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Abstract
One important question in aging research is how differences in genomics and tran-
scriptomics determine the maximum lifespan in various species. Despite recent pro-
gress, much is still unclear on the topic, partly due to the lack of samples in nonmodel 
organisms and due to challenges in direct comparisons of transcriptomes from differ-
ent species. The novel ranking-based method that we employ here is used to analyze 
gene expression in the gray whale and compare its de novo assembled transcriptome 
with that of other long- and short-lived mammals. Gray whales are among the top 1% 
longest-lived mammals. Despite the extreme environment, or maybe due to a remark-
able adaptation to its habitat (intermittent hypoxia, Arctic water, and high pressure), 
gray whales reach at least the age of 77 years. In this work, we show that long-lived 
mammals share common gene expression patterns between themselves, including 
high expression of DNA maintenance and repair, ubiquitination, apoptosis, and im-
mune responses. Additionally, the level of expression for gray whale orthologs of 
pro- and anti-longevity genes found in model organisms is in support of their alleged 
role and direction in lifespan determination. Remarkably, among highly expressed 
pro-longevity genes many are stress-related, reflecting an adaptation to extreme 
environmental conditions. The conducted analysis suggests that the gray whale po-
tentially possesses high resistance to cancer and stress, at least in part ensuring its 
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1  | INTRODUC TION

Long-lived animals represent a unique model for investigating the 
evolution of longevity. The recently conducted analyses of the lon-
gest-lived mammal, studying the bowhead whale (Balaena mysticetus) 
transcriptome (Seim et al., 2014) and genome (Keane et al., 2015), 
showed that genetic and transcriptional patterns could, up to a cer-
tain extent, explain its extraordinary longevity and resistance to 
cancer and other age-related diseases. The gray whale (Eschrichtius 
robustus) is also among the top 1% longest-lived mammals. It ranks 
the  8th out of 1012 mammalian species with a known maximum 
lifespan (Tacutu et al., 2018). Despite the extreme environment, or 
maybe due to a remarkable adaptation to its habitat (intermittent 
hypoxia, cold Arctic water, and high pressure), gray whales reach 
at least the age of 77  years, according to currently available data 
(Tacutu et al., 2018).

The Eschrichtius robustus is the only member of the Eschrichtiidae 
family from the order Cetacea (Wolman,  1985). It is considered a 
"living fossil" because of its short, coarse baleen plates and lack of 
a dorsal fin (Nollman, 1999). Gray whales were almost extinct in the 
middle of the 20th century, and despite being protected by law (lim-
ited hunting for food being permitted only for the indigenous pop-
ulation of Chukotka), they are still considered to be an endangered 
species (Weller, Burdin, Wursig, Taylor, & Brownell, 2002). As such, 
having the opportunity to get insights from its transcriptome is of 
great importance to aging research.

Here, we comprehensively analyzed the transcriptome of the 
gray whale in two tissues (liver and kidney), focusing on the possible 
links between longevity and the expression of individual genes or 
group of genes. For this purpose, we also compared the gray whale 
transcriptome (Moskalev et al., 2017) with that of two other whales, 
bowhead whale (Balaena mysticetus) and minke whale (Balaenoptera 
acutorostrata), and with the transcriptomes of other five mammalian 
species of different longevities.

2  | RESULTS AND DISCUSSION

2.1 | The gray whale transcriptome assembly and 
annotation

Kidney and liver mRNA from a young adult female whale were se-
quenced using the MiSeq System Illumina sequencer. De novo 
transcriptomes were assembled, yielding in total 114 233 contigs. 
Orthologous protein-coding genes encoded in the transcriptome 

were identified using the SProt (Galgonek, Hoksza, & Skopal 2011) 
algorithm and BLASTing (Johnson et  al.,  2008) against UniProt 
(Apweiler et al., 2004) sequences. In total, we identified 12 072 pro-
tein-coding genes that have been aligned to 7997 UniRef90 clusters 
(groups of proteins that have 90% identity). This implies that each 
of the proteins found by us has homologues in at least one or more 
mammalian species. Of these, 11 456 are expressed in the liver and 
8363 in the kidney, with a high overlap between tissues (64% of the 
total). In addition to the identified genes, a large number of the uni-
dentified contigs also fit some of the required criteria for being cod-
ing sequences (certain length and expression level). For the full list of 
unknown genes, please see Dataset S1.

