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Abstract

Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias
towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of
synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such
correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of
evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed
based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast
growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and
ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for
a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model
resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences
and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and
protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable
parameters.
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Introduction

The genetic code maps sequences of nucleotide triplets or

codons to sequences of amino acids. As the 20 amino acids are

coded by 61 distinct codons, most amino acids are represented by

multiple (2–6) synonymous codons. The nucleotide sequence of

a gene therefore contains information beyond the amino acid

sequence of the protein it encodes. This additional information is

contained in the usage patterns of synonymous codons, which are

not used in a random fashion, but with a bias towards a set of

species-specific preferred codons [1,2]. Extracting this additional

information from sequence data is a key challenge for Systems

Biology and numerous studies have linked the pattern of codon

usage in gene sequences to various properties of the proteins such

as their abundance in the cell [3,4,5,6], their domain structure,

folding kinetics, and cost of misfolding [7,8,9], and their

evolutionary history, allowing, for example, to identify genes that

have been acquired recently by horizontal transfer [10,11].

On the mechanistic level, codon usage is known to affect the

kinetics of translation as individual codons are translated at

different rates [12,13]. The differences in translation rates of

synonymous codons are believed to result mostly from differences

in the intracellular concentration of the corresponding tRNA

species [13,14], but small differences in the intrinsic kinetics have

also been demonstrated [12,15]. Moreover, differences in compe-

tition between binding of cognate, near-cognate and non-cognate

tRNAs are also expected to contribute to the differences in

translation speed [16]. Typically, codon usage is biased towards

‘fast codons’, as indicated by correlations between codon usage

and abundance of the corresponding tRNA species [3,13,17] and

by direct measurements of the (absolute or relative) translation

rates of individual codons [12,13].

In this study, we address the relation between the abundance of

a protein and usage of synonymous codons in its genomic

sequence. It has been observed long ago that the bias of codon

usage is particularly pronounced in abundant proteins such as

ribosomal proteins [4,18,19] and various indices measuring codon

usage have been found to correlate with protein abundance in

yeast and bacteria, indicating that codon usage may be used to

predict protein abundance [5,20,21]. Also, optimization of codon

usage often increases the yield of heterologous protein expression

[22]. Therefore, the question arises whether there is a causal

relation between the adapted, non-random codon usage and the

expression level of a gene. In principle, such a relation should not

be expected as long as translation of the gene is limited by the rate

of initiation of translation. In that case, the synthesis rate of that

protein does not depend on how fast a protein is translated but

rather on how often ribosomes initiate translation of that protein.

In agreement with this expectation, a recent study of a library of

gfp variants that encode the same amino acid sequence with

different nucleotide sequences, showed no correlation between the

bias of codon usage and the resulting fluorescence intensity [23].

On the other hand, the same study showed that cell growth was

impaired by expressing gfp sequences with many slow codons. This

suggests that the biased codon usage provides a fitness advantage
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at a global level rather than at the level of the individual gene [23],

as proposed earlier by Andersson and Kurland [14].

To elucidate the connection between codon usage in specific

genes, protein abundance, and the growth state of the cell, we

perform a comprehensive analysis of the hypothesis that biased

codon usage is driven by the selection for low ‘‘ribosome load’’ in

protein synthesis, i.e. for the efficient use of ribosomes through

a preference for fast codons. Originally proposed by Andersson

and Kurland [14], the hypothesis is based on the observation that

ribosomes, the large machinery for protein synthesis, are the

limiting commodity for rapidly growing cells. Not only do

ribosomes participate in a large fraction of the biosynthetic

activities during exponential growth, substantial experimental

evidence, including the linear relation between ribosome concen-

tration and growth rate [24,25,26,27], direct observations in-

dicating that protein synthesis is limited by the availability of free

ribosomes [28], and observations that link the evolutionary costs of

a protein to its synthesis [29], all indicate a propensity by fast

growing cells to optimize ribosome usage. When the availability of

free ribosomes (or their recycling after the termination of

translation) limits protein synthesis, the use of fast codons should

increase the ribosome recycling rate and thereby allow for a higher

rate of overall protein synthesis and speed up cell growth. This

picture, which is in line with earlier studies of codon usage

evolution [30,31], provides a natural explanation of the higher bias

towards preferred (rapidly translated) codons in the gene

sequences of abundant proteins: Every replacement of a fast

codon by a slow one imposes a fitness cost by increasing the time

for the ribosome to translate it. As this cost aggregates for every

occurrence of the slow codon, i.e. every copy of the protein, the

overall fitness cost of a slow codon is expected to increase with the

abundance of the protein, in agreement with the observations that

slow codons are very rare in the sequences of abundant proteins

[3,4,18,19].

However, if there is a fitness advantage favoring the use of fast

codons, why are slow codons ever used, even in highly expressed

ribosomal proteins? Moreover, the question arises whether codon

bias and protein abundance can be related in a quantitative fashion?

Answering these questions requires a quantitative assessment of

the balance between this fitness advantage and the entropy cost of

not using the slower synonymous codons. By performing such an

analysis here through a mathematical model of evolution that

incorporates selection of ribosome load through choices of codons

and the associated fitness cost, we derive a relation between codon

bias and protein abundance and test this relation using proteomic

data for E. coli. This comparison indicates that the ribosome load

hypothesis explains a substantial part of the observed codon bias

and allows a quantitative comparison of the role of ribosome load

for biased codon usage against other fitness advantages of codon

bias. Most significantly, the quantitative relation between codon

usage and protein abundance provides a simple means to estimate

protein abundance solely from genomic sequences. Our estimate

of protein abundance is seen to be positively correlated with the

measured abundance data from proteomic studies with a correla-

tion coefficient comparable to those between the abundance data

from different experiments.

