organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9a-Hydroxy-3,8a-dimethyl-5-methylene-4,4a,5,6,9,9a-hexahydronaphtho[2,3-b]furan-2(8aH)-one

Wen-Hong Liu,^a Jie He,^a Zhi-Shan Ding,^b Zhong-Cheng Song^a* and Zha-Jun Zhan^c*

^aBioengineering Department, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China, ^bDepartment of Life Science, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China, and ^cCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

Correspondence e-mail: songzhongcheng@gmail.com, tianranyaowu@zjut.edu.cn

Received 13 February 2011; accepted 21 February 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.091; data-to-parameter ratio = 8.3.

The title compound, $C_{15}H_{18}O_3$, was isolated from *Lactarius* piperatus (Fr.) S. F. Gary collected from the Kunming area in Yunnan province, China. The central cyclohexyl ring adopts a chair conformation, while the furanone ring is close to planar (r.m.s. deviation = 0.0174 Å). The remaining methylene cyclohexene ring has a flattened chair conformation. In the crystal, molecules are linked via intermolecular O-H···O and $C-H \cdots O$ hydrogen bonds into zigzag chains along the *a* axis.

Related literature

For the distribution of the fungus Lactarius piperatus in China, see: Xie et al. (1996). For the anti-tumor activity of this species see: Mo et al. (1995). A series of sesquiterpenes has been isolated from the genus Lactarius, see: De Bernardi et al. (1993); Sterner et al. (1990). For the isolation of amino acids and sesquiterpenes from L. piperatus growing in Europe and Japan and their biological activity, see: Fushiya et al. (1988); Sterner et al. (1985a,b); Yaoita et al. (1999). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C15H18O3 $M_r = 247.30$ Orthorhombic, $P2_12_12_1$ a = 9.5150 (19) Åb = 10.885(2) Å c = 12.594 (3) Å

Data collection

Enraf-Nonius CAD-4	1367 independent reflections
diffractometer	1209 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.021$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.975, T_{\max} = 0.983$	reflections
2616 measured reflections	intensity decay: 1%

Refinement

ł

v

S

1

D-

03-C1-

$R[F^2 > 2\sigma(F^2)] = 0.035$	164 parameters
$vR(F^2) = 0.091$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
367 reflections	$\Delta \rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3}$

V = 1304.4 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$

 $0.30 \times 0.20 \times 0.20$ mm

Z = 4

T = 298 K

Table 1 Hydrogen-bond geometry (Å, °).

$H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
-H3A····O2 ⁱ	0.82	1.99	2.796 (2)	169
-H1A····O1	0.93	2.63	3.495 (2)	118

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of Zhejiang Province (Project Y2101290), the Zhejiang Traditional Chinese Medicine Administration Fund (Project 2009 C A003) and Zhejiang Traditional Chinese Medicine University (Project 2009ZY06).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5106).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- De Bernardi, M., Garlaschelli, L., Toma, L., Vidari, G. & Vita-Finzi, P. (1993). Tetrahedron, 49, 2389-2400.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Fushiya, S., Tashiro, T., Kusano, G. & Nozoe, S. (1988). Chem. Pharm. Bull. 36, 1366-1370.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Mo, X., Wang, J., Mo, J., Mo, J., Liu, T., Xue, S., Zhang, Z., Zhang, H., Zhao, Y., Guo, X., Geng, C. & Han, X. (1995). Economic fungi of China, p. 403. Peking: Scientific Press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sterner, O., Anke, T., Sheldrick, W. S. & Steglich, W. (1990). Tetrahedron, 46, 2389–2400.
- Sterner, O., Bergman, R., Franzen, C. & Wickberg, B. (1985a). Tetrahedron Lett. 26, 3163–3166.
- Sterner, O., Bergman, R., Kihlberg, J. & Wickberg, B. (1985b). J. Nat. Prod. 48, 279–288.
- Xie, Z. W., Fan, C. S. & Zhu, Z. Y. (1996). The National Chinese Herbal Medicine Assembly, Vol. 2, 2nd ed., p. 707. Peking: People's Medical Publishing House.
- Yaoita, Y., Machida, K. & Kikuchi, M. (1999). Chem. Pharm. Bull. 47, 894-896.