2.2 | Enrichment of topmost expressed genes in the 
gray whale

To understand which gene subsets are most expressed in both tis-
sues and/or maybe representative for the most active processes 
in an organism, we next conducted a Gene Ontology (GO) enrich-
ment analysis of the top 100 genes (threshold selection described in 
Experimental Procedures) with the highest contig count compared 
to all genes (background; please see Dataset S2 for the list of all con-
tigs and Dataset S3 for the enrichment results). Several interesting 
features were observed for both liver and kidney. First, we found a 
high presence of GO categories related to the extracellular matrix 
(ECM), cell–cell/cell–ECM interactions, and exosomes. Interestingly, 
this is in line with our previous analysis, which highlighted the poten-
tial importance of these categories (specifically, focal adhesion and 
adherens junction proteins) in lifespan determination and in linking 
human longevity and age-related diseases (Wolfson 2009). Second, 
the topmost expressed genes were significantly enriched in catego-
ries related to immuno-inflammatory responses, organ regeneration, 
and regulation of cell proliferation. One possible explanation might 
come from the need of large and especially long-lived species like 
the gray whale to develop strong tumor suppressor mechanisms, 
in order to compensate for having more somatic cells, and hence a 
higher risk to develop cancer. The immune system, as well as mecha-
nisms of organ regeneration and regulation of cell proliferation, is 
crucial for the prevention of cell transformation and elimination of 
cancer cells (Seluanov 2018). Finally, as expected, based on observa-
tions in other species examined so far (Mercer et al., 2011), many top 
expressed genes in the gray whale fall into the mitochondria-asso-
ciated categories. The full list of enriched categories is presented in 
Dataset S3 for liver and kidney, respectively.

longevity. This new transcriptome assembly also provides important resources to 
support the efforts of maintaining the endangered population of gray whales.
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2.3 | Unknown genes

Aside from the 12 072 protein-coding genes identified in the gray 
whale transcriptome, 35% of all assembled contigs remained uni-
dentified. Overall, this percentage of unannotated sequences is 
not unexpectedly large in the case of de novo transcriptome as-
sembly (Keane et al., 2015; Seim et al., 2014). Generally, unidenti-
fied sequences might be the result of (a) mapping errors or (b) still 
uncharacterized sequences. To further investigate unannotated se-
quences, while excluding false positives due to mapping, we next 

selected only those contigs with a high count number, hence highly 
expressed, and with a sequence length > 200 bp, comparable to that 
of a common mRNA size (see Experimental Procedures). Out of the 
10389 unannotated sequences, the top 600 have an increased ex-
pression, that is, 10× more than the average in the transcriptome. 
Among these 600 unannotated, 4 unknown sequences are among 
the top 100 expressed genes, and in the top 1000, there are 92 un-
known genes, suggesting that their functional significance should be 
further investigated (Dataset S1).

To look closer at these unannotated sequences, we chose the 
20 top expressed transcripts and manually BLASTed them (Johnson 

F I G U R E  1  Relationship of the gray whale to other mammalian species. A, Phylogenetic tree of species selected for analysis. The tree 
with the highest log-likelihood is shown. The percentage of trees in which the associated taxa clustered together (bootstrap values) is shown 
next to the branches. B, Overlap of UniRef90 protein clusters between the examined species. UniRef90 clusters (which contain proteins 
with 90% sequence similarity) were predicted from open reading frames (ORFs) extracted from the coding transcripts. The gray whale 
transcriptome was assembled in the current study (please see methods), while transcriptomes for other species were taken from previous 
studies, publicly available at the NCBI database. Presented in brackets is the number of UniRef90 entries predicted from each transcriptome. 
C, Overlap of UniRef90 protein clusters between the examined species in table format
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et  al.,  2008) against the NCBI RefSeq nucleotide database (Haft 
et al., 2018), searching for similar sequences/domains/motifs (Table 
S1). Interestingly, all these transcripts were also found highly ex-
pressed in other transcriptomes, including those of the bowhead 
whale and minke whale (data not shown). Swiss-Prot (Apweiler 
et  al.,  2004), Pfam (El-Gebali et  al.,  2018), and the MEME Suite 
(Bailey et  al.,  2009) tools did not reveal any significant domain or 
motif matches in the top expressed unannotated sequences. Several 
sequences of predicted/hypothesized proteins or transcripts with 
high similarity were, however, found by BLAST in other species. 
Among them are genes hypothetically related to ribosomal RNA, 
metabolic processes (Zinc fingers), ERK signaling and cytoskeleton 
remodeling (ACTB), detoxification of reactive oxygen species, ubiq-
uitination, proliferation, differentiation, and carcinogenesis (PRDX3, 
CALR), immune response (histocompatibility complex class II and 
extended class II subregion, NDRG1, PTMA, GPS2), mitochondria, 
ATP metabolism and iron binding (PAH, CYP1A1), senescence and 
autophagy in cancer (CREG1, CAAX box protein), lipoprotein and 
cholesterol metabolic process (APOA2), regulation of cell differ-
entiation, and serpin family (SERPINF2). Interestingly, many of the 
above-mentioned genes are involved in aging-associated pathways 
(Ma & Gladyshev, 2017; Moskalev, Aliper, Smit-McBride, Buzdin, & 
Zhavoronkov, 2014; Tian, Seluanov, & Gorbunova, 2017).

