of
both, the unencapsulated phpP null mutant and the
phpP overexpression strain, clearly demonstrated that
PhpP participates in the regulation of cell division and
has an opposite regulatory effect to that of StkP. Our
data suggest that PhpP modulates the level of protein
phosphorylation in vivo both, through direct dephos-
phorylation of target proteins and dephosphorylation of
its cognate kinase, StkP, resulting in coordination of cell
wall synthesis and division in S. pneumoniae. Proteomic
analysis of the AphpP strain revealed a novel StkP/PhpP
substrate, Spr1851, a putative RNA-binding protein
homologous to Jag protein of B. subtilis [31].

Results and discussion

PhpP is not essential for pneumococcal survival and
catalyzes dephosphorylation of StkP and its substrates
Although phpP was reported to be essential in an stkP*
genetic background [10], a nonpolar markerless phpP
knock-out was generated in two encapsulated S. pneu-
moniae strains using the Janus cassette-based two-step
negative selection strategy [11]. We attempted to use the
same strategy to knock out phpP in the unencapsulated
Rx1 strain as described in the Methods. We obtained vi-
able AphpP transformants and characterized them fur-
ther (see below). To exclude the possibility that the
AphpP strain might carry an unlinked extragenic sup-
pressor of the potentially lethal effect of loss of PhpP,
the dose-response pattern for AphpP versus a wild type
(WT) backcross was determined [32, 33]. Transform-
ation by a single marker in pneumococcus displays a lin-
ear dependence on the dose of donor DNA (slope of
regression curve equal to 1), whereas less efficient co-
transformation by two markers follows a quadratic de-
pendence on donor DNA dose (slope of regression curve
equal to 2). Transfer of the AphpP mutation followed
first order kinetics, and, therefore, viability of the AphpP
strain does not depend on an extragenic suppressor
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mutation (Fig. la). In addition, the sequence of the
neighboring genes spri1579 and stkP was verified for the
absence of mutation by DNA sequencing. The contra-
dictory results reporting the essentiality [10, 21, 28] and
non-essentiality [11, 29, 30] of the phpP gene may result
from the different methods used for gene inactivation or
from the genetic variability of the pneumococcal strains
used. As reviewed in Massidda et al. [34], the genome of
S. pneumoniae is very dynamic, and the number of genes
found to be conditionally essential is dependent on the
genetic background or the presence of capsule.

Using specific anti-PhpP (a-PhpP) and anti-StkP (a-
StkP) antibodies, we confirmed that PhpP was deleted
from the genome of the AphpP strain (Sp113), while the
expression level of StkP was similar in both the AphpP
and wild type strain (Fig. 1b). To evaluate the level of
protein phosphorylation, we performed immunodetec-
tion with an anti-phospho-threonine (a-pThr) antibody.
Thr phosphorylation in S. pneumoniae is largely
dependent on StkP, and the majority of its substrates are
membrane or membrane-associated proteins [23]. As
previously reported, no Thr phosphorylated proteins
were detected in the AstkP mutant (Spl0) (Fig. 1b).
Immunodetection of phosphoproteins in the AphpP
membrane fraction revealed a pattern similar to the
StkP-dependent phosphoproteome [23]; however, we ob-
served an increase in signal intensity corresponding to
192 +58.4 % of the wild type, indicating hyperphosphor-
ylation of StkP substrates, including StkP itself (Fig. 1b).
These data indicate that PhpP negatively regulates phos-
phorylation of StkP and its substrates.

To verify that the observed phosphorylation profile
was the result of the phpP deletion, we constructed two
complementation strains. First, we reverted the AphpP
mutation back to the wild type genotype by transforming
the wild type allele of the phpP gene into the AphpP
strain (strain Sp222). The second complementation
strain was prepared using ectopic expression of phpP
under the control of a zinc-inducible promoter, P_,.p
(Pz,) [35]. phpP was cloned into the pJWV25 plasmid
under the control of the Py, promoter and was inserted
by double cross-over into the dispensable bga locus on
the chromosome of the AphpP strain. The resulting
strain, Sp120 (AphpP bga:Pz,-phpP), was cultivated in
the presence of different concentrations of ZnSO,, and
the expression of PhpP and the level of protein phos-
phorylation was monitored by immunoblotting. When
expression of phpP was induced by addition of 0.2 mM
ZnSQ,, we observed expression of PhpP and a phos-
phorylation signal intensity that correlated with the wild
type (Fig. 1c, lane 6). Addition of 0.3 mM ZnSO, re-
sulted in PhpP overexpression and a strong decrease in
Thr phosphorylation (Fig. 1c, lane 7). The reverted strain
WTr (Sp222) showed Thr phosphorylation levels that
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were indistinguishable from the wild type strain (Fig. 1c,
lane 2). These results demonstrate that complementation
restores the wild type phosphorylation profile.

To demonstrate that PhpP directly dephosphorylates
StkP substrates and not solely StkP, thus decreasing its
activity, we performed in vitro dephosphorylation assays.
We prepared pneumococcal strains Sp188 and Sp174 ex-
pressing the known StkP substrates LocZ and DivIVA,
respectively, tagged with Flag-tag and isolated phosphor-
ylated Flag-LocZ and DivIVA-Flag proteins from
pneumococcal cell lysates. Purified proteins were incu-
bated with recombinant His-PhpP as described in
Methods, and protein dephosphorylation was monitored
using immunodetection with the a-pThr antibody. As
shown in Fig. 1d and e, the phosphorylation of DivIVA
and LocZ significantly decreased with time, demonstrat-
ing that PhpP directly catalyzes dephosphorylation of
both StkP substrates.

The phpP knock-out strain is sensitive to elevated
temperature and oxidative stress