supplementary materials

Acta Cryst. (2011). E67, o730-o731 [doi:10.1107/S1600536811006519]

9a-Hydroxy-3,8a-dimethyl-5-methylene-4,4a,5,6,9,9a-hexahydronaphtho[2,3-b]furan-2(8aH)-one

W.-H. Liu, J. He, Z.-S. Ding, Z.-C. Song and Z.-J. Zhan

Comment

The fungus *Lactarius piperatus* (Fr.) S. F. Gary (family Russulaceae, Basidiomycotina) is widely distributed in China (Xie *et al.*, 1996). The ethanolic extract has been reported to inhibit the growth of several tumor cell lines (Mo *et al.*, 1995). *L. Piperatus*, growing in Europe and Japan, has been investigated, and a new amino acid and a few sesquiterpenes were isolated (Fushiya *et al.*, 1988; Sterner *et al.*, 1985*a*; Yaoita *et al.*, 1999), but *L. piperatus* growing in China has not been previously investigated chemically. A series of sesquiterpenes, belonging to the marasmane, lactarane, isolactarane, and secolactarane types, has been isolated from the genus of Lactarius (De Bernardi *et al.*, 1993, Sterner *et al.*, 1990). These sesquiterpenes provide a chemical defense system against parasites and predators (Sterner *et al.*, 1985*b*).

The molecular structure of the title compound is shown in Fig. 1. All bond lengths are within normal ranges (Allen *et al.*, 1987). The central cyclohexyl ring C5-C6-C7-C10-C11-C12 adopts a chair conformation. The dihedral angle between the C7-C8-C9-O1-C10 ring and the plane defined by C12-C1-C2-C3-C4 is 75.3 (3)°. Atom C5 deviates 0.692 (2) Å from the plane defined by C12-C1-C2-C3-C4. In the crystal, molecules are linked via intermolecular O—H…O hydrogen bonds (Table 1) to form chains along the *a* axis (Fig. 2).

Experimental

Plant material: *Lactarius piperatus* (Fr.) S. F. Gary was collected from the Kunming area in Yunnan province of China and authenticated by Prof. Mu Zang, Kunming Institute of Botany, where a voucher specimen labeled as HKAS 30213, was deposited. Extraction and Isolation: The fresh mushroom (5 kg) was extracted with 95% EtOH and yielded 91 g of crude extract, which was then suspended in 2 L water. The suspension was partitioned with EtOAc (4×200 ml) to give an EtOAc-soluble portion, and a water-soluble fraction. After removal of the EtOAc under reduced pressure, 49 g of dark residue was obtained, and this was subjected to silica-gel chromatography, eluted with a stepwise gradient solvent system of petroleum/acetone 10 : 0 to 5 : 5, followed by MeOH, to afford four major fractions (monitored by TLC). Fr. 1 consisted mainly of fatty acids. Fr. 4 was much smaller and complex. The separation and purification were focused on Fr. 2 and 3, in which the sesquiterpenes were concentrated. A portion of sub-fraction Fr. 2 was re-chromatographed on silica gel using a petroleum ether-acetone (8:2) system and the isolated product was recrystallized from chloroform-methanol (7:3) to yield the active component as light colorless crystals.

Refinement

H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$. In the absence of significant anomalous dispersion effects, Freidel pairs were merged.

Figures

Fig. 1. The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids for non-hydrogen atoms.

Fig. 2. Molecular packing of the title compound, viewed along the *a* axis. Hydrogen bonds are drawn as dashed lines.

9a-Hydroxy-3,8a-dimethyl-5-methylene-4,4a,5,6,9,9a-hexahydronaphtho[2,3-b]furan-2(8aH)-one

Crystal data
$C_{15}H_{18}O_3$
$M_r = 247.30$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 9.5150 (19) Å
<i>b</i> = 10.885 (2) Å

F(000) = 532 $D_x = 1.259 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 25 reflections \theta = 10-13^\circ \mu = 0.09 mm^{-1} T = 298 K Block, colourless 0.30 \times 0.20 \times 0.20 mm

Data collection

Z = 4

c = 12.594 (3) Å $V = 1304.4 (5) \text{ Å}^3$

Enraf–Nonius CAD-4 diffractometer	1209 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.021$
graphite	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 11$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 12$
$T_{\min} = 0.975, \ T_{\max} = 0.983$	$l = -15 \rightarrow 15$
2616 measured reflections	3 standard reflections every 200 reflections