A broader question is whether some of these unannotated 
genes are essential for basic/fundamental biological processes. In 
this regard, Hutchison et al. have recently synthesized a function-
ally viable artificial genome containing only 473 essential genes. Of 
them, almost a third (149 genes) had no known biological functions 
(Hutchison et al., 2016). The fact that unknown genes still exist even 
in an extremely reduced genome supports our suggestion that many 
unannotated genes found in the gray whale transcriptome should be 
a point for further investigation as they might be involved in funda-
mental processes.

2.4 | Novel approach: Comparative transcriptome 
analysis of gray whale versus other mammals

To identify expression patterns that are species-specific or shared 
across species, we then undertook a comparative analysis of the 
transcriptomes of the gray whale and of seven other mammalian spe-
cies, including two other whales (bowhead and minke whales) and 
five terrestrial mammals (naked mole-rat, Brandt's bat, mouse, cow, 
and humans) (Figure 1). These species were selected because (a) the 
bowhead and minke whales are genetically close to the gray whale, 
and bowhead whale is the longest-lived mammal (according to exist-
ing records); (b) the naked mole-rat and Brandt's bat arguably pre-
sent characteristics of “negligible senescence” and has an impressive 
lifespan of almost 8 times longer than rodents with comparable body 
size; (c) humans are the second longest-lived mammal (according to 
current records) and are considered among species with exceptional 
longevity; (d) the mouse is a good reference for a short-lived organ-
ism; and (e) the cow is a species with a maximum lifespan that is close 

to the average within the mammalian class (Tacutu et al., 2018) and 
the most evolutionarily related to whales among modern land mam-
mals (Nikaido, Rooney, & Okada, 1999).

Unfortunately, expression levels for individual genes from 
transcriptomes of different species cannot be compared directly. 
Additionally, both absolute and normalized expression values could 
be affected by technical issues. The main culprits are generally the 
heterogeneity in sequencing methods and/or sequencing equip-
ment, variation in the sample preparation protocols, potential errors 
in alignments, and transcriptome assemblies (Su et  al.,  2014). To 
minimize these biases, in our analysis: (a) Comparison of species was 
performed at the level of groups of functionally linked genes (e.g., 
GO categories—biological processes) instead of comparing individ-
ual genes directly; (b) within each species, rankings of TPMs were 
used. For this purpose, the protein-coding transcripts were grouped 
by GOs and their normalized counts were computed within each GO 
term. The counts were then ranked, from 1 (the GO with highest 
composite expression) to 9779 (the GO with lowest composite ex-
pression) in the gray whale's transcriptome. Rank values for all spe-
cies examined are presented in Dataset S4.

To validate the ranking-based approach, we compared the intra-
species variance in the ranks of a given GO term to the interspecies 
variance. As expected, the intraspecies variance was much lower 
than the interspecies variance. Phylogenetically closely related 
species (in our case, gray, bowhead, and minke whales) had more 
similar ranks of a given GO term than more distant species (spe-
cifically, whales, on the one hand, and mice and cows, on the other 
hand). The Spearman correlation analysis indicated a higher simi-
larity between GO transcription level ranks in the same species or 
closely related whale species (Figure S1). The values of Spearman's 
rank correlation coefficients were 0.97 between the two mice 
experiments, 0.98 between cow experiments, and ~0.85 for the 
whales’ category, with a high statistical significance (p < E-25) for 
both liver and kidney tissues. As expected, the correlation coef-
ficients between the ranks of the gray whale and those of other 
mammalian species (naked mole-rat, humans, mouse, cow) were 
much lower (~0.6, p < E-25). These results provide indirectly (how-
ever, rather strong) evidence for the validity of GO rank values for 
comparison of transcriptomes.