The stkP null mutant has an altered growth rate, and it
is sensitive to environmental stresses [19], which high-
lights the importance of StkP in the resistance of
pneumococcus to hostile environmental conditions in
the host. The growth rate of the phpP knock-out strain
was reduced in TSB medium (38 min doubling time)
compared to the wild type strain (31 min doubling time).
In addition, the mutant strain had a significantly pro-
longed lag phase and reached a lower final optical dens-
ity (Fig. 2a), similar to the AstkP mutant strain. Further
we examined the growth of the AphpP mutant in re-
sponse to heat stress, osmotic stress and pH variation, as
well as its viability after exposure to H,O,. The AphpP,
AstkP and the wild type strains were inoculated in liquid
medium and cultivated as described in detail in the
Methods. Our experiments showed that unlike StkP,
PhpP did not significantly affect the sensitivity to os-
motic stress induced by high salt concentration or the
tolerance to acidic or alkaline pH (data not shown).
However, PhpP was important for normal growth at ele-
vated temperatures: the doubling time and final density
achieved were significantly affected when the AphpP
strain was grown at 40 °C (Fig. 2b). In addition, we
tested the resistance of the mutant strain to oxidative
damage. When exposed to varying concentrations of
H,0,, the AphpP strain, similar to the AstkP strain, dis-
played a lower survival rate than the wild type strain, in-
dicating increased sensitivity to oxidative stress (Fig. 2c).
In summary, the phenotype of the unencapsulated Rx1
derived AphpP mutant differs from the encapsulated
strain 6A which displayed retarded growth under all
stress conditions tested but also differs from the strain
D39 which was affected only in the high-salt stress
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Fig. 1 PhpP regulates phosphorylation of StkP and its substrates. a Kinetics of transfer of phpP mutation. WT strain was transformed by Sp100
genomic DNA carrying Janus cassette inserted into phpP gene (phpP:kan rpsL). Number of kanamycin resistant transformants was plotted as a function
of genomic DNA concentration in logarithmic scale. Transfer of tested marker follows linear kinetics with slope of line equal to 1 (y =ax + b, a = slope).
b Phosphorylation profile of AphpP mutant. Membrane fraction from S. pneumoniae WT (Sp1), AphpP (Sp113) and AstkP (Sp10) was isolated and 30 pg
of proteins was subjected to SDS-PAGE and immunoblotted with anti-phospho-threonine antibody (a-pThr) to detect phosphorylated proteins. The
level of PhpP and StkP proteins was detected with anti-PhpP (a-PhpP) and anti-StkP antibody (a-StkP). Immunodetection of membrane protein LocZ
was used as loading control. Arrows indicate position of StkP and its known (LocZ, DivIVA) and unknown (P15, P28, P35, P40, P55) substrates. Relative
phosphorylation values represent mean + SD. ¢ Complementation of phpP mutation. Comparison of phosphoprotein pattern of wild type strain WT
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detect phosphorylated proteins. The total amount of PhpP was detected using a-PhpP antibody. Immunodetection of a-subunit of RNA polymerase
(a-RpoA) was used as loading control of total cell lysate. Arrows indicate position of StkP substrates. d PhpP dephosphorylates DivIVA. e PhpP
dephosphorylates LocZ. Purified DivIVA-Flag and Flag-LocZ were incubated with His-PhpP in vitro and reaction was stopped at indicated times.
Samples were subjected to SDS-PAGE and immunoblotted with a-pThr antibody to visualize dephosphorylation in time. PhpP, LocZ and DivIVA were
detected with specific antibodies as described above. To exclude the spontaneous decay, phosphorylated form of both proteins, DivIVA-Flag and
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conditions [11]. These results suggest that genetic stress [19], we did not confirm the opposite effect of
background significantly affects the demonstration of PhpP. Our data suggest that unbalanced activity of
phpP mutation although we cannot exclude the role both, PhpP and StkP, is critical for bacterial physi-
of polysacharide capsule itself. Considering that the ology, and the adaptive response to environmental
Rx1 derived stkP mutant strain was sensitive to ele- stress is not cooperatively regulated by the PhpP/StkP
vated temperature, acidic pH, osmotic and oxidative signaling couple.
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Fig. 2 Phenotypic characterization of phpP knock-out strain. a Growth curves of WT (Sp1), AstkP (Sp10), and AphpP (Sp113) strains cultivated
statically at 37 °C in TSB medium. b Heat stress. Growth curves of the WT and both mutant strains in TSB medium were measured at 37 and 40 °
C. ¢ Oxidative stress. The liquid cultures of the WT, AstkP and AphpP strain were exposed to different concentration of H,O, and aliquots of
cultures were plated to evaluate survival upon oxidative stress. Number of CFU (colony forming units) at non-stress conditions (0 mM H,O,) were
set as 100 %. d Induced competence. Transformation efficiency of WT, AphpP and AstkP strain grown in BHI medium upon addition of CSP. e, f,
g Natural competence. Natural competence is expressed as % of viable transformants of WT (e), AphpP (f) and AstkP (g) strain during cultivation
in BHI medium (ODggonm) Without addition of CSP. All data shown represent mean + SD for three independent experiments. Where error bars are
not shown, the SD was within the size of the symbol. All growth curves are plotted in semi logarithmic scale

The AphpP strain displays decreased competence for
genetic transformation

Competence for genetic transformation is powerful
mechanism for generating genetic diversity and acquir-
ing antibiotic resistance. Natural competence in S. pneu-
moniae is a transient event regulated by a quorum-
sensing system and occurs via a peptide pheromone sig-
nal (e.g., competence-stimulating peptide (CSP)). Previ-
ous studies demonstrated the importance of StkP for
competence development [10, 19]. Here, we tested the
capability of the AphpP mutant strain to develop natural
and induced competence in conditions optimal for com-
petence development [36]. Induced competence was de-
fined as the transformation efficiency in response to the
addition of synthetic CSP. Similar to the AstkP strain,
the phpP null mutant strain weakly developed induced
competence, and the transformation efficiency was low
compared to wild type (Fig. 2d). Natural competence
was defined as the transformation efficiency in the ab-
sence of added CSP and was monitored during the
growth. As shown in Fig. 2e, that wild type strain devel-
oped natural competence during the early exponential
phase of growth (ODgyo 0.08—0.16), which is observed as
a peak in viable transformants obtained by transform-
ation with control DNA. On the other hand, two low
peaks of competence, one during the exponential phase
and the second upon the entry into the stationary phase,
were detected during growth of the phpP knock-out
strain (Fig. 2f). However, the transformation efficiency
was about fivefold lower than that observed for the wild
type, and therefore, the strain is competence deficient,
similar to the AstkP strain (Fig. 2 g). In the AstkP strain
the reduced transformation efficiency may be the result
of a weak induction of DNA uptake and processing
genes [19]. However, the molecular mechanism respon-
sible for the transformation deficiency in the AstkP mu-
tant remains unclear. To date, none of the proteins that
play a direct role in competence development have been
identified as a substrate of StkP. Our results suggest that
StkP and PhpP do not function as antagonists in the
control of competence regulation. Therefore, we cannot
exclude that competence deficiency of both mutants is
an indirect consequence of the pleiotropic effects of
phpP and stkP mutations on pneumococcal physiology.

PhpP regulates cell division in pneumococcus

The newly established role of StkP in cell division
prompted us to investigate the morphology of the phpP
knock-out strain and the potential role of PhpP in the
regulation of cell division. Although no morphologic
changes were observed in the encapsulated AphpP mu-
tants [11], phase contrast microscopy of the Rx1 derived
AphpP strain revealed that the phenotype differed from
that of the wild type strain. Cell size measurement using
the automated MicrobeTracker software confirmed that
the AphpP cells were significantly smaller (median cell
length 1.48 + 0.22 pum; median cell width 0.64 + 0.08 pm)
than the wild type cells (median cell length 1.58 +
0.25 pm; median cell width 0.66 + 0.04 um) (Fig. 3a, c)
and showed phenotype similar to the StkP-
overexpressing strain. To demonstrate that the observed
phenotype was the result of the phpP deletion, we ana-
lyzed the reverted strain WTg (Sp222) and the comple-
mentation strain AphpP Pyz,-phpP (Sp120). Cell
morphology (Fig. 3a) and cell size (Fig. 3c) of the
reverted strain were not different from the wild type
strain. The analysis of the complementation strain Sp120
cultivated in the presence of a growing concentration of
the inducer (ZnSO,) demonstrated that increasing ex-
pression of PhpP correlated with the decrease in protein
phosphorylation (Fig. 1c) and an increase in cell length
(Fig. 3b, ¢). In the presence of 0.3 mM ZnSQO,, the me-
dian cell length reached 1.9 +0.33 pum (Fig. 3b, c), clearly
indicating that overexpression of PhpP results in a
phenotype similar to that observed with the StkP-
depleted strain (strain Sp10, median cell length 2.11 +
0.32 pum) (Fig. 3a, c).

To obtain further insight into the morphological
changes induced by inactivation of phpP, we analyzed
the mutant strain Sp113 by electron microscopy. Fig-
ure 3d shows a scanning electron microscopy image of
the wild type (Spl) compared with the AphpP (Sp113)
and AstkP (Spl0) strains. As reported previously, the
AstkP strain produces long cells with unconstricted
septa. On the other hand, we observed cell size hetero-
geneity in AphpP mutant cells, with numerous smaller
cells; however, their shape appeared to be normal in gen-
eral. Additionally, transmission electron microscopy did
not reveal significant abnormalities (thicker cell walls)
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Cell length parameters measured with MicrobeTracker software were analyzed and plotted in box-and-whiskers graph. Mann-Whitney U test: * cell
length of mutant strain is significantly different from that of the WT strain P < 0.0001. 300 cells were scored per sample. d Scanning electron
microscopy of WT strain (Sp1), AstkP strain (Sp10) and AphpP strain (Sp113) cultivated in TSB medium. Magnifications are the same for all panels.
Bar 0.5 um. a-d: Representative data for three independent experiments are shown
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associated with the loss of phpP (data not shown) which
were observed in the encapsulated AphpP strain [11].