Two lines of research have previously addressed the relation

between codon usage and protein abundance: On the one hand,

statistical measures such as the ‘codon adaptation index’ have been

developed and were shown to be correlated with protein

abundance in bacteria and yeast, thus allowing to predict protein

abundance semi-quantitatively from the patterns of codon usage in

their genes [5,20,21]. These methods are typically based on

observed correlations without reference to the mechanisms giving

rise to those correlations, and the indices measuring codon usage

do not necessarily have physical interpretations. On the other

hand, aiming at a mechanistic understanding of codon usage bias,

models for the evolution of codon bias have been developed that

incorporate very detailed descriptions of the translation process

and/or the evolutionary dynamics [31,32]. Most recently, such

detailed analysis, similar in scope to ours here, has been performed

for yeast [32]. A relation between codon usage and protein

abundance was used to determine codon-specific parameters of

the underlying model such as translation rates for individual

codons and biases in mutation rates from codon usage and protein

abundance data. Such detailed models can generate excellent

agreement with the data and allow one to extract detailed

mechanistic parameters from given protein abundance and codon

usage data. They are, however, less suited for predicting protein

abundance, as they require a large number of parameters that

need to be measured independently.

The approach we take here, a relatively simple evolution model

and a simplified description of translation, attempts at combining

the virtues of both types of previous approaches, sacrificing some

of the accuracy gained by a more detailed mechanistic description.

It is based on mechanistic pictures of evolution and translation,

which, however, are simplified such that only sequence in-

formation is required to apply the model. In our view, the most

significant consequence of establishing a quantitative relation

between codon usage and protein abundance is that it provides

a simple means to estimate protein abundance from genomic

sequences. To that end, simple descriptions of codon evolution

and of the dynamics of translation without unknown parameters

are preferable, as they allow such estimates from genomic

sequences alone, without the need for additional experimental

information such as codon-specific translation rates, specific

mutation rates, or tRNA concentrations.

Results

Relation between Codon Bias and Protein Abundance
To test the idea that ribosome load is the main driving factor for

biased codon usage [14], we developed an evolution model (Eq. (6)

in Methods) that describes the competition between mutation

among synonymous codons and selection for the fast codons. The

selection is defined [by Eq. (5)] as a dependence of the growth rate

on the translation rates of individual codons (or the time

a ribosome spends at each codon) [30]. The fitness cost of a slow

codon is incurred every time this codon is read by a ribosome, and

the overall fitness cost is proportional to the abundance of the

protein encoded by the genetic sequence to which this codon

belongs. The model thus describes a fitness landscape that

decreases linearly from a single peak (sometimes called a Mount-

Fuji landscape).

Before we discuss the relation between codon usage and protein

abundance that results from our model, we note that, in principle,

codon usage and the choice of the preferred codons (or the tRNA

concentrations, which are a major factor determining that choice)

co-evolve [30]. Our model does not account for such co-evolution,

based on the following rationale: the shift from one preferred

codon to another would affect many proteins and thus carries

a much bigger fitness cost than individual synonymous mutations.

We therefore expect codon preferences (and tRNA concentrations)

to evolve on much longer timescales than the codon usage, so that

the evolution of codon usage occurs essentially for fixed codon

preferences. A similar argument has recently been supported by

the observation that tRNA gene copy numbers (used as proxies for

tRNA concentrations) are strongly correlated amongst different
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yeast species [33]. Here we analyzed the copy numbers of tRNA

genes of 12 enteric and closely related bacteria. We found them to

be highly correlated as well (Pearson correlation coefficients .0.7,

Figure 1 A and B). Nevertheless, the tRNA gene copy numbers

display a surprising amount of variability between closely related

strains. We therefore considered a second measure of codon

preferences, the ‘preferred codons’ for each amino acid as defined

by Hershberg and Petrov [34], which are identified as those that

get most strongly enriched with increasing codon bias among all

genes of a species. For most of the bacteria considered here, the

preferred codons are the same for all 18 amino acids despite a large

fraction of synonymous mutations (Figure 1C). Differences in the

preferred codons are only seen for the most distantly related

species (Figure 1 C and D), which also exhibit the largest

frequency of synonymous and non-synonymous mutations. These

results support the general picture that the usage of synonymous

codons evolves on a shorter timescale than the assignment of

preferred codons.

As the translation rates are known only for a subset of codons,

we classify all codons as either ‘fast’ or ‘slow’ according to their use

in ribosomal protein genes (Table S1). This classification is clearly

a simplification, but has the advantage that only genomic sequence

information is required and no additional information such as

cellular tRNA concentrations or measured translation rates for

individual codons. This classification is consistent with the

measured translation rates, where these are known, and it agrees

with other classification schemes used in the literature (see Table

S1 and Methods). Based on this classification, the fraction rp of

slow codons in the nucleotide sequence of a gene arises as a natural

measure of codon bias. rp displays a simple dependence on the

abundance of the protein (Np) encoded by that gene, that can be

described by the interpolation formula.

rp~r0 1z
Np

N0

� �{1

: ð1Þ

This dependence exhibits two regimes: For weak selection (low

protein abundance), synonymous codons are used randomly, and

slow codons occur with frequency r0, while for strong selection

(protein abundance higher than a threshold abundance N0), the

frequency of slow codons depends inversely on the protein

abundance.