Since whales are among the longest-lived mammals, we spe-
cifically analyzed the shared processes that are highly expressed 
in long-lived species, while being lowly expressed in shorter-lived 
mammals. Our analysis of ranks showed that all long-lived mam-
mals (whales, humans, naked mole-rats, Brandt's bat) correlate 
positively between them and negatively with short-lived species 
(cows and mice) in the following GO categories: DNA mainte-
nance and repair (Figure 2 A1, A2), ubiquitination (Figure 2 B1, 
B2), and to some degree apoptosis (GO categories: “Positive 
regulation of intrinsic apoptotic signaling pathway in response 
to DNA damage”, “Endonucleolytic cleavage”, “Positive regula-
tion of endodeoxyribonuclease activity”, “Positive regulation of 
cysteine-type endopeptidase activity involved in the execution 
phase of apoptosis”) (Dataset S4). Also, a high similarity between 
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long-lived species was found in the expression of immune re-
sponse-related GO terms (“Positive regulation of interleukin-2 
production”, “Positive regulation of T cell receptor signaling path-
way”, “Positive regulation of activated T cell proliferation”). This 
is in line with previous findings, with a high expression of genes 
associated with the immune responses being recently reported 
for the bowhead whale transcriptome (Keane et  al., 2015; Seim 
et al., 2014).

Notably, high expression ranks for DNA maintenance and re-
pair, ubiquitination (Figure 2 A, B), apoptosis, positive regulation of 
T-cell receptor signaling pathway, and activated T-cell proliferation 
(Dataset S4) were also observed for the naked mole-rat, a rodent 
species with exceptional longevity and remarkable resistance to 
cancer (Tian et al., 2013). In contrast, in the mouse and cow tran-
scriptome, the expression ranks of the aforementioned categories 
were much lower, whereas, in humans, the ranks of most GO terms 

F I G U R E  2  Heatmap of cross-species transcriptome comparative analysis for GO terms. Presented in the figure are the following 
categories: A, DNA repair; B, Ubiquitination. Both liver and kidney tissues are included for all the eight species compared. The same rank 
ranges and normalization (transcripts per million reads, TPMs) are used for all species. A1, B1: Ranks of the top 1,000 expressed GO 
categories. Ranks range between 1 (top expressed GO term) and 6,260 (least expressed GO term). In the color scheme, gradients of red 
indicate highest expression; gray—middle expression; and blue—lowest expression. A list of names for the GO terms shown in the figure is 
available in Dataset S5. A2, B2: Correlations of GO ranks between every two species. Spearman's coefficient is shown in the cells of the 
heatmap. The color gradient indicates the correlation level, from red (highest correlation) to blue (lowest correlation)
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were closer to whales and naked mole-rats (Figure 2 A, B; Dataset 
S4).

The above-mentioned processes are well known to be in-
volved in anticancer mechanisms, for preventing cell transfor-
mation or elimination of potentially carcinogenic or cancer cells 
(Cuervo et al., 2005; Seluanov et al., 2018), and in a larger sense 
in determining mammalian longevity (Keane et al., 2015; Kevei & 
Hoppe, 2014; Li & de Magalhães, 2013; Yanai 2017). This is highly 
relevant because, while the bowhead whale is known for its resis-
tance to cancer (Seluanov et al., 2018; Tian et al., 2017), for the 
gray whale, such data are still absent. In light of our findings on 
the similarity in the expression of anticancer processes, it would 
probably be reasonable to expect that the gray whale might also 
be resistant to cancer. Additional to the anticancer similarities, 
correlation analysis of expression ranks revealed some interesting 
patterns for certain GO groups when comparing long-lived with 
short-lived species. For instance, expression ranks of DNA repair 
processes show a positive correlation within the groups of long-
lived (whales, humans, bats, naked mole-rats; p < 5E-4) and short-
lived (cows and mice, 2 transcriptomes each; p  <  5E-4) species, 
respectively (Figure  2 A2). Complementarily, there is a negative 
correlation for expression ranks between long- and short-lived 
species (p < 5E-4). A similar result can also be observed for ubiq-
uitination (Figure 2 B2 ), and other processes like apoptosis and 
immune response (Dataset S4). Altogether, considering the above 
high correlations of longevity-associated processes in the gray 
whale and other long-lived species, the currently accepted record 
for the gray whale maximum lifespan of 77 years might be an un-
derestimate, stemming from limited available information.

Apart from a high similarity of overall transcription patterns with 
bowhead and minke whales, the gray whale exhibits a number of 
particularly high expression ranks for certain gene categories, in-
cluding GOs relevant to several longevity-related processes. Among 
them are GO categories like ATP synthesis coupled proton transport, 
cilia-related processes, regulation of autophagosome assembly, im-
mune responses (the latter two being much higher even than in the 
bowhead whale), regulation of Wnt signaling pathway, the sensory 
processes related to the inner ear, cardiac muscle cell differentiation, 
and neural precursor cell proliferation (see Dataset S4).