Analysis of 600 cells showed that 24.2 % of the AphpP
cells formed chains longer than 4 cells in contrast with
2.5 % of chaining cells in the wild type. However, we did
not observe aggregation and abnormally long chains
which were detected in the encapsulated mutant strains
[11]. Regulation of chain length in streptococci depends
on wall-associated autolytic activity. Therefore we tested
the expression of genes encoding the peptidoglycan hy-
drolases pcsB, IytA and lytB, which may affect cell separ-
ation, using qRT-PCR, but we did not detect any
differences in transcript levels in the AphpP and wild
type strain (data not shown); thus, the reason for the in-
creased chain formation remains unknown.

To characterize the role of PhpP in cell division in
more detail, we investigated the localization of nascent
PG synthesis sites in live AphpP cells (Sp113) stained
with fluorescently labeled vancomycin (Van-FL), a
marker of nascent peptidoglycan synthesis (PG) (Fig. 4).
Labeling was observed predominantly at current and fu-
ture cell division sites in the mutant cells, a pattern simi-
lar to that observed in the wild type cells. However,
4.5 % of mutant cells (58/1300) showed disturbed Van-
FL labeling (Fig. 4) indicating that minority of cells dis-
play perturbed cell wall synthesis. When we induced
overexpression of PhpP in complementation strain
Sp120 (AphpP Pz,-phpP) by the addition of 0.3 mM
ZnSO,, we observed significant elongation of cells, and
Van-FL staining revealed that the cells often contained
multiple unconstricted division septa, which is a distinct
feature of stkP-depleted cells (Fig. 4). Further we investi-
gated localization of cell division proteins LocZ/MapZ,
FtsA and DivIVA but we did not find significant differ-
ences between mutant and wild type cells (data not
shown).

Our data clearly show that PhpP plays an opposing
role to StkP in regulation of cell division which was not
recognized in the previous study by Agarwal et al. [11].
We hypothesize that the morphological differences be-
tween AphpP mutants derived from different strains
may be largely caused by the presence or absence of cap-
sule. However, the cell division defect caused by the de-
pletion of phpP is less severe than the abnormalities
observed either in the absence of StkP or in the presence
of the excess of PhpP suggesting that hyperphosphoryla-
tion of StkP substrates is better tolerated than the ab-
sence of phosphorylation.

Conserved residues D192 and D231 are essential for PhpP
activity in vivo

PhpP contains two conserved aspartate residues, D192
and D231, which are directly involved in metal ions
binding and are essential for the activity of eukaryotic
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overlay VanFL
.
AphpP

1 4

Fig. 4 Cell wall synthesis in AphpP mutant. Nascent peptidoglycan
synthesis sites in live pneumococcal cells of WT (Sp1), AphpP (Sp113)
strain and overexpression strain AphpP Pz-phpP (Sp120) were stained by
fluorescently labelled vancomycin (Van-FL). Overexpression of PhpP in
strain AphpP Pz,-phpP was achieved by addition of 0.3 mM ZnSO, into
C+Y medium. Full arrow shows cell with disturbed nascent
peptidoglycan synthesis. Open arrow indicate multiple unconstricted cell
division septa. Van-FL signal and its overlay with phase contrast images

are shown. Scale bars 1 ym

PP2C phosphatases [37]. Previously, we reported that
substitution of D192 and D231 for alanine abolished
PhpP activity in vitro [17]. Here, we investigated the im-
portance of D192 and D231 for enzymatic activity and
localization of PhpP in vivo. We constructed strains ex-
pressing PhpP mutant alleles D192A and D231A fused
to GFP under an inducible Pz, promoter in the AphpP
genetic background. Strains expressing GFP-PhpP-WT
(Sp140), the D192A allele (Sp292) and the D231A allele
(Sp293) were cultivated in C + Y medium with or with-
out zinc, and PhpP expression and the phosphorylation
pattern were detected using specific antibodies. Expres-
sion of PhpP-WT and PhpP-D192A was similar; how-
ever, the expression of PhpP-D231A was lower as
indicated by immunodetection with the a-GFP antibody
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(Fig. 5a). Immunodetection with the a-pThr antibody
showed that increasing the expression of the wild type
allele resulted in a decrease in overall phosphorylation
intensity. On the other hand, increased expression of
PhpP-D192A or D231A upon addition of zinc did not
affect the phosphorylation intensity in strains Sp292 and
Sp293, respectively, indicating that both alleles are cata-
Iytically inactive. Phase contrast microscopy revealed
that the morphology of strain Sp140 expressing GFP-
PhpP-WT changed depending on zinc concentration,
and cell length increased (Fig. 5b). On the other hand,
the morphology of strains expressing the mutant alleles
of PhpP did not change (Fig. 5b) indicating inability to
complement the mutant phenotype. Cell size analysis
confirmed these observations (Fig. 5c). PhpP-WT ex-
pression in the Sp140 strain led to increases in cell
length up to 2.11+0.36 pm when 0.3 mM ZnSO, was
added to the medium, while cell length remained un-
changed in strains Sp292 (PhpP-D192A) (1.49 + 0.2 um)
and Sp293 (PhpP-D231A) (1.43 + 0.23 pm).

Previously, we demonstrated that the protein phos-
phatase PhpP is localized in the cytoplasm, but it is sig-
nificantly enriched at the midcell during the early
exponential phase of growth, and this localization de-
pends on the presence of active StkP [20]. To determine
localization of catalytically inactive GFP-PhpP, we culti-
vated strains Sp140, Sp292 and Sp293 in medium sup-
plemented with 02 mM ZnSO, until the early
exponential phase (ODgyy 0.2) and examined live cells
using fluorescence microscopy. PhpP-WT was clearly as-
sociated with the cell division septum in 23 % (176/766)
of the cells and showed cytoplasmic distribution in 77 %
of cells (Fig. 5d). PhpP-D192A was enriched at the mid-
cell in 19 % (152/800) of the cells; however, the GFP sig-
nal in these cells was more diffuse (Fig. 5d). To quantify
the difference, we measured the fluorescence intensity
profiles in the cells at the first stage of cell division (pre-
divisional cells). We confirmed different distributions of
the GFP-PhpP-WT and GFP-PhpP-D192A signals along
the cell axis, which indicates that PhpP-D192A is more
abundant in the cytoplasm (Fig. 5d). Interestingly, PhpP-
D231A was localized exclusively in the cytoplasm
(Fig. 5d). These data suggest that mutant alleles of PhpP
not only loose the catalytic activity but also lose the abil-
ity to co-localize with cell division apparatus.