Even though it is known, qualitatively, for a long time that rare

codons are particularly rare in abundant proteins [4,19], we can

now quantitatively compare the predicted dependence to genomic

[35] and proteomic data [36,37,38,39,40] using E. coli as a model

system. We analyze the relation between rp and Np both at (i) the

full protein sequence level using individual protein abundance and

(ii) individual amino acid level (the next section) by examining the

usage of synonymous codons for each amino acid across all

measureable proteins in the organism.

We compared the prediction from our model with five different

protein expression data sets (Figures 2 and S1, Table 1). Figure 2

shows the comparison using the largest protein abundance data of

Ishihama et al. [36]. Each dot in the plot represents one protein

(through Np and rp), the red points show binned data, i.e. averages

of rp over groups of proteins with similar abundance Np (within an

up to 3-fold range of protein abundance), and the solid green line

shows the prediction from the model for the best fit of the

parameters r0 and N0. There is good agreement of the binned data

with the model especially for low to medium protein abundance.

At the same time individual proteins scatter widely (most within

two-fold as marked by the dashed lines) around the predicted

behavior. The deviation between the binned data and the model

for very abundant proteins (Np.10000) could be specific to the

abundance data of Ishihama et al., as it is not obvious in the other

abundance data sets, which otherwise exhibit rather similar

behavior (Figure S1). Abundance values for high-abundance

proteins are generally somewhat uncertain, as indicted by the

wide range of abundance numbers for different ribosomal proteins

(which should have the same abundance in the cell), but this

scatter is particularly pronounced in the Ishihama et al. data set.

The protein abundance at which strong selection sets in,

characterized by the parameter N0 in Eq. (1) is found to be

a few thousand molecules per cell (N0<5030 with the data of

Ishihama et al.; the precise value depends on which protein

abundance data set we use, see Table 1). This value of N0 falls

within the range obtained from microscopic parameter estimates

(see Methods). For low protein abundance, our fit leads to

r0&0:34. This is lower than the expected value based on fully

random usage of synonymous codons (r0&0:53, see Methods),

providing a first indication that not all codon bias is captured by

the ribosome load hypothesis.

For comparison, we also used a gene expression data set from

an RNA microarray experiment (from ref. [41], data for rich

medium) and analyzed it in the same way (Figure S2). Using

mRNA levels as a proxy for protein abundance has the

disadvantage that it implicitly assumes that all genes are translated

at the same rate, while in reality there is a broad distribution of the

ratio of proteins per mRNA [37]. Indeed the main difference to

the results with proteomic data (Figs. 2 and S1) is the even greater

scatter of the fraction of slow codons for highly expressed genes.

Analysis for Individual Amino Acids
We also performed the same analysis for each individual amino

acid encoded by more than one codon (i.e. excluding Trp and

Met). Figs. 3A and B show two examples, Asn and Lys (discussed

below); results for all amino acids are shown in Figure S3. For

every amino acid, we determined r0 and N0 (Fig. 3C–F) by fitting

with Eq. (1) using the two abundance data sets of Ishihama et al.

[36] and Lu et al. [37]. We compared the values of r0 (which

measures the bias of codon usage for low abundance proteins, i.e.

in the weak selection limit of our model) as obtained from the fit

with the expectations from random usage of synonymous codons.

The expected and observed values are strongly correlated, but one

can see that the r0 values from the fit tend to be smaller than

expected (Figure 3 C and E). This indicates that codon usage is not

fully random even for low-abundance proteins.

The parameter N0 indicates the threshold in protein abundance

where selection becomes dominant. For most amino acids, N0 is

found to be in the range of a few 1000 proteins/cell (Figure 3 D

and F). The fact the values for N0 are similar for all amino acids

provides a rationale for pooling different amino acids together. An

exception are the amino acids glutamate and lysine, for which we

find essentially no or only very weak abundance-dependence of

codon bias (Figures S3A and 3B), corresponding to much larger N0

than for other amino acids (Figure 3 D and F). Both however

exhibit abundance-independent codon bias, with r0 values of 0.28

(Glu) and 0.22 (Lys). For this reason, Glu and Lys were excluded in

the calculations of the fraction of slow codons (rp) of Figure 2 and

Figure S1.

Effects of Sequence Length
In the analysis shown so far, we have excluded the first 50

amino acids of each protein sequence because several studies have

found that the initial part of coding sequences is enriched in rare

On Ribosome Load, Codon Bias and Protein Abundance
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codons [42,43], a phenomenon attributed to either a requirement

for weak secondary structures in the mRNA [23] or the need for

a slow on-ramp to limit the maximal translation rate and prevent

ribosome traffic jams [43,44]. Our analysis confirms this

observation: We find that for most genes, the fraction of slow

codons (rp) is slightly (,2-fold) higher in the initial sequence than

in the rest of the sequence (Figure 4A). Overall, we do not see

a dependence of the fraction of slow codons (rp) on the length of

the protein sequence, both for full sequences and for sequences

Figure 1. Evolution of tRNA concentrations and assignment of preferred codons. A: Correlation of tRNA gene copy numbers between
E. coli MG1655 and S. typhimurium. For tRNAs with different gene copy numbers in the two organisms, the anticodon is indicated. B: Correlation
coefficients of tRNA gene copy numbers of 11 enteric and related bacteria relative to E. coli MG1655. C: Number of unchanged ‘preferred codons’ as
defined by Hershberg and Petrov [34] as a function of the frequency of synonymous mutations for the same 11 bacteria relative to E. coli MG1655. D:
Phylogram obtained from an alignment of the rpoB sequences with ClustalW [60].
doi:10.1371/journal.pone.0048542.g001
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without the first 50 amino acids (correlation coefficients R=20.01

and 0.02, respectively, see Figure 4B).