2.5 | Analysis of longevity-associated genes (LAGs) 
in the gray whale's transcriptome

With regard to longevity determination, hundreds of genes have 
been identified to have an impact, when genetically manipulated, 
on the lifespan of model organisms like yeast, worm, fruit fly, and 
mouse. These genes have been previously defined as longevity-as-
sociated genes (LAGs) and include two categories: a) LAGs, which 
promote longevity, and b) LAGs, which reduce lifespan and promote 
an accelerated aging phenotype (a phenotype that along with shorter 
lifespan includes features of premature aging) (Budovsky2007; Yanai 
et al., 2017).

Although intuitive, the hypothesis that in long-lived species, 
pro-longevity genes should be expressed at a higher level than an-
ti-longevity genes, has not been fully examined. Here, we tested 
this assumption by analyzing the level of LAG expression in the 
gray whale transcriptome. Nucleotide sequences for all LAGs in the 
GenAge database (Tacutu et al., 2018) were extracted from RefSeq 
database (Haft et  al.,  2018) and BLASTed against the gray whale 
transcriptome. In total, we used VSEARCH (Rognes 2016) to look for 
1422 known LAGs discovered in mouse, fruit fly, and roundworm, 
of which 601 are pro-longevity and 821 anti-longevity genes. After 
manual curation and the removal of redundant genes, our analysis 
shows that 113 (19%) of the transcripts with detectable expression 
in the gray whale correspond to known pro-longevity genes and only 
77 (9%) to anti-longevity genes (Dataset S5).

A noteworthy finding is the lower than expected number of LAG 
homologues found both for anti- and pro-longevity genes in the gray 
whale, particularly in view of the assumed high evolutionary con-
servation of LAGs (Yanai et al., 2017). This, however, has a technical 
explanation, namely the fact that the gray whale did not have a ref-
erence genome until now, and that the transcriptome analysis was 
performed de novo, whereas, for model organisms, there are already 
numerous well-annotated transcriptomes and genomes. Thus, an 
incomplete mapping of LAGs is to be expected due to this reason.

In our analysis, in all transcriptomes examined, we found more 
pro- than anti-longevity genes being expressed. This is despite the 
fact that, based on the GenAge database (Tacutu et al., 2018) (cur-
rently the most comprehensive repository in terms of LAGs) more 
anti-longevity genes than pro-longevity genes were reported in the 
literature for each model organism. Several explanations for this 
finding can be suggested: (a) Some anti-longevity genes might not 
be in the genome entirely because they have been evolutionarily 
less favored in long-lived species (examples could include: Eef1e1, 
Trpv1, Pou1f1, all anti-longevity genes that exist in mice, but that do 
not exist in gray whales); (b) some anti-longevity genes might have 
a very small expression that is silenced/less detectable in young 
adults (which is also the case of our gray whale samples) but they 
might be expressed later in life, a phenomenon which is known as 
antagonistic pleiotropy (an example of a gene with antagonistic plei-
otropy characteristics is prop-1 (Austad & Hoffman, 2018); for more 
discussions about antagonistic pleiotropy, see Tacutu et al., (2012); 
Yanai et al. (2017); (c) some anti-longevity genes might be expressed 
through the entire lifespan, however, at a constantly low level (this 
case would not appear in our datasets because it is not detectable—
so it points to technical difficulty); and finally, (d) some anti-longevity 
genes might be expressed only on a conditional basis, for example, as 
co-expression with other genes in response to certain stimuli (again, 
it is very difficult to detect in sequencing experiments like this one). 
For the full list of expressed pro- and anti-longevity genes, please 
see Dataset S5.

Two additional points should be stressed in this context: (a) First, 
as we previously showed, despite high evolutionary distances, the 
lifespan effects obtained when manipulating orthologous LAGs in 
different model organisms lead mostly to concordant results (Yanai 
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et  al.,  2017), and (b) second, the experiments resulting in lifespan 
extension, and even more so, those where overexpressing LAG re-
sults in lifespan extension, are more definite in terms of evaluating 
the impact of a given gene on longevity than those resulting in lifes-
pan reduction (Yanai et al., 2017). This means that focusing on LAGs 
from overexpression studies will be more definite and unambiguous. 
Then, if a pro-longevity LAG was found by overexpression, it is in-
tuitive to expect that this LAG is also highly expressed in long-lived 
mammals such as gray whales. Complementarily, when the lifes-
pan-extending effect for a given anti-longevity LAG was found by 
knockout or knockdown experiments, its expression in adult gray 
whales should most likely be at a relatively low level or undetectable. 
The same could be expected for the overexpression experiments of 
anti-longevity genes, which result in lifespan reduction. The follow-
ing results of our analysis support these suggestions. Indeed, the 
vast majority of LAGs found through overexpression experiments, 
whose orthologs were also identified in the gray whale transcrip-
tome, were pro-longevity (n = 30) and only three were anti-longev-
ity (Table 1). Remarkably, the normalized expression level (TPM) of 
these 30 pro-longevity genes in the gray whale transcriptome was 
several-fold higher than the average expression of anti-longevity 
genes (Figure 3). Even compared to the average gene expression of 