Jag protein (Spr1851) is a previously unknown substrate
of StkP and PhpP

The elevated level of Thr phosphorylation in the phpP null
mutant helped us to detect phosphorylated membrane pro-
teins previously unrecognized in wild type lysates. Because
the phosphorylated proteins designated P35 and P40 mi-
grate close to phosphorylated DivIVA, we generated strain
AphpPAdivIVA (designated Sp169), which would enable
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appropriate separation of the new substrates. To identify
these StkP substrates we extracted proteins from the mem-
brane fraction using trifluorethanol (TFE) [38] and separated
them using two-dimensional (2D) SDS-PAGE as described
in the Methods. The protein spot corresponding to P40 was
successfully resolved, and its phosphorylation was confirmed
by immunoblotting (Fig. 6a). The protein spot was excised,
digested by trypsin and identified using MALDI-TOF mass
spectrometry as Spr1851, a homolog of Jag/SpolllJ-associ-
ated protein from B. subtilis. We named the product of the
spri851 gene Jagg,,, (Fig. 6b). Jags,, contains an N-terminal
Jag N domain and KH domain followed by an R3H domain
at the C-terminus (Conserved Domain Database (CDD)
[39]) (Fig. 6b). The Jag_N domain located at the N-terminus
of bacterial Jag proteins is a conserved stretch of 50 amino
acids without a defined function (CDD). The KH domain is
a single-stranded nucleic acid-binding domain that mediates
RNA target recognition in proteins that regulate gene ex-
pression in eukaryotes and prokaryotes (reviewed in [40]).
The R3H motif is present in proteins from a diverse range
of organisms that includes Eubacteria, green plants, fungi
and various groups of metazoans, and it is predicted to bind
ssDNA or ssRNA in a sequence-specific manner. Jag homo-
logues are conserved in bacteria, especially in Firmicutes,
and their domain architecture suggests that they bind RNA;
however, their function is unknown.

To verify the phosphorylation of Jags,,, we constructed a
jag null mutant named Sp295 using the Janus cassette
strategy described in the Methods. We detected phosphor-
ylated proteins in whole cell lysates of the wild type, Ajag
and AstkP strains and compared them with strain
AphpPAdivIVA to better distinguish different phospho-
protein bands. Immunoblotting showed that a phospho-
protein corresponding to 40 kDa (P40) is present in the
wild type and AphpPAdivIVA strain but absent in the Ajag
strain, which indicates that Spr1851/Jag corresponds to
StkP substrate P40 (Fig. 6¢).

To verify further phosphorylation of Jag we prepared
the complementation strain Sp304 expressing Jag with a
Flag-tag at the C-terminus (Jag-Flag) under the inducible
Pz, promoter in the Ajag genetic background. Figure 6d
shows that addition of zinc induced expression of Jag-
Flag in strain Sp304 (Ajag Pz,-jag-flag), and immunode-
tection with the a-pThr antibody confirmed that the
protein is phosphorylated. A second, faster migrating
band of Jag was detected with the a-Flag antibody when
ZnSO, was added at concentrations of 0.25 and 0.3 mM.
This protein band interacted weakly with the a-pThr
antibody, which indicated that this form of Jag is also
phosphorylated.

Jag is phosphorylated on Thr89
Spr1851/Jag was previously found to be phosphorylated on
Thr89 in a global study published by Sun et al. [41]. Thr89
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Fig. 5 D192 and D231 are essential for PhpP catalytic activity in vivo. a Phosphorylation pattern after induction of expression of GFP-PhpP-WT
(Sp140), GFP-PhpP-D192A (Sp292) and GFP-PhpP-D231A (Sp293) in AphpP genetic background. Total cell lysates from cultures grown in C+Y
medium in the presence or absence of ZnSO, were separated by SDS-PAGE and immunoblotted with a-pThr antibody to document protein
phosphorylation. a-GFP antibody was used to show expression level of GFP-PhpP and immunodetection of RpoA was used as a loading control.
Position of StkP and its substrates is indicated by arrows. b Morphology of strains expressing GFP-PhpP-WT (Sp140), GFP-PhpP-D192A (Sp292) and
GFP-PhpP-D231A (Sp293) in AphpP genetic background. Pneumococcal strains were cultivated in C+ Y medium supplemented with ZnSO,. Phase
contrast images show cell morphology in the presence of 0.2 and 0.3 mM ZnSO, and median cell lengths + MAD (n = 300) corresponding to each
image are shown below. Bar, 5 um. ¢ Cell length analysis. Cell length parameters were analyzed and plotted in box-and-whiskers graph.
Mann-Whitney U test: * cell length in the presence of inducer is significantly different from uninduced conditions (0 mM ZnSO,) P < 0.0001. 300
cells were scored per sample. d Localization of PhpP. Strains expressing GFP-PhpP-WT (Sp140), GFP-PhpP-D192A (Sp292) and GFP-PhpP-D231A
(Sp293) were cultivated in C+ Y medium supplemented with 0.2 mM ZnSO,. GFP signal and overlay of phase contrast and GFP signal are shown.
Enrichment of PhpP at midcell of cells at first stage of cell division (predivisional cells) is indicated by full arrow; cells showing cytoplasmic
localization of PhpP are indicated by open arrow. Bar, 1 pm. Predivisional cells (n = 20) showing either midcell enrichment of PhpP (WT and
D192A) or cytoplasmic localization (D231A) were selected to quantify distribution of GFP-PhpP along the cell axis. Fluorescence intensity (arbitrary
units) versus cell length is plotted in corresponding graphs (error bars show SD)
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Fig. 6 Spr1851/Jag is a new substrate of StkP and PhpP. a Identification of Jag. Membrane fraction isolated and extracted by TFE/chloroform

e

from strain Sp169 (AphpP AdiviVA) was resolved on 2D SDS-PAGE, immunobloted with a-pThr antibody and matched with parallel gel stained
with Coomassie Blue. Spot corresponding to P40 was excised, analyzed by MALDI-MS and identified as Spr1851. b Schematic structure of
Spr1851/Jag. Jag_N: conserved domain found at the N-terminus of Jag proteins; T89: phosphorylated threonine 89; KH: single-stranded RNA bind-
ing domain; R3H: putative single-stranded nucleic acid binding domain. ¢ Deletion of jag. Whole cell lysates of WT (Sp1), Ajag (Sp295), AphpP Adi-
VIVA (Sp169) and AstkP (Sp10) were separated by SDS-PAGE and immunoblotted with a-pThr antibody to detect protein phosphorylation.
Immunodetection of a-subunit of RNA polymerase (a-RpoA) was used as a loading control. Arrows indicate position of StkP and its substrates. d
Phosphorylation of T89. Total protein lysates (30 pg) of WT (Sp1), Ajag (Sp295), complementation strain Ajag P,.-jag-flag (Sp304) and Ajag Pz.-
Jjag-flag-T89A (Sp302) were separated by SDS-PAGE and immunoblotted with a-pThr antibody to detect protein phosphorylation. Expression of
Jag-Flag was monitored by immunodetection with anti-Flag antibody (a-Flag) and immunodetection of RpoA (a-RpoA) was used as a loading
control. Arrows indicate position of proteins. @ Dephosphorylation of Jag. Purified Jag-Flag was incubated with His-PhpP in vitro and reaction was
stopped at given time. Samples were subjected to SDS-PAGE and immunoblotted with a-pThr antibody to visualize dephosphorylation in time.
PhpP-His was detected with a-PhpP antibody and Jag-Flag was detected with a-Flag antibody. To exclude the spontaneous decay, phosphory-
lated form of Jag-Flag was incubated for 90 min in phosphatase reaction buffer without addition of His-PhpP. Arrows indicate position of two dif-

ferentially phosphorylated forms of Jag

is located in a region that does not show significant hom-
ology to any conserved domain; however, Thr89 is con-
served in many streptococcal species (KEGG, Kyoto
Encyclopedia of Genes and Genomes). To verify phosphor-
ylation of Thr89, we mutagenized this residue to unpho-
sphorylatable alanine and constructed strain Sp302
expressing the phosphoablative allele jag-flag-T89A under
the Pz, promoter in the Ajag genetic background. Upon in-
duction of expression, we detected production of Jag-Flag-
T89A migrating faster than the major form of Jag-Flag-
WT. This suggests that alteration of mobility is related to
the unphosphorylated state (Fig. 6d). Immunodetection
with the a-pThr antibody showed a significant decrease in

phosphorylation; however, the signal was not completely
lost, and Jag-T89A reacted weakly with the a-pThr anti-
body when expressed at higher levels (0.25-0.3 mM
ZnSO,) (Fig. 6d, lanes 11, 12). These results confirm that
Thr89 is indeed a phosphoacceptor residue in vivo; how-
ever, another still unidentified secondary phosphorylation
site is present in Jag.