The observation that binning the proteins with similar

abundance reduces the scatter of the data and improves the

agreement of the data with the model suggests that such scatter in

individual proteins may simply be due to insufficient sampling as

the sequences of individual proteins may be too short. Accord-

ingly, the deviation of the observed fraction of slow codons (rp)

from the prediction should be lower for larger proteins (longer

amino acid sequences). We proceeded to calculate the mean

square deviation between the data and model prediction for each

sequence and tested for correlations with the sequence length

(Figure 4C and D). However, we found only very weak negative

correlation (correlation coefficients R=20.25 and 20.03 for the

data sets of Ishihama et al. [36] and Lu et al. [37], respectively).

We therefore conclude that the deviations of the fraction of slow

codons (rp) observed in individual proteins from the predictions of

our model are not random variations due to limited sampling, but

rather reflect some other properties of these proteins or their

mRNA not captured by our model (see also the calculation of

error estimates in Methods). Nevertheless, these deviations are

averaged out if proteins of similar abundance are pooled together.

Predicting Protein Abundance
Finally, the relation between the frequency of slow codons and

protein abundance that results from the evolution model can be

used to predict protein abundance from its gene sequence. Our

analysis suggests the following procedure: First, codons have to be

Table 1. Data sets for protein abundance and parameters of fit with the abundance-codon bias relation from Eq. (6).

Data set Growth conditions Method for quantification
Number of genes/proteins
included in our analysis*

Parameter values from
fit with Eq. (1)

r0 N0

Ishihama et al. [36] Data for rich medium and
minimal medium (glucose +
amino acids) pooled

emPAI (LC-MS/MS) 798 0.34 5034

Lu et al. [37] MOPS glucose APEX (LC-MS/MS) 426 0.30 12181

Link et al. [39] MOPS glucose 2d gel, staining intensity 120 0.26 2964

Lopez-Campistrous et al. [40] MOPS glucose 2d gel, staining intensity 380 0.33 7701

Pedersen et al. [38], with
additional protein
identification [63]

Rich defined medium 2d gel, 2 radioactive labels 69 0.29 4097

*Proteins for which annotations did not match between data sets were excluded from our analysis, as were proteins of length ,50 amino acids.
doi:10.1371/journal.pone.0048542.t001

Figure 2. Relation between codon bias and protein abundance. Black dots show individual proteins with abundance data (Np, protein copy
number per cell) taken from the data set of Ishihama et al. [36]. The red points depict averages over proteins of similar abundance (see the
Supporting Text for a discussion of the error bars). The solid green line is fit of the model (Eq. 7) for individual proteins in the data set. The dashed
green lines enclose a two-fold deviation from the fit. Codon bias is measured by the fraction of slow codons (rp) in the protein coding sequence
accounting for all amino acids except Met, Trp, Glu, and Lys.
doi:10.1371/journal.pone.0048542.g002
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Figure 3. Analysis of individual amino acids for codon usage bias and protein abundance. A and B: Fraction of slow codons (rp) for Asn
and Lys plotted against the protein abundance [36]. As in Figure 2, black dots show data for individual proteins; red dots show averages over proteins
of similar abundance; the solid green line is a fit based on Eq. 7. Dashed green lines mark the two-fold range from the model to the measured protein
abundance. C: Values of r0, the parameter characterizing codon usage bias in the weak-selection limit plotted versus the expected values based on
the assumption of complete random codon usage. Red dots are for amino acids encoded by two synonymous codons, black dots for those with more
than two synonymous codons. D: Histograms of values obtained for the threshold parameter N0 that characterizes the protein abundance above
which strong selection sets in. Abundance data in (C) and (D) are from Ishihama et al. [36]. (E) and (F) contain the same measures as (C) and (D) using
abundance data from Lu et al. [37].
doi:10.1371/journal.pone.0048542.g003
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classified as either fast or slow according to their usage in

ribosomal protein genes as described in Methods. No information

beyond sequence information (such as tRNA concentrations) is

needed. Second, the fraction of slow codons, rp, in each protein is

determined. The predicted abundance of the protein can then be

obtained from rewriting Eq. (1) as.

Np~N0
r0

rp
{1

� �
: ð2Þ

provided that estimates for r0 and N0 are known. However N0, for

which only a relatively broad range can be estimated (see

Methods) is only required for absolute protein copy numbers, as

Np=N0 gives protein abundance relative to the abundance

threshold for strong selection. r0 can be estimated from random

codon usage, weighted with the amino acid frequencies (for E. coli,

this leads to r0&0:53, see Methods). We predicted the abundance

for all E. coli proteins and compare them with the abundance data

from Ishihama et al. [36] and Lu et al. [37] in Figure 5A and B.

The two quantities are clearly correlated with correlation co-

efficient R= 0.66 and R= 0.54, respectively (calculated excluding

all proteins for which the predicted abundance values are negative

or infinite). The correlation is comparable to the correlations

among different published abundance data sets (e.g., Ishihama

et al. – Lu et al.: R= 0.62, Ishihama et al. – Pedersen et al.:

R= 0.69, see Table S2).

