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Abstract

Motivation: Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to ex-
perimentally determine in structural details of. As such, many computational methods have been developed to aid
in peptide–protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently
refines coarse peptide–protein models into sub-Ångström precision using Monte-Carlo simulations and statistical
potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural networks
used for protein model quality assessment.

Results: Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement
and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from
FlexPepDock refinement starting from thousands of peptide–protein complexes generated by a wide variety of dock-
ing schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models
created, and on an independent benchmark on 109 peptide–protein complexes its inclusion results in an increase in
the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better
from 14.8% to 26.1%.

Availability and implementation: InterPepScore is available online at http://wallnerlab.org/InterPepScore.

Contact: bjorn.wallner@liu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Interactions between a protein receptor and a smaller flexible pep-
tide fragment make up 15–40% of all protein–protein interactions
(Petsalaki and Russell