Jag is dephosphorylated by PhpP

To demonstrate that PhpP directly dephosphorylates Jag,
we isolated phosphorylated Jag-Flag from cell lysates of
strain Sp304 via affinity chromatography and performed
in vitro dephosphorylation reactions as described in the
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Methods. Phosphorylation of Jag was monitored by
immunodetection with the a-pThr antibody, and the re-
sults showed that the loss of the phosphorylation signal
was time dependent (Fig. 6e). This experiment con-
firmed that PhpP directly dephosphorylates Jag. Two dif-
ferent forms of Jag were detected upon incubation with
PhpP, correlating with our finding that Jag most likely
contains more than one phosphorylated residue
(Fig. 6d).

Characterization of the Ajag phenotype
To obtain insight into Jag function in pneumococcus, we
characterized the phenotype of a Ajag mutant. The Ajag
mutant showed retarded growth in TSB medium, with a
longer doubling time (32 min) than the wild type
(29 min). The mutant had a significantly longer lag
phase and reached stationary phase at a lower optical
density (Fig. 7a). Phase contrast microscopy indicated
that mutant cells are smaller, a phenotype reminiscent of
the AphpP mutant. Cell size analysis confirmed that the
median cell length (1.33 + 0.19 um) and cell width (0.59
+0.01 um) of the mutant were significantly smaller than
the median cell length and width of the wild type (1.57
+0.2 pm and 0.67+0.09 pm) (P<0.0001; Mann-
Whitney rank sum test). Scanning electron microscopy
further supported these data; however, no significant ab-
normalities in cell shape and morphology were observed
(Fig. 7b). We also determined cell size of the comple-
mentation strain Sp304 (Ajag Pgz,-jag-flag) upon
addition of increasing zinc concentrations. Induced ex-
pression of Jag-WT resulted in complementation charac-
terized by increasing cell length (Fig. 7c). This rescue of
the phenotype confirmed the relationship between in-
activation of jag and decreased cell dimensions. The cells
reached wild type cell length at a concentration of ap-
proximately 0.25 mM ZnSO, (1.67 + 0.25 pm). The cell
length increased further upon addition of 0.3 mM
ZnSO, until it reached 1.76 + 0.26 pm, suggesting that
overexpression of Jag led to significant cell elongation.
These data suggest that Jag plays a role in pneumococcal
cell division and helps to maintain proper cell shape.
The jag homologue in B. subtilis forms a bicistronic
operon with the spolll] gene [31], which corresponds to
pneumococcal spri852 encoding the YidC1/Oxal mem-
brane protein insertase. This gene cluster is widely con-
served (KEGG). YidC homologues are required for the
insertion and/or proper folding of integral membrane
proteins (reviewed in [42]). Most Gram-positive bacteria
encode two YidC paralogues, YidC1 and YidC2, which
correspond to Spr1852 and Spr1790, respectively, in S.
pneumoniae. The role of YidC homologues in S. pneu-
moniae has not been described; however, in S. mutans,
disruption of YidC2 results in a loss of genetic compe-
tence, decreased membrane-associated ATPase activity
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Fig. 7 Phenotype of Ajag mutant. a Growth curve of WT (Sp1) and
Ajag (Sp295) cultivated in TSB medium plotted in semi logarithmic
scale. Data shown represent mean + SD for three independent
experiments. Where error bars are not shown, the SD was within the
size of the symbol. b Scanning electron microscopy of WT (Sp1) and
Ajag strain (Sp295). Bar 0.5 pm. Cell length is expressed as median
value + MAD (n =300). ¢ Cell size analysis of WT (Sp1), Ajag (Sp295)
and complementation strain Ajag Pz,-jag-flag (Sp304). Cell length
parameters measured with MicrobeTracker software were analyzed
and plotted in box-and-whiskers graph. Mann-Whitney U test: * cell
length of mutant strain is significantly different from that of the WT
strain P < 0.0001. 300 cells were scored per sample

and stress sensitivity. Loss of YidC1 has less severe de-
fects, with little observable effect on growth or stress
sensitivity [43]. Although the two insertases have differ-
ent physiological functions, both of them contribute to
biofilm formation and cariogenicity in rats [43].

The Jag association with the membrane and likely co-
transcription with yidCI suggest that both proteins
might be functionally linked. It is tempting to speculate
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that Jags,, plays an indirect role in targeting of the inte-
gral membrane proteins. Given the Ajag phenotype and
its phosphorylation by StkP, which regulates cell division
in pneumococcus, Jags,, might specifically affect target-
ing of cell division proteins. YidC homologues are in-
volved in cell division processes in different bacteria.
The well-studied YidC1/Spolll] in B. subtilis is required
for sporulation [31]. Interestingly, the cell division pro-
teins FtsQ and FtsEX have been found to be substrates
of YidC in E. coli and Shigella, respectively [44, 45]. A
recent report also showed that YidC assists in the bio-
genesis of penicillin-binding proteins (PBP) in E. coli,
and in the absence of YidC, two critical PBPs, PBP2 and
PBP3, are not correctly folded, and their substrate-
binding capacity is reduced, although the total amount
of protein in the membrane is not affected [46].

Conclusions

Streptococcus pneumoniae has a characteristic ovoid
shape, which is most likely achieved by the concerted ac-
tion of two peptidoglycan biosynthetic machineries: per-
ipheral and septal [47, 48]. We previously proposed a
model in which Ser/Thr protein kinase StkP coordinates
cell wall synthesis and cell division in S. preumoniae
[20]. Here, we demonstrate that the cognate Ser/Thr
protein phosphatase PhpP is not essential as published
previously [10, 21, 28] and plays an opposing role in cell
division to that of StkP. Overexpression of PhpP, which
leads to dephosphorylation of StkP substrates, mimics
the stkP null phenotype and the dividing cells are elon-
gated and contain multiple unconstricted cell division
septa. In the absence of phpP we observe enhanced au-
tophosphorylation of StkP and hyperphosphorylation of
StkP substrates. We show that PhpP regulates not only
activity of StkP but dephosphorylates directly StkP sub-
strates. The morphology of AphpP cells resembles StkP
overexpression, and the cells do not achieve the size of
the wild type, most likely due to insufficient elongation
of cells or premature constriction of the Z-ring. We
hypothesize that PhpP and StkP co-ordinately regulate
the shift from peripheral to septal cell wall synthesis
through phosphorylation of several substrates, including
cell division proteins. In contrast, we did not confirm a
straightforward regulatory impact of PhpP on the other
functions of StkP. Characterization of the pspP null mu-
tant revealed that like the szkP null mutant, it is more
sensitive to elevated temperature, oxidative stress and
that both mutant strains have reduced competence for
genetic transformation. These results suggest that unbal-
anced activity of each of these enzymes is critical for
bacterial physiology. We cannot exclude the possibility
that PhpP may also have broader substrate specificity
and may dephosphorylate phosphoproteins other than
StkP  substrates. Detection of proteins specifically
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phosphorylated in the AphpP strain allowed us to iden-
tify new substrate modified by StkP/PhpP couple. The
product of gene spri851 called Jags,, is a putative RNA
binding protein phosphorylated on Thr89. Jag proteins
are widely conserved in bacteria and their role is un-
known. Phenotype of the Ajag mutant suggests that
Jagspn is involved in cell division and maintaining proper
cell shape of S. pneumoniae.