Discussion

In this study we have analyzed biased codon usage in fast

growing bacteria based on a global fitness criterion: the efficient

use of the translation machinery and the rapid recycling of

ribosomes, which are a growth-limiting commodity in fast-growing

bacteria (and, possibly, also in rapidly proliferating eukaryotic cell)

[14]. According to our model, usage of fast codons is advantageous

for the overall growth of the cell. It reduces the time during which

ribosomes are sequestered in translation and thereby increases the

concentration of free ribosomes and speeds up initiation of

translation. This hypothesis provides a natural explanation of the

observation that codon usage is more strongly biased in abundant

proteins, as the fitness cost associated with each slow codons is

higher for abundant proteins, while also giving a rationale and

quantitative guideline on how codon bias is diminished in less

abundant proteins.

By formulating this idea in mathematical terms, we were able to

obtain a general relation between protein abundance and the

frequency of slow codons (Eq. 6). We want to emphasize that such

relation as obtained from the ribosome load hypothesis is not

a causal relation, but a result of evolution. Therefore it is not

surprising that a library of gfp variants with the same amino acids

sequence, but different nucleotide sequences [23] does not exhibit

such a relation (but with consequence on poor cell growth).

Contrary to this picture, optimizing codon usage often increases

the yield of heterologous gene expression [22,45], an observation

that suggests a causal relation between between codon usage and

protein abundance. In many cases, this link may again be a global

one, e.g. if overexpression of a sequence rich in rare codons

depletes the cellular pool of one or several rare tRNAs [22]. Such

global effects do not contradict the ribosome load picture, but

rather add another layer of selection pressure that comes into play

for very large protein abundance or strong overexpression of

sequences with many rare codons. Likewise, the translation

sequences with a large number of slow codons may become

limitated by elongation rather than initiation. In such cases, which

Figure 4. Analysis of sequence-length dependent effects. A: Fraction of slow codons (rp) in the initial part of a gene sequence (first 50 amino
acid) vs. fraction of slow codons in the rest of the sequence. Inset: Histogram of the ratio of these two fractions of slow codons. B: Dependence of the
fraction of slow codons on the sequence length with (black) and without (red) the initial 50 amino acids. C and D: Length-dependence of the mean
square deviation of the codon usage in a protein sequence from expected values based on the fitted average, using the abundance data of Ishihama
et al. [36] (C) and Lu et al. [37] (D).
doi:10.1371/journal.pone.0048542.g004
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are not expected to be typical for native (evolved) sequences [14],

but may be common in heterologous expression (a systematic

study of luciferase genes with different codon usage in yeast [46]

possibly provides an example), gene expression is influenced by

codon usage in a local, gene-specific fashion. As a caveat, we note

that if such local mechanisms are dominant in an organism,

ribosome load may not be the major driving force of codon usage

bias.

We have tested the relation between codon bias and protein

abundance obtained from the ribosomal load hypothesis using

proteomic data for E. coli and found good agreement for binned

data, in which proteins of similar cellular abundance are pooled

together. Individual proteins, however, show considerable scatter

around this average behavior (Figure 2 and Figure S1). Further-

more, our analysis indicates that these deviations are not simply

the result of limited sampling in short sequences (Figure 4 C and

D). This observation indicates that codon usage has other roles in

addition to reducing ribosome load. The same conclusion can be

drawn from the observation that codon usage is not completely

random even for low abundance proteins (Figure 3 C and E).

Indeed a number of such roles have been proposed. For example,

codon usage may also be used to optimize the accuracy of

translation as indicated by a more biased codon usage in highly

conserved amino acids [47,48]. Moreover, some slow codons may

be important for the proper co-translational folding of a protein or

for the formation of mRNA secondary structures that are

accessible for the ribosome [8,23]. Such effects are likely to

impose a selection pressure towards keeping specific slow codons

in place that does not depend on protein abundance (such codons

are likely to occur at a fixed frequency in protein-coding

sequences, as we found no dependence of codon usage on protein

length, see Figure 4). Such specific selection may counterbalance

the general fitness costs of slow codons. Nevertheless when we

average over proteins of similar abundance, we obtain good

agreement with the predicted trend. This observation can be

interpreted in the following way: If a slow codon is required at

a specific sequence position for a specific reason such a RNA

structure, the general fitness cost due to ribosome load created by

that slow codon can be offset by replacing a slow codon by a fast

codon in a different sequence position, where no selection for slow

codons exists. This position may either be in the same gene or in

a different gene encoding a protein of the same abundance. In fact,

within our model, fitness is determined by the sum of the fitness

costs of slow codons in all protein-coding sequences; there is no

need for adapting codon usage in every sequence individually. It is

possible that part of the deviations from the predicted trend that

we see for the most abundant proteins (at least in some data sets

with the most pronounced effect in the Ishihama et al data) is

a consequence of such specific selection for slow codons, as such

offsetting may not always be possible in these sequences, where

slow codons are already rare.

Finally, our analysis also points out a simple strategy for the

prediction of protein abundance from sequence data alone. This

requires two major steps, a classification of codons as either fast or

slow by any suitable criterion, and the calculation of the frequency

of slow codons in a protein-coding sequence, from which the

abundance of that protein is obtained via a rather straightforward

Eq. (6). Here we used the frequency of a codon in ribosomal

protein genes as the classification criterion. This criterion is

advantageous as only genomic sequences are required and no

additional information (e.g. tRNA concentrations) is needed, but

other criteria are clearly possible. Compared to earlier methods for

the prediction of protein abundance from statistical analysis of

codon usage [5,20], our approach has the advantage of being

based on a microscopic physical picture, which is however simple

enough that it does not require a large number of parameters that

need to be determined independently. It should therefore be

possible to improve its predictions by including additional,

abundance-independent sources of codon bias into the underlying

model. One way of improving the agreement of our model with

the data and thus the accuracy of predicted protein abundance

would be to identify slow codon that are kept in place by positive

selection, e.g. because they have a role in protein or mRNA

folding. Such codons will clearly contaminate the analysis done we

and if they can be identified (e.g. via their conservation across

species), excluding them from the analysis should reduce the

scatter of individual proteins around the average behavior and

improve the predicetion of protein abundance.