the whole gray whale transcriptome, pro-longevity genes displayed 
2.6-fold and 4.9-fold higher expression in liver and kidney tissues, 
respectively (p < 1.37E-6; p < 8.42E-6). Similar results were obtained 
when comparing the median values of expression (5.8-fold and 6.5-
fold increase in liver and kidney, respectively; p < 4.2E-4; 3.77E-5) 
(Figure  3). In contrast to pro-longevity genes, the three anti-lon-
gevity genes showed lower than average expression (68% in liver 
and 34% in kidney; p < 5E-4) compared to the whole transcriptome. 
These expression trends were not found in the two mouse transcrip-
tomes that were used in our analysis, even though overall a similar 
number of LAGs was found (Data not shown).

As described above, in the gray whale transcriptome, pathways 
related to DNA repair and ubiquitination appear to have increased 
activity. In regard to this, it was previously suggested that upregu-
lation of stress response genes could result in pro-longevity effects 
(Moskalev et  al.,  2014). This is further supported by our previous 
study showing that overexpression of stress-related LAGs results in 
most cases in lifespan extension (Yanai et al., 2017). Remarkably, in 
the gray whale transcriptome, a great portion of the pro-longevity 
LAGs found through overexpression experiments (19 out of 30) are 
stress-related genes, which display expression values higher than 
average or median. For example, the heat shock 70 kDa protein 1A 
gene is highly expressed in the gray whale (~25-fold increase, both 
in liver and in kidney), and approximately 118 times higher (p < 5E-4) 
than in a short-lived species (mouse). Interestingly, the expression of 
this gene is also high in the naked mole-rat (eightfold increase versus 
average expression of the whole naked mole-rat transcriptome). In 
contrast, the expression of insulin-like growth factor 1 (IGF-1), an an-
ti-longevity gene, is significantly lower in the gray whale (as well as in 
other whale species) than in the mouse (18.7- and 10.6-fold decrease 
in liver and kidney, respectively) (Dataset S5).

If knockout or knockdown of given LAG results in lifespan ex-
tension, it could be expected that its expression in an adult gray 
whale would be at a relatively low level or undetectable. In line 
with this expectation, 57 out of the 72 genes (79%) from this group 
had lower than average expression in liver and 39 out of the 72 
genes (54%) had lower than average expression in kidney (Dataset 
S5). This trend was more obvious for the liver (3.8-fold decrease 

TA B L E  1  Longevity-associated genes (LAGs) from overexpression experiments found in the de novo transcriptome of the gray whale

Orthologs from
LAG 
type

Number of 
genes Liver average (TPM) Liver median (TPM)

Kidney average 
(TPM)

Kidney median 
(TPM)

Mice Pro 13 30 9 67 11

Anti 1 13.6 13.6 0.4 0.4

Flies Pro 12 24 6 33 12

Anti 1 2.8 2.8 2.7 2.7

Worms Pro 5 4 2 5 6

Anti 1 0.7 0.7 5.7 5.7

Total Pro 30 23 7 43 11

Anti 3 6 3 3 3

Note: All transcripts from the gray whale transcriptome were aligned to known nematode, fly, and mouse LAGs. For comparison, the average TPM for 
the whole transcriptome is 8.8 for both liver and kidney. Median TPM for the whole transcriptome is 1.2 and 1.7 for liver and kidney, respectively.