1367 independent reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.1815P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
1367 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
164 parameters	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.036 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.40511 (17)	0.69401 (16)	0.36817 (13)	0.0514 (5)
C1	-0.0968 (3)	0.6294 (2)	0.4001 (2)	0.0512 (6)
H1A	-0.0918	0.6506	0.4715	0.061*
O2	0.51038 (18)	0.85545 (16)	0.29192 (14)	0.0627 (5)
C2	-0.2158 (3)	0.6509 (3)	0.3493 (2)	0.0609 (8)
H2A	-0.2893	0.6871	0.3866	0.073*
O3	0.34477 (19)	0.48626 (15)	0.36469 (14)	0.0576 (5)
H3A	0.3854	0.4559	0.3136	0.086*
C3	-0.2383 (3)	0.6201 (3)	0.2348 (2)	0.0607 (8)
H3B	-0.2599	0.6949	0.1962	0.073*
H3C	-0.3188	0.5658	0.2288	0.073*
C4	-0.1128 (3)	0.5590 (2)	0.18373 (19)	0.0478 (6)
C5	0.0243 (2)	0.60217 (19)	0.22901 (16)	0.0387 (5)
H5A	0.0223	0.6920	0.2238	0.046*
C6	0.1574 (3)	0.5615 (2)	0.16947 (18)	0.0440 (6)

supplementary materials

H6A	0.1696	0.4732	0.1748	0.053*
H6B	0.1513	0.5837	0.0950	0.053*
C7	0.2764 (2)	0.6267 (2)	0.22127 (18)	0.0405 (5)
C8	0.3544 (2)	0.7232 (2)	0.19078 (17)	0.0424 (5)
C9	0.4327 (2)	0.7661 (2)	0.2838 (2)	0.0460 (6)
C10	0.2974 (3)	0.6033 (2)	0.33811 (19)	0.0425 (6)
C11	0.1634 (2)	0.6320 (2)	0.39810 (17)	0.0423 (5)
H11A	0.1507	0.7204	0.3999	0.051*
H11B	0.1735	0.6039	0.4708	0.051*
C12	0.0308 (2)	0.5729 (2)	0.34989 (18)	0.0395 (5)
C13	0.0256 (3)	0.4326 (2)	0.3715 (2)	0.0569 (7)
H13B	0.0301	0.4181	0.4466	0.085*
H13C	0.1040	0.3934	0.3374	0.085*
H13D	-0.0604	0.3994	0.3439	0.085*
C14	-0.1255 (3)	0.4774 (3)	0.1063 (2)	0.0644 (8)
H14A	-0.0457	0.4425	0.0761	0.077*
H14B	-0.2142	0.4549	0.0821	0.077*
C15	0.3624 (3)	0.7890 (3)	0.0874 (2)	0.0607 (7)
H15A	0.3043	0.7478	0.0363	0.091*
H15B	0.4580	0.7895	0.0629	0.091*
H15C	0.3303	0.8719	0.0964	0.091*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0459 (9)	0.0572 (10)	0.0510 (9)	-0.0036 (9)	-0.0053 (8)	-0.0002 (9)
C1	0.0518 (14)	0.0515 (14)	0.0503 (13)	-0.0019 (13)	0.0146 (12)	-0.0027 (12)
02	0.0517 (10)	0.0567 (11)	0.0797 (12)	-0.0136 (10)	0.0040 (11)	-0.0053 (10)
C2	0.0462 (15)	0.0611 (17)	0.0754 (19)	0.0031 (14)	0.0136 (14)	-0.0024 (16)
03	0.0614 (11)	0.0476 (9)	0.0636 (11)	0.0159 (9)	0.0033 (10)	0.0107 (9)
C3	0.0448 (14)	0.0588 (16)	0.0784 (19)	-0.0034 (13)	-0.0039 (13)	0.0088 (16)
C4	0.0525 (15)	0.0402 (12)	0.0507 (13)	-0.0079 (12)	-0.0067 (12)	0.0077 (11)
C5	0.0455 (13)	0.0272 (10)	0.0433 (13)	-0.0020 (10)	0.0012 (11)	0.0012 (9)
C6	0.0532 (14)	0.0388 (12)	0.0402 (11)	-0.0012 (12)	0.0036 (11)	-0.0045 (10)
C7	0.0425 (12)	0.0366 (12)	0.0425 (11)	0.0061 (10)	0.0074 (10)	-0.0040 (11)
C8	0.0407 (12)	0.0394 (11)	0.0471 (12)	0.0056 (11)	0.0090 (10)	-0.0018 (10)
С9	0.0358 (11)	0.0439 (13)	0.0582 (14)	0.0033 (11)	0.0074 (11)	-0.0032 (12)
C10	0.0436 (12)	0.0370 (12)	0.0470 (12)	0.0028 (11)	-0.0037 (11)	0.0014 (10)
C11	0.0512 (13)	0.0365 (11)	0.0391 (11)	0.0019 (11)	0.0017 (11)	-0.0005 (10)
C12	0.0454 (13)	0.0328 (11)	0.0403 (11)	-0.0010 (10)	0.0039 (10)	0.0016 (10)
C13	0.0671 (17)	0.0367 (12)	0.0668 (16)	-0.0045 (13)	0.0016 (15)	0.0124 (12)
C14	0.0676 (18)	0.0618 (16)	0.0638 (16)	-0.0190 (15)	-0.0125 (15)	-0.0062 (14)
C15	0.0710 (18)	0.0546 (15)	0.0566 (14)	-0.0034 (15)	0.0161 (14)	0.0059 (13)