Finally, we want to point out that the arguments used in this

study also apply to other sequence-dependent mechanisms of

slowing translation. Specifically, a recent ribosome profiling study

has questioned the importance of specific codon usage for the

overall speed of translation (that had been demonstrated by earlier

direct measurements [12,13]), but rather points towards internal

Shine-Dalgarno-like sequences as the major source of pausing

during translation [49]. The ribosomal load hypothesis applies

equally to slowing of translation by Shine-Dalgarno-like pause

sequences. As a consequence, we expect stronger selection against

such sequences in highly expressed proteins, and thus it should be

possible to derive a quantitative relation between the frequency of

such sequences and protein abundance, similar to the one for slow

codons derived here.

In summary, we have analyzed codon usage based on the

hypothesis that ribosome load is a major determining factor of

Figure 5. Predicting protein abundance from sequence data. Predicted protein abundance (relative to the selection threshold N0) as obtained
from Eq. 2, vs. the measured abundance data of Ishihama et al. [36] (A) and Lu et al. [37] (B).
doi:10.1371/journal.pone.0048542.g005
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codon bias. This idea is based on observations that ribosomes are

a growth-limiting commodity under rapid cell growth. Our

analysis of codon usage in E. coli shows that this idea can explain

a substantial part, but not all, of the observed codon bias.

Methods

Fitness Landscape
In a fast growing unicellular organism, a characteristic fitness

measure is the growth rate m. The effect of translation speed on m,
can be calculated by the following argument given first by Bulmer

[30,31]: If ribosome load is growth limiting in the sense that

essentially all ribosomes are translating all the time, then the

doubling time t of the cells is given by the time these ribosomes

need to double all protein components of the cell,

t~
X
p

TpNp=NRb ð3Þ

In this equation, the sum runs over all proteins in the cell. Tp is

the time it takes to translate one single protein p, Np is the copy

number of this protein, and NRb is the number of ribosomes per

cell. (If there is extensive turnover of a protein, the number of

copies of that protein that are synthesized during one cell doubling

can be considerably larger than the abundance of the protein in

the cell. In that case, Np should be interpreted as the number of

copies synthesized during a cell doubling or as the synthesis rate.

However, under conditions of rapid cell growth that are relevant

here, proteins are typically stable in E. coli [50,51].) We assume

that every change from a fast codon to a slow codon increases Tp

by a small time Dt, which in principle can be codon-dependent (as,

e.g., in Ref. [32]). As will be justified below, we will make the

simplification that all codons can be classified as either fast or slow

and that there is only one such translation time difference.

We now consider a single protein and write the doubling time t
as a function of the number n of slow codons in this specific protein

as

tp~t0znDt
Np

NRb

: ð4Þ

The growth rate is

mp(n)~
ln 2

tp
~

ln 2=t0

1zn Dt
t0

Np
NRb

&m0(1{s), ð5Þ

where t0 and m0 = ln2/t0 are the doubling time and growth rate in

the absence of slow codons for the protein under consideration

and s~n: Dtt0
: Np
NRb

:n:s is defined as the selection coefficient. The

approximation in Eq. (5) requires s%1 (shown to be the case

below) and leads to a linear, Mount Fuji-type fitness landscape

with a selection coefficient, s, that is proportional to the abundance

of the protein under consideration.

Evolution Model
We now use the expression for fitness given in Eq. (5) in an

evolution equation [52] for a population of cells with different

codon usage for a particular protein sequence. Assuming all

codons are either fast or slow, we write the evolution equation for

the number of cells in that population that have n slow codons in

the sequence of a particular protein p, N(n), as

d
dt
N(n)~mp(n)N(n)zn0

Cfast
C{1

(nz1)N(nz1){nN(n)½ �

zn0
Cslow
C{1

(Lp{nz1)N(n{1){(Lp{n)N(n)
� � ð6Þ

The first term on the right hand side describes growth, the

second and third term describe beneficial and harmful mutations

by decreasing and increasing n, the number of slow codons,

respectively. n0 is the synonymous mutation rate per codon. C is

the total number of codons encoding the amino acid under

consideration, so C-1 is the number of possible mutations. Cfast and

Cslow =C- Cfast are the number of fast and slow codons. Lp is the

total number of codons (length of the protein p).

Several comments are in order: (i) In Eq. (6), N(n) is not

normalized to a fixed population size. The equation describes an

overall exponentially growing population and is therefore linear. It

can thus be solved as an eigenvalue problem that has one positive

eigenvalue corresponding to exponential growth of the total

population while the distribution of the number of fast and slow

codons in the population is stationary. (ii) Here we consider

a deterministic evolution equation, thus neglecting genetic drift.

For the case Cfast =Cslow = 1, the stochastic effects resulting from

a finite population size Npop have been studied previously. The

finite population size was found to effectively modify the mutation

rate n0 to n0+1/(4Npop) [53]. (iii) The main parameter of the model

is s=n0~c:Np=NRb, where c~n{1
0

:Dt=t0: We provide an estimate

of c for E. coli below.