F I G U R E  3  Fold change in the expression of longevity-associated 
genes (LAGs) in the de novo transcriptome of the gray whale. For 
this analysis, LAGs were considered only from overexpression 
experiments in model organisms (C. elegans, D. melanogaster, 
M. musculus). Displayed are the average fold changes for pro- and 
anti-longevity genes expressed in the gray whale transcriptome
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in gene expression) than for the kidney (1.2-fold decrease). 
Complementarily, as shown in Table 1, the gray whale orthologous 
genes of pro-longevity LAGs, whose overexpression led to an in-
crease in the lifespan of model organisms, displayed a markedly 
higher expression than average in the gray whale transcriptome as 
well. At the same time, gray whale orthologous genes of pro-lon-
gevity LAGs, whose downregulation results in reduced lifespan in 
model organisms, were found to be expressed at a low level or to 
be unexpressed at all (Dataset S5). Our approach opens a new ave-
nue for a wide comparative analysis of LAG expression in long- and 
short-lived species, which could be an important topic for future 
investigation. The analysis of the gray whale transcriptome and 
comparison with other mammalian species suggest that the gray 
whale potentially possesses high resistance to cancer and stress, in 
part ensuring its longevity.

3  | E XPERIMENTAL PROCEDURES

3.1 | DNA and RNA sampling in tissues

Tissue samples from the kidney (N = 2) and liver (N = 2) were acquired 
from one adult female gray whale (Eschrichtius robustus) on May 31, 
2013, at the seashore Lorino, Chukotka Autonomous Okrug, dur-
ing the 2013 native Eskimo subsistence harvests, by the indigenous 
population of Chukotka Autonomous Okrug (at the Mechigmen Bay 
of the Bering Sea, Lorino). The Eskimo have permission to hunt gray 
whales for food, and during one of the hunts, tissue biopsies were 
taken. No animals were killed specifically for the current study. 
Sample collection and preparation were previously described in 
Moskalev et al. (2017).

3.2 | Transcriptome sequencing and assembly

Total RNA was isolated from frozen tissues using the RNeasy 
Mini Kit (QIAGEN) according to the manufacturer's protocol. RNA 
quantification was performed on the NanoDrop 1000 (NanoDrop 
Technologies), and the RNA integrity was assessed using the Agilent 
2100 Bioanalyzer (Agilent Technologies). RNA was further treated 
with DNase I (Thermo Fisher Scientific) and purified using the RNA 
Clean & Concentrator-5 kit (Zymo Research). The cDNA libraries 
were prepared using the Illumina TruSeq RNA Sample Preparation 
Kit v2 (LT protocol) as described in Moskalev et al., (2014). The li-
braries were sequenced on the Illumina MiSeq System (USA) using 
the MiSeq Reagent Kit v2 for 500 (2  ×  250) cycles. On average, 
fragment size was 300  bp (insertion  +  adapters), with the inser-
tion size about 180 bp. Trimming the samples was performed using 
Trimmomatic (Bolger, Lohse, & Usadel, 2014). To identify ortholo-
gous protein-coding transcripts, we employed a BLAST algorithm 
against the Swiss-Prot database (Bateman et  al.,  2017). De novo 
assembly for the four samples was done with the Trinity software 
stack (Grabherr et  al.,  2011) and yielded 114  233 contigs. The 

assembly quality was checked with BUSCO (Simão, Waterhouse, 
Ioannidis, Kriventseva, & Zdobnov,  2015). Raw data for Brandt's 
bat (Myotis brandtii) were taken from Series GSE42297 (Seim 
et  al.,  2013). Brandt's bat transcriptome was de novo assembled 
using the RNA Spades assembler, with the default parameters—
provided in the GitHub repository (Bushmanova, Antipov, Lapidus, 
& Prjibelski, 2019).

3.3 | Gene expression analysis, 
filtering, and expression

To identify orthologous protein-coding transcripts, a BLAST al-
gorithm was run against Swiss-Prot (Bateman et  al.,  2017). 
Summarization of the results (de novo + annotation) was then gener-
ated using an in-house built Perl script. The normalization of contig 
counts was done by computing transcripts per million (TPMs). Genes 
that were identified and included in subsequent analyses had TPM 
values of at least 1. To define the high expression threshold for un-
annotated contigs in the gray whale de novo transcriptome, the ex-
pression distribution was considered, and an expression level 10x 
higher than the average of all genes was taken. For a minimal cutoff 
length for unannotated contigs predicted to be genes, a cutoff of 
200 bp was used (Bushmanova et al., 2019).

3.3.1 | Analysis of differential gene expression

Gene Ontology (GO) enrichment analysis was carried out in R, 
using the TopGO package v2.26.0 (Alexa & Rahnenfuhrer,  2016) 
(http://bioco​nduct​or.org/packa​ges/relea​se/bioc/html/topGO.html). 
Adjusted p-values lower than .05 were considered significant. Only 
reads with one count per million in at least three samples were in-
cluded in this analysis. For the enrichment analysis of the gray whale 
transcriptome, the top 100 expressed genes were used. The cutoff 
was set based on the histogram showing the transcript distribution 
sorted by their TPM values (Robinson & Oshlack, 2010), in both liver 
and kidney. The selected 100 top expressed genes account for ap-
proximately 50% of the total number of TPMs.