Geometric parameters (Å, °)

O1—C9	1.347 (3)	С6—Н6А	0.9700
O1—C10	1.473 (3)	С6—Н6В	0.9700
C1—C2	1.321 (4)	С7—С8	1.342 (3)

61 612	1 501 (2)	07 010	1 507 (2)
	1.501 (3)	C/C10	1.507 (3)
CI—HIA	0.9300	C8_C9	1.465 (3)
02-09	1.225 (3)	C8—C15	1.487 (3)
C2—C3	1.496 (4)		1.515 (3)
C2—H2A	0.9300	C11—C12	1.541 (3)
03	1.392 (3)	CII—HIIA	0.9700
O3—H3A	0.8200	C11—H11B	0.9700
C3—C4	1.510 (4)	C12—C13	1.552 (3)
С3—Н3В	0.9700	С13—Н13В	0.9600
С3—НЗС	0.9700	C13—H13C	0.9600
C4—C14	1.325 (4)	C13—H13D	0.9600
C4—C5	1.499 (3)	C14—H14A	0.9300
C5—C6	1.537 (3)	C14—H14B	0.9300
C5—C12	1.557 (3)	C15—H15A	0.9600
С5—Н5А	0.9800	C15—H15B	0.9600
C6—C7	1.488 (3)	C15—H15C	0.9600
C9—O1—C10	108.89 (17)	O2—C9—C8	128.8 (2)
C2-C1-C12	124.2 (2)	01	110.22 (19)
C2—C1—H1A	117.9	03-01-01	109.03 (18)
C12-C1-H1A	117.9	03 - C10 - C7	115.6 (2)
$C1_{-}C2_{-}C3_{$	123 3 (3)	01 - C10 - C7	103.28(19)
C1 - C2 - H2A	118.3	03 - 010 - 011	105.20(1)
$C_1 = C_2 = H_2 \Lambda$	118.3	01 - 010 - 011	110.0(2)
C_{3}	100.5	C7 = C10 = C11	108.02(18) 100.05(10)
$C_{10} = C_{2} = C_{4}$	109.5	$C_{10} = C_{11} = C_{12}$	109.93(19)
$C_2 = C_3 = C_4$	113.4 (2)		113.98 (17)
С2—С3—НЗВ	108.9		108.8
C4—C3—H3B	108.9	CI2—CII—HIIA	108.8
С2—С3—Н3С	108.9	CI0—CII—HIIB	108.8
C4—C3—H3C	108.9	C12—C11—H11B	108.8
H3B—C3—H3C	107.7	H11A—C11—H11B	107.7
C14—C4—C5	124.7 (2)	C1—C12—C11	108.96 (18)
C14—C4—C3	122.4 (2)	C1—C12—C13	107.7 (2)
C5—C4—C3	112.8 (2)	C11—C12—C13	111.6 (2)
C4—C5—C6	116.17 (18)	C1—C12—C5	107.21 (19)
C4—C5—C12	110.03 (18)	C11—C12—C5	109.40 (18)
C6—C5—C12	112.67 (19)	C13—C12—C5	111.8 (2)
С4—С5—Н5А	105.7	C12-C13-H13B	109.5
С6—С5—Н5А	105.7	С12—С13—Н13С	109.5
C12—C5—H5A	105.7	H13B—C13—H13C	109.5
C7—C6—C5	106.03 (17)	C12—C13—H13D	109.5
С7—С6—Н6А	110.5	H13B—C13—H13D	109.5
С5—С6—Н6А	110.5	H13C-C13-H13D	109.5
С7—С6—Н6В	110.5	C4—C14—H14A	120.0
С5—С6—Н6В	110.5	C4—C14—H14B	120.0
Н6А—С6—Н6В	108.7	H14A—C14—H14B	120.0
C8—C7—C6	132.0 (2)	C8—C15—H15A	109.5
C8—C7—C10	109.8 (2)	C8—C15—H15B	109.5
C6—C7—C10	1166(2)	H15A—C15—H15B	109.5
C7 - C8 - C9	107.6 (2)	C8-C15-H15C	109.5
	101.0 (2)		107.5