Methods

Bacterial strains and growth conditions

The bacterial strains used in this study are listed in
Table 1. E. coli DH5a used as a general purpose cloning
host and E. coli BL21 used for protein expression were
cultured in Luria—Bertani (LB) broth at 37 °C. The wild
type S. pneumoniae strain Rx1 and its corresponding
mutants were grown statically at 37 °C in Brain-heart In-
fusion (BHI) medium, Tryptone Soya Broth (TSB)
medium, semi-synthetic C medium supplemented with
0.1 % yeast extract (C+Y) [49] or in Casein Tryptone
(CAT) medium supplemented with 0.2 % glucose and 1/
30 volume 0.5 M K,HPO,, pH 7.5 [49]. DNA from the
strain CP1016 (rif-23) was used as the donor DNA for
the competence assays [50]. The following antibiotics
were added when necessary at the indicated concentra-
tions (in pg ml™): rifampin (Rif), 1; kanamycin (Kan),
200; streptomycin (Sm), 500; tetracycline (Tet), 2.5;
erythromycin (Erm), 1 (for S. pneumoniae); ampicillin
(Amp), 100; kanamycin (Kan), 50; erythromycin (Erm),
100 (for E. coli).

Plasmid construction

Plasmids used in this study are listed in Table 1 and oli-
gonucleotides are listed in Additional file 1: Table S1. To
construct plasmid pZn-PhpP, phpP was amplified with
primers JG19 and JG20 using WT chromosomal DNA as
a template. The P_..p (Pz,) promoter was amplified with
primers LN123 and JG21 from a template plasmid
pJWV25 [35]. Both PCR products were used as a tem-
plate in a fusion PCR with primers LN123 and JG20.
The final PCR product Py,-phpP was cloned into the
Kpnl and Notl restriction sites of the plasmid pJVW?25.
Plasmid pZn-jag-flag was constructed as follows: jag
gene was amplified with primer pairs AU77 and AU79
(containing Flag sequence and Notl restriction site)
using wild type chromosomal DNA as a template. The
Py, promoter was amplified with primers LN123 and
AU76 from a template plasmid pJWV25. Both PCR
products were used as a template in a fusion PCR with
primers LN123 and AU79. The final PCR product was
cloned into the EcoRI and Notl restriction sites of the
plasmid pJVW25. To generate pZn-flag-locZ, the Pz,
promoter was amplified with primers LN123 and NS1
from a template pJWV25 and locZ was amplified with
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Table 1 Bacterial strains and plasmids used in this study
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Strain/plasmid Genotype or description Source
Strains
S. pneumoniae
Sp1 (Rx1) unencapsulated [54]
wild-type, strl; hexA
Sp10 Cm, stkP:cm [17]
Sp26 Cm, diviVAzcm [55]
Sp57 locZ:lox72 [25]
Sp100 Kan, phpP:kan rpsL. This work
Sp113 AphpP This work
Sp120 Tet, AphpP bga:Pz,-phpP This work
Sp140 Tet, AphpP bga:P,,-gfp-phpP This work
Sp161 Kan, AphpP divIVA:kan rpsL This work
Sp169 AphpP AdivIVA This work
Sp174 Erm, AdiviVA pMU-P96-diviVA-flag This work
Sp188 Erm, AlocZ pMU-P96-flag-locZ This work
Sp220 Kan, phpP:kan rpsL (reverted from Sp113) This work
Sp222 wild-type (reverted from Sp113) This work
Sp292 Tet, AphpP bga:P,.-gfp-phpP-D192A This work
Sp293 Tet, AphpP bga:P,.-gfp-phpP-D231A This work
Sp295 ANjag This work
Sp302 Tet, Ajag bga:Pz,-jag-flag-T89A This work
Sp304 Tet, Ajag bga:P,.-jag-flag This work
E. coli
DH5a F- ®80lacZAM15 A(lacZYA-argF) U169 Invitrogen
recAl endAT hsdR17 (rk-, mk+) phoA
supE44 M- thi-1 gyrA96 relA1
BL21 F- ompT gal [dcm][lon] hsdSB (rB- mB-) (DE3) Novagen
Plasmids
pJWV25 Amp, tet, bgaA, Pz.-gfo+ [35]
pZn-PhpP Amp, tet, bgaA, P,-phpP This work
pZn-flag-locZ Amp, tet, bgaA, P,.-flag-locZ This work
pJWV25-phpP Amp, tet, bgaA, Pz.-gfo-phpP [20]
pZn-gfp-phpP-D192A Amp, tet, bgaA, P.-gfp-phpP-D192A This work
pZn-gfp-phpP-D231A Amp, tet, bgaA, Pz.-gfp-phpP-D231A This work
pZn-jag-flag-T89A Amp, tet, bgaA, Pz.-jag-flag-T89A This work
pZn-jag-flag Amp, tet, bgaA, P,.-jag-flag This work
pEXphpP-D231A Kan, phpP-D231A [17]
pMU1328 Erm, empty vector [51]
pMU-P96-divIVA-flag Erm, P96-divIVA-flag This work
pMU-P96-flag-locZ Erm, P96-flag-locZ This work
Janus cassette Kan, kan-rpsL™* [52]

Amp ampicillin resistance marker, cm chloramphenicol resistance marker, kan kanamycin resistance marker, tet tetracycline resistance marker, erm erythromycin

resistance marker
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primers NS2 (containing Flag sequence) and LN155
using wild type chromosomal DNA as a template. Both
PCR products were used as a template in a fusion PCR
with primers LN123 and LN155 and the final PCR prod-
uct was digested and cloned into the EcoRI and NotI re-
striction sites of the plasmid pJVW25.

To construct plasmid pMU-P96-flag-locZ, the P96
promoter was amplified with primer LN231 and
LN215 from a template plasmid pMU1328 [51]. The
flag-locZ fragment was amplified with primers NS3
and NS4 using pZn-flag-locZ as a template. Both
PCR products were used as a template in a fusion
PCR with primers LN231 and NS4. The resulting
PCR fragment was cloned into EcoRI and Sall sites of
pMU1328 vector. To generate plasmid pMU-P96-
divIVA-flag, the P96 promoter was amplified with
primers LN214 and LN215 from a template
pMU1328. The divIVA gene was amplified with
primers LN218 and LN229 (containing Flag sequence)
using wild type chromosomal DNA as a template.
Both PCR fragments were fused in a fusion PCR with
primer pair LN214/LN229 and the acquired PCR frag-
ment was inserted into BamHI and Sall sites of
pMU1328. All constructs were verified by DNA
sequencing.

Site directed mutagenesis

To introduce specific mutations in the phpP and jag
genes we used the QuickChange mutagenesis kit (Strata-
gene) according to manufacturer’s instructions. T89A
mutation was introduced into plasmid pZn-jag-flag
using primer pair AU80/AUS81 to generate plasmid pZn-
jag-flag-T89A. D192A mutation was introduced into
pJWV25-phpP plasmid using primer pair AU69/AU70 to
generate plasmid pZn-gfp-phpP-D192A. Plasmid pZn-
gfp-phpP-D231A was constructed as follows: gene phpP-
D231A was amplified by PCR using plasmid pEXphpP-
D231A as a template and primers AU67 and AU68 con-
taining Spel and NotlI restriction site, respectively. PCR
product was cloned into pJWV25 generating pZn-gfp-
phpP-D231A. All constructs were verified by DNA
sequencing.