Solution of the Evolution Equation
Within our model of codon usage evolution, the fraction rp of

slow codons (or the probability that a given codon is a slow one) in

a protein emerges as the natural measure for the usage of

synonymous codons. This quantity is calculated from the average

number of slow codons SnT~
P

nN(n) via rp~SnT=Lp. As

codons are independent in our model, rp can be calculated by

considering a single codon, which leads to

rp~
1

2
1z

n0C

s(C{1)
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

n0C

s(C{1)

� �2
{4

n0Cslow

s(C{1)

s2
4

3
5: ð7Þ

We note that for Cfast =Cslow = 1, the exact solution has been

given previously [30,53]. In the limit of weak selection (small s=n0
or low protein abundance), rp&Cslow=C, which corresponds to

random usage of synonymous codons. For strong selection,

rp&
Cslow

C{1
(n0=s). Throughout our analysis we use the simpler

expression given by Eq. (1) that interpolates between the two limits

(plotted in Fig. S4 together with the exact result). It depends on

two parameters, r0 and N0, that describe the codon usage under

weak selection and the threshold for protein abundance-dependent

selection, respectively. They can be related to the microscopic

parameters of our model via the two limiting cases of weak and

strong selection, from which we obtain r0~Cslow=C and

N0~
C

C{1
NRb=c (where we have used the relation

s=n0~c:Np=NRb).

These relations are used to estimate expected values for both N0

and r0: In principle, there is one value of r0 for every amino acid, as

r0 depends on Cslow and C, the numbers of slow and all codons

encoding that amino acid (Fig. 3C and E and Table S1). However,

we can get an overall estimate for r0 by averaging these values,
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weighted with the frequency of the amino acids in all protein-

coding sequences in the E. coli genome. This leads to r0<0.53.

Likewise we can estimate an overall threshold value for selection

by ignoring the prefactor C/(C-1), This leads to values of N0 that

are about 1/10 of the abundance of ribosomes (using c&10). With

a ribosome abundance of several 10 0000 molecules per cell [26],

this corresponds to an N0 value of several thousand molecules per

cell. This estimate is, however, strongly dependent on the estimate

of c for which we can only estimate a rather wide range

(c~1{100, see below).

Estimate of the Model Parameters
The main parameter of our evolution model is

s=n0~c:Np=NRb, the ratio of the selection coefficient and the

mutation rate, which is proportional to the abundance of the

protein under consideration. The dependence of this parameter on

the protein abundance is characterized by c~n{1
0

:Dt=t0: n0 can

be estimated by the mutation rate per base which is about 1029

per generation [54], under the approximation that all third-

position mutations are synonymous. A naı̈ve estimate of the

selection parameter, known to overestimate the selection strength

[30], is obtained using the doubling time t0,1 hour and taking the

translation time difference between synonymous codons to be 10%

of the average translation time per codon (,0.1 seconds [12]).

This leads to c , 103. This value strongly overestimates the

strength of selection mainly because in natural environments, fast

exponential growth is not typical. However, selection for fast

translation is likely present only during rapid cell doubling. We can

therefore improve the estimate by multiplying it with the fraction

of total time that the cells actually grow fast. A rough estimate is

a few hours per a few days or more [55,56], so c would be reduced

by a factor of 0.001–0.1. We thus expect to find values of c in the

range 1–100. These estimates of c also imply that our assumption

of svv1 is fulfilled.

Alternatively c can be estimated from codon usage data using

the results of our model: One option is to use the sequences of

ribosomal proteins (Np=NRb~1) and to determine c from their

average fraction of slow codons. This procedure requires no

proteome data and leads to c<10. A second option is to obtain c
from our fit of the model to the dependence of codon usage on

protein abundance (see Results) via c~NRb=N0. From that

analysis we obtained c<1.4 using the abundance data of Lu et al.

[37] and c<100 using the abundance data of Ishihama et al. [36],

both in the range obtained from the microscopic estimate given

above. The difference between the two values is mostly due to the

different abundance of ribosomal proteins in the two data sets.

Co-evolution of Codon Usage and Codon Preferences (or
tRNA Concentration)

To test the hypothesis that evolution of codon preferences or

tRNA concentration occurs on larger time scales than the

evolution of the usage of individual codons, we obtained tRNA

gene copy numbers from the database tRNADB-CE [57] for 12

enteric bacteria and determined the correlations between. Even

though tRNA gene copy numbers are not a direct measure of

tRNA concentrations or codon preferences, they are correlated

[17,58]. Nevertheless, there are some difficulties associated with

the use of tRNA gene copy numbers. In particular, we do not find

a systematic variation of the correlation coefficients plotted in

Figure 1B with the phylogenetic distance or the frequency of

mutations. The latter was estimated by aligning rpoB sequences [a

commonly used protein-coding alternative to ribosomal RNA

sequences for phylogeny and ecological analysis [59]] using

ClustalW [60,61] and counting synonymous and non-synonymous

mutations. Therefore, we also counted changes in the ‘preferred

codons’ for each amino acid as defined by Hershberg and Petrov

[34], a measure of codon preference that requires only genomic

sequence information.

Identification of the Fast and Slow Codons
As mentioned above, the time difference Dt could in principle be

measured for each synonymous substitution. However, either

absolute or relative speeds of translation have only been measured

for a small set of codons [12,13]. For that reason, we adopt

a simplified description in which all codons are classified as either

fast or slow according to their usage in the gene of ribosomal

proteins, which are known to exhibit strong codon bias [4,18,19].

Codons that are preferentially used in ribosomal protein genes are

considered as fast codons (Table S1). Compared to other criteria

[34,44,62] such as classifications according to tRNA concentra-

tions, this criterion has the advantage that it depends only on

sequence information and does not require the knowledge of

tRNA concentrations or translation speeds. It is therefore readily

applicable to a species once its genome is sequenced.