supplementary materials

C7—C8—C15	131.0 (2)	H15A—C15—H15C	109.5
C9—C8—C15	121.3 (2)	H15B—C15—H15C	109.5
O2—C9—O1	120.9 (2)		
C12—C1—C2—C3	0.7 (5)	C9—O1—C10—C7	4.8 (2)
C1—C2—C3—C4	1.4 (4)	C9—O1—C10—C11	-111.9 (2)
C2—C3—C4—C14	148.5 (3)	C8—C7—C10—O3	-122.8 (2)
C2—C3—C4—C5	-32.3 (3)	C6—C7—C10—O3	69.8 (3)
C14—C4—C5—C6	9.1 (3)	C8—C7—C10—O1	-3.8 (2)
C3—C4—C5—C6	-170.1 (2)	C6—C7—C10—O1	-171.18 (18)
C14—C4—C5—C12	-120.4 (3)	C8—C7—C10—C11	111.9 (2)
C3—C4—C5—C12	60.4 (3)	C6—C7—C10—C11	-55.4 (3)
C4—C5—C6—C7	173.61 (19)	O3—C10—C11—C12	-79.2 (2)
C12—C5—C6—C7	-58.2 (2)	O1-C10-C11-C12	161.56 (18)
C5—C6—C7—C8	-105.0 (3)	C7-C10-C11-C12	49.2 (3)
C5—C6—C7—C10	59.0 (2)	C2-C1-C12-C11	144.3 (3)
C6—C7—C8—C9	166.2 (2)	C2-C1-C12-C13	-94.5 (3)
C10—C7—C8—C9	1.5 (2)	C2-C1-C12-C5	26.0 (3)
C6—C7—C8—C15	-9.7 (4)	C10-C11-C12-C1	-167.5 (2)
C10—C7—C8—C15	-174.5 (2)	C10-C11-C12-C13	73.7 (3)
C10—O1—C9—O2	173.7 (2)	C10-C11-C12-C5	-50.6 (2)
C10—O1—C9—C8	-4.2 (2)	C4—C5—C12—C1	-54.9 (2)
С7—С8—С9—О2	-176.0 (2)	C6—C5—C12—C1	173.76 (18)
C15—C8—C9—O2	0.4 (4)	C4—C5—C12—C11	-172.89 (18)
C7—C8—C9—O1	1.7 (3)	C6—C5—C12—C11	55.7 (2)
C15—C8—C9—O1	178.1 (2)	C4—C5—C12—C13	63.0 (3)
C9—O1—C10—O3	128.3 (2)	C6—C5—C12—C13	-68.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A···O2 ⁱ	0.82	1.99	2.796 (2)	169
C1—H1A···O1 ⁱⁱ	0.93	2.63	3.495 (2)	118
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1/2$; (ii).				

Fig. 1

Fig. 2