Construction of pneumococcal strains

pJWV25 derived strains expressing proteins under con-
trol of Pz, promoter were prepared by transformation of
S. pneumoniae competent cells with the corresponding
pJWV25 derived plasmids previously linearized by diges-
tion with Pvul. Tetracycline resistant transformants were
obtained by a double-crossover recombination event be-
tween the chromosomal bgaA gene of the parental strain
and bgaA regions located on the plasmids as described
previously [35]. Following plasmids were used for con-
struction of corresponding strains: pZn-PhpP: Sp120;
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pIWV25-phpP: Sp140; pZn-gfp-phpP-D192A: Sp292;
pZn-gfp-phpP-D231A: Sp293; pZn-jag-flag: Sp304; pZn-
jag-flag-T89A: Sp302. Strain Spl74 was prepared by
transformation of strain Sp26 (AdivIVA) with plasmid
pMU-P96-divIVA-flag. Strain Sp188 was prepared by
transformation of strain Sp57 (AlocZ) with pMU-P96-
flag-locZ.

Strain Sp113 (AphpP) was constructed as described
by Agarwal et al. [11], using a Janus cassette (kana-
mycin resistance gene followed by the recessive rpsL
gene)-based two-step negative selection strategy [52].
In the first step 1100 bp and 1037 bp fragments cor-
responding to the upstream and downstream flanking
regions of the phpP gene were amplified from the
wild type chromosomal DNA with JG24/JG25 and
JG26/]JG27 primer pairs, respectively. The Janus cas-
sette (1333 bp) amplified by JG28/JG29 primers from
the Janus casette DNA fragment was attached to the
phpP flanking regions by fusion PCR using primers
JG24 and JG27. The resulting PCR fragment was used
for the transformation of the S. pneumoniae strain
Rx1, and Kan®/Sm® transformants (Sp100, phpP:kan
rpsL) were selected. The PCR fragments, consisting of
the upstream and downstream flanking region of the
phpP gene, were amplified by JG24/JG31 and JG27/
JG30 primer pairs, respectively, and fused by overlap
extension using primers JG24/JG27. The resulting
fragment was transformed into the strain Spl00 to
gain Sp113 (Sm®/Kan®). Reverted strain Sp222 (WTg)
was constructed as follows: in the first step, AphpP
strain (Sp113) was transformed by PCR fragment con-
sisting of upstream and downstream flanking regions
of the phpP gene fused with Janus cassette, as de-
scribed in the previous section and Sm®/Kan® trans-
formants (strain Sp220, phpP::kan rpsL) were selected.
The PCR fragments, consisting of the upstream and
downstream flanking region of the phpP gene, were
amplified by JG24/]G68 and JG27/JG67 primer pairs,
respectively, and fused by overlap extension with
phpP gene (amplified by primers JG65 and JG66)
using the primers JG24/JG27. The resulting fragment
was transformed into the strain Sp220 to obtain
reverted strain Sp222 (Sm®/Kan®).

Strain Sp295 (Ajag) was constructed using a Janus cas-
sette strategy [52]. In the first step, upstream and down-
stream flanking regions of the jag gene were amplified
from the wild type chromosomal DNA with AU57/
AU58 and AU59/AU60 primer pairs, respectively. The
Janus cassette (1333 bp) amplified by JG28/JG29 primers
from the Janus casette DNA fragment was attached to
the jag gene flanking regions by fusion PCR using
primers AU57 and AU60. The resulting PCR fragment
was used for the transformation of the S. pneumoniae
strain Rx1, and Sm®/Kan® transformants (jag:kan rpsL)
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were selected. The PCR fragments, consisting of the up-
stream and downstream flanking region of the jag gene,
were amplified by AU57/AU74 and AU60/AU75 primer
pairs, respectively, and fused by overlap extension using
the primers AU57/AU60. The resulting fragment was
transformed into the jag::kan rpsL strain and Sm®/Kan®
transformants were selected (strain Sp295).

Strain Sp169 (AphpP AdivIVA) was constructed as fol-
lows: the upstream and downstream flanking regions of
the divIVA gene were amplified from the wild type
chromosomal DNA with JG57/JG58 and JG59/JG60 pri-
mer pairs, respectively. Both flanking regions were at-
tached to the amplified Janus cassette (see above) by
fusion PCR using primers JG57 and JG60. The resulting
PCR fragment was used for the transformation of the
AphpP strain (Sp113), and Sm°®/Kan® transformants were
selected to obtain Spl61 (AphpP divIVA:kan rpsL). To
construct deletion of divIVA gene without selectable
marker, the PCR fragments, consisting of the upstream
and downstream flanking region of the divIVA gene,
were amplified by JG57/JG62 and JG60/JG61 primer
pairs, respectively, and fused by overlap extension using
the primers JG57/JG60. Resulting fragment was trans-
formed into Spl61 strain to yield Sm"/Kan® strain
named Sp169.

Western blot analysis and immunodetection

Cells were grown in C+Y medium with or without the
addition of an appropriate concentration of ZnSO, to an
ODgoo 0.4, harvested and resuspended in 1 ml of pre-
cooled lysis buffer containing 25 mM Tris (pH 7.5),
100 mM NacCl, Benzonase (Merck), and protease inhibi-
tors (Roche). Cells were disintegrated using glass beads
in a FastPrep homogenizer (ThermoScientific). Cell deb-
ris was pelleted by a centrifugation at 5 000 x g. The
total cell lysate was further fractionated by centrifuga-
tion at 100 000 x g for 1 h at 4 °C and the cytoplasmic
and membrane fractions were obtained. The protein
concentration was determined using a bicinchoninic acid
(BCA) protein estimation kit (Pierce). An aliquot of
30 pg of each protein fractions or total cell lysate was di-
luted in 1 x SDS loading buffer and boiled for 10 min.
After SDS-PAGE separation, proteins were transferred
to a PVDF membrane by Western blotting. Phosphorylated
proteins were detected using anti-phosphothreonine poly-
clonal rabbit antibody (Cell Signalling, 9381S, LOT 22).
StkP, PhpP, LocZ and RpoA were detected using specific
custom made polyclonal rabbit sera derived from rabbits
immunized with corresponding purified full length His-
tagged proteins (Apronex, Czech Republic) and were used
as described previously [20, 23, 25]. Specificity of anti-StkP
and anti-PhpP antibody is documented by loss of reactivity
in corresponding mutant strains (Fig. 1b; [20]). Specificity
of anti-LocZ antibody is documented by loss of reactivity in
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AlocZ strain [25]. Specificity of antibody against house-
keeping gene product RpoA is documented by reactivity
with pure protein [23]. Flag-tagged and GFP-tagged pro-
teins were detected with anti-Flag rabbit (Sigma-Aldrich,
F7425, LOT 064M4757V) and anti-GFP mouse (Santa
Cruz Biotech, sc-9996, LOT Al111) antibody. Protein
abundance was measured using ECL detection substrate
(Pierce) and signal was developed using G:Box Chemi XRQ
instrument (SynGene) or by exposition on medical X-ray
film (Agfa). To quantify protein phosphorylation in cell ly-
sates the immunoblot was scanned by G:Box Chemi XRQ
instrument to obtain linear range of exposure and signal
was analyzed by Quantity One software, version 4.6.3 (Bio-
Rad). Data represent mean * standard deviation (SD) from
three independent experiments and were normalized to the
total protein level.