3.3.2 | Comparisons of transcriptomes

To compare the gene expressions in the gray whale (Eschrichtius ro-
bustus) across multiple species, we retrieved liver and kidney RNA-
Seq data for the bowhead whale (Balaena mysticetus), minke whale 
(Balaenoptera acutorostrata), naked mole-rat (Heterocephalus glaber), 
Brandt's bat (Myotis brandtii), human (Homo sapiens), cow (Bos tau-
rus), and mouse (Mus musculus). In this work, only the transcriptome 
of the gray whale was assembled de novo; for all other species, pre-
viously published transcriptomes were used.

For each species, kidney and liver RNA-Seq assemblies were cho-
sen and quantified with Salmon (Patro  2017). For mouse and cow, 

http://bioconductor.org/packages/release/bioc/html/topGO.html
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two samples (mouse 1 and 2, cow 1 and 2) were taken in order to 
investigate variation between samples of the same species. To avoid 
technical errors, only coding transcripts were taken, and the protein 
sequences translated from them were aligned. To establish a single 
point of reference, transcripts were mapped to UniRef90 protein clus-
ters (Suzek, Wang, Huang, McGarvey, & Wu, 2015). For the protein 
homology search, we used DIAMOND (Buchfink, Xie, & Huson, 2015). 
The used e-value cutoff was 1E-03. To convert results into ranks, the 
GO processes from UniRef90 cluster annotations were aggregated by 
GO biological processes. The protein-coding transcripts, from all tran-
scriptomes, are grouped by GOs, and their composite TPMs are com-
puted within each GO term. Terms are ranked based on the composite 
expression from 1 to 9779 (number of GO terms in the gray whale's 
transcriptome). A phylogenetic tree was built in the TimeTree software 
(Kumar, Stecher, Suleski, & Hedges,  2017), with default parameters. 
Solid circles mark nodes that map directly to the NCBI Taxonomy, 
and empty circles indicate nodes that were created during the poly-
tomy resolution process, which is described in Hedges, Marin, Suleski, 
Paymer, and Kumar (2015). For each GO category of interest, we ran-
domly generated 10 000 pseudo-GO categories with the same number 
of random UniRef90 clusters.

3.4 | LAG analysis

The comparison with known mouse, fly, and worm LAGs was done 
using data from GenAge database (build 19, June 24, 2017) (Tacutu 
et al., 2018). Yeast, bacteria, and fungus LAGs were excluded from 
the analysis, resulting in a total of 1168 genes being included in 
the analysis. Of these, 486 had pro-longevity annotations and 682 
had anti-longevity annotations (note: Several LAGs are annotated 
as both pro- and anti-longevity depending on the performed ge-
netic interventions). Nucleotide sequences for these LAGs were 
exported and aligned using the VSEARCH (Rognes et  al.,  2016) 
(www.github.com/torog​nes/vsearch) sequence alignment tools 
(parameters are provided inside wdl workflows in the GitHub re-
pository: www.github.com/anton​kulag​a/gray-whale​-expre​ssions). 
The results were then manually cleaned to remove duplicates.

3.5 | Statistics

For a comparison between different transcriptomes, the Spearman 
rank correlation was used. The Spearman correlation of two samples is 
defined as a regular (Pearson's) correlation between the ranks of values 
in each sample. To compute the test for significance (p-value), using t is 
distributed approximately as Student's t-distribution with n − 2 degrees 
of freedom under the null hypothesis (Press 1992). A justification for 
this result relies on a permutation argument (Kendall & Stuart, 1973).

For LAG analysis, we used a hypothesis that the expres-
sion of each LAG is described by the Poisson stream of reads. It 
obeys Poisson distribution with intensity parameter l computed 
using known TPM values as well as the total number of reads. A 

cumulative expression is a sum of a large number of Poisson ran-
dom variables, so it can be approximated using normal distribu-
tion according to the central limit theorem. LAG expression values 
have a distribution like a ratio of two Gaussian (normal) variables. 
We used (numerically computed) CDF of this distribution to get 
the p-values (Hinkley, 1969).
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Human: liver tissue GSM1698568, kidney tissue GSM1698570.
Mouse: liver tissue SM1400574, kidney tissue GSM219518.
Cow: liver tissue GSM1020724, kidney tissue GSM1020723.
Brandt's bat: liver tissue GSM1037380, GSM1037382, kidney 

tissue GSM1037381, GSM1037383. 
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