Alternative classifications are based on tRNA concentrations (or

tRNA gene copy numbers). There are, however, several difficulties

in using tRNA concentrations as a measure of the translation

speed of a codon: First, two codons recognized by the same tRNA

may be recognized with different affinities. This possibility is

indicated by the observation that for 7 out of the 9 amino acids

encoded by 2 codons (Asn, Asp, Cys, Glu, His, Lys, Phe), there is

only one tRNA that reads both codons, yet there is still a clear

‘‘preferred’’ one between the two. In all of these cases, the

preferred codon is the one with perfect codon-anticodon matching

(Table S1). Second, it has been shown in vitro that kinetic

parameters of the ribosome are codon-dependent even when

corrected for tRNA concentrations, although tRNA concentration

is likely to account for the biggest effect [15]. Furthermore, if

a codon is read by several tRNAs, their concentrations would have

to be weighted with the corresponding affinities. Nevertheless,

tRNA concentrations are known to correlate with codon

preferences [3,17] and the choice of fast codons according to

our criterion of use in ribosomal genes mostly agrees with the

choices obtained based on other criteria (Table S1). In particular,

we emphasize that whenever we identify a single preferred codon,

it agrees with the ‘optimal codon’ in Ikemura’s codon hierarchy

[62], which is based on tRNA concentrations together with

structural arguments, and with the bioinformatics-based ‘preferred

codon’ of Hershberg and Petrov [34]. When we classify several

codons encoding the same amino acids as ‘fast’, the ‘preferred’ or

‘optimal’ codon according to these two approaches is always found

among our ‘fast codons’, although it is not always the one that is

used most frequently in ribosomal protein genes (Table S1).

Average Fraction of Slow Codons and Error Estimates
The relation between protein abundance (Np) and the fraction of

slow codons (rp) provided by our evolution model applies also to

individual codons if one interprets rp as the probability that

a certain codon is a slow codon. Therefore the average fraction of

slow codons (e.g., the red points in Figure 2) in a group of proteins

of similar abundance can be determined in two ways: We can take

the point of view of the proteins and calculate the (weighted)

average rp value over these proteins, �rr~
P
p

wprpwith the weights

wp~Lp=
P
p’
Lp’given by the sequence length Lp. Alternatively, we

can calculate the fraction of slow codons in the set of all codons of

these sequences as an estimate of the probability that such a codon
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is a slow codon. In that case, we treat the sequences of these

proteins as if they were one long sequence and discard all

information about the identity of proteins. Because we weight

sequences by their length, the two calculations lead to the same

result for the average fraction of slow codons. However, they result

in different estimates of the accuracy of that average (Table S3). In

the first case, we calculate a (weighted) mean of a set of rp values

that exhibit a certain distribution. The standard error of that mean

(dr(1)) reflects the standard deviation of that distribution and is

given by

dr(1)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p

wp
2rp(1{rp)

s
: ð8Þ

This error estimate is indicated by the red error bars in

Figures 2, 3 and S1. From the second point of view, we determine

a fraction of codons that are slow among a set of codons. The

standard error of that fraction is obtained as

dr(2)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rr(1{�rr)

Ncodons

s
, ð9Þ

where Ncodons~
P
p

Lp is the total number of codons from all

sequences. This error estimate is smaller than the first one (Table

S2) and is comparable to the size of the red circles in Figure 2. We

interpret the difference between these two error estimates as

reflecting the fact that the deviations of the fractions of slow

codons in the sequences of individual proteins from the average is

not due to random sampling, but due to other roles of codon

usage, as also suggested by the lack of a length dependence

(Figure 4C and D).

Supporting Information

Figure S1 Relation between codon bias and protein
abundance for several abundance data sets. The same

quantities are plotted as Figure 1 using protein abundance data

from Lu et al. [37], Link et al [39], Lopez-Campistrous et al. [40]

(A), and Pedersen et al. [38] (B). In (B), the dashed green lines

indicate two-fold deviations from the fit of the model to the

individual protein data. Genes with more than two-fold deviations

are labeled.

(TIFF)

Figure S2 Relation between codon bias and mRNA
levels. mRNA levels (data for growth in LB medium from ref.

[41]) are used as a proxy for protein abundance. The data is

analyzed in the same way as in Figure 1.

(TIFF)

Figure S3 Relation between codon bias and protein
abundance analyzed for individual amino acids. The

same quantities are plotted as in Fig. 2, using again abundance

data from Ishihama et al. [36]; however for each panel only

codons encoding one particular amino acid were taken into

account. A: amino acids encoded by two codons, B: amino acids

encoded by more than two codons.

(TIFF)

Figure S4 Exact solution of the evolution model and
interpolating approximation. The calculated fraction of slow

codons (rp) is plotted as a function of the selection coefficient s
(which is proportional to the protein abundance and scaled here

with respect to the mutation rate n0) as obtained from the full

solution (Eq. 7, solid lines) and the approximation given in Eq. 1

that interpolated between the limits of weak and strong selection

(dashed lines). The two cases are for an amino acids encoded by 1

fast and 1 slow codon (black) and 3 fast and 1 slow codon (blue).

(TIFF)

Table S1 Preferred codons.

(PDF)

Table S2 Correlations between measured and pre-
dicted protein abundance and between different abun-
dance data sets.

(PDF)

Table S3 Error estimates for the average fraction of
slow codons.

(PDF)
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