Trifluoroethanol/chloroform extraction, two-dimensional
(2D) SDS-PAGE and mass spectrometry

Protein membrane fractions were extracted by trifluor-
oethanol/chloroform mixture as described previously
[38]. Resulting aqueous and insoluble fractions were sol-
ubilized in lysis buffer (7 M urea, 2 M thiourea, 2 % Tri-
ton X-100, 0,5 % amido sulfobetaine-14 (ASB14), 1 %
Ampholytes 3-10, 50 mM DTT) and purified with 2-D
Clean-Up Kit (GE Healthcare). The protein concentra-
tion was determined using 2-D Quant kit (GE Health-
care). 2D SDS-PAGE was performed on IPG strips
pH 4-7 NL (Amersham Biosciences) as described previ-
ously [23]. Gels were either stained with colloidal Coo-
massie Brilliant Blue G-250 (CBB G-250) or
electroblotted. The protein spots selected for mass spec-
trometric analysis were destained using 50 mM 4-
ethylmorpholine acetate (pH 8.1) in 50 % acetonitrile
(MeCN) and in-gel digested overnight with trypsin
(100 ng; Promega) in a cleavage buffer containing
25 mM 4-ethylmorpholine acetate. The resulting pep-
tides were extracted to 40 % MeCN/0.1 % TFA and mea-
sured on an Ultraflex III MALDI-TOF mass
spectrometer (BrukerDaltonics) in a mass range of 700—
4000 Da. For protein identification the peptide mass
spectra were searched against SwissProt or NCBI (Na-
tional Center for Biotechnology Information) bacterial
database using an in-house Mascot search engine. The
identity of protein candidates was confirmed using MS/
MS analysis.

Competence assays

S. pneumoniae was induced to competence using com-
petence stimulating peptide (CSP) as described previ-
ously [36], with minor modifications. Briefly, an
exponential culture of cells cultivated in BHI medium
was diluted 1:20 in BHI supplemented with 0.2 % BSA
(Bovine Serum Albumin) and 1 mM CaCl, and pH
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adjusted to 7.8. The recipient strain was activated by the
addition of CSP (250 ng ml™?) and incubated for 10 min
at room temperature. The rif-23 donor DNA (1 pg ml™")
was then added and DNA uptake was obtained by
20 min incubation at room temperature. The mixture
was then diluted 1:10 in BHI medium and incubated at
37 °C for 2 h. Serial dilutions of transformed cultures
were plated, and transformation efficiencies were calcu-
lated as the ratio of the viable counts on plates with and
without rifampin. To generate natural competence pro-
files of the wild type and mutant strains, method accord-
ing to Echenique et al. [36] was used with several
modifications. Briefly, stocks of bacteria grown in BHI
medium to an ODgg of 0.5 were diluted 100-fold in the
same medium supplemented with 0.2 % BSA and 1 mM
CaCl, and pH adjusted to 7.8 and grown at 37 °C. Sam-
ples were withdrawn at 15-min intervals, diluted 10-fold
into BHI medium containing rif-23 donor DNA, and in-
cubated for 30 min at 30 °C. Further incubation was car-
ried out at 37 °C for 90 min before plating serial
dilutions with and without rifampin. Transformation ef-
ficiencies were calculated as the ratio of the viable
counts on plates with and without rifampin.

Growth and environmental stress tolerance

To generate the growths curves pneumococcal strains
were inoculated (6.8 x 10° CFU ml™) in TSB medium,
cultivated statically and the growth was monitored every
30 min by measuring ODgq, for period of 7 to 8 h. The
tolerance of pneumococcal strains to environmental
stress was examined in a manner similar to that de-
scribed previously [19]. To investigate heat stress resist-
ance cultures were inoculated into TSB medium
prewarmed to 37 and 40 °C. The acid tolerance of all
strains was monitored by measuring the growth curve in
TSB medium adjusted to pHs 6.5 and 7.5. The alkaline
tolerance was monitored at pH 8.0. To test the tolerance
to osmotic stress, bacteria were first grown to early ex-
ponential phase (ODgyo 0.2) and then inoculated into
prewarmed TSB medium with or without 400 mM NaCl
The sensitivity of cells to HyO, was tested by exposing
exponential cultures (ODggg 0.4) grown in CAT medium
at 37 °C to 10 mM and 20 mM H,O, for 15 min. Viable
cell counts were determined by plating serial dilutions of
cultures onto agar plates before and after exposure to
H,0,. The results were expressed as percentages of
survival.

Protein purification and dephosphorylation assay

Recombinant His-PhpP was purified as described previ-
ously [17]. To purify Flag-tagged proteins form S. pneu-
moniae the strains Spl174 (AdivIVA pMU-P96-divIVA-
flag), Sp188 (AlocZ pMU-P96-flag-locZ) and Sp304 (Ajag
bga:: Pz, -jag-flag) were grown statically at 37 °Cin C+Y
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medium supplemented with 0.25 mM ZnSO,. Total cell
lysates were prepared as described above and Flag-
tagged proteins were purified by affinity chromatography
using ANTI-Flag M2 Affinity Gel (Sigma-Aldrich) ac-
cording to the manufacturer’s instructions. Dephosphor-
ylation assay was performed basically as described
previously [17]. Briefly, Flag fusion-proteins of interest
(Flag-LocZ, DivIVA-Flag or Jag-Flag) bounded on the
M2 affinity gel were mixed with 55 pl of reaction buffer
and 4 pg of purified His-PhpP and incubated at 37 °C.
Phosphatase reaction was terminated by the addition of
5x SDS-PAGE sample buffer at different time intervals
(0-90 min). Samples were boiled, subjected to SDS-
PAGE and immunoblotted as described above.

Electron microscopy

Samples for electron microscopy were prepared as de-
scribed elsewhere [25] except the dried samples were
sputter coated with 3 nm of platinum in a Q150T ES
sputter coater (Quorum Technologies Ltd.). The final
samples were examined in a FEI Nova NanoSem 450
scanning electron microscope (FEI Czech Republic s.r.o.)
at 5 kV using Circular Backscatter Detector and back-
scattered electrons.

Fluorescence microscopy

Fluorescence microscopy was performed basically as de-
scribed before [20]. Cells were grown statically at 37 °C
in C+Y medium, and the expression of the GFP fusion
proteins was induced by adding desired concentration of
ZnSO,. To stain the unfixed cells with fluorescently la-
belled vancomycin (VanFL) (Molecular Probes) the
pneumococcal cultures were grown to ODggo 0.2 in C +
Y medium, and the samples were labelled with 0.1 pg ml
! of Van-FL/vancomycin (50:50) mixture for 5 min at
37 °C before examination. A quantity of 2 pl of the cul-
ture was spotted onto a microscope slide and covered
with a 1 % PBS agarose slab. The samples were observed
using an Olympus Cell® IX 81 microscope equipped
with an Olympus FV2T Digital B/W Fireware Camera
and 100x oil immersion objective (N.A. 1.3) (phase con-
trast). The images were modified for publication using
Cell® Version 2.0 software, ImageJ (http://rsb.info.nih.-
gov/ij/) and CorelDRAW X7 (Corel Corporation). Fluor-
escence intensity line scans were acquired using Image]
and plotted as a function of cell length measured with
MicrobeTracker Suite [53].

Cell size analysis

The phase-contrast images were analyzed using auto-
mated MicrobeTracker software [53] and cell size pa-
rameters were evaluated by the Mann-Whitney rank
sum test and plotted using GraphPad Prism 3.0. P<
0.0001 was considered as statistically significant. Cell
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size throughout the text is indicated as the median cell
size + median absolute deviation (MAD).

Additional file

Additional file 1: Table S1. Oligonucleotides used in this study.
(DOCX 15 kb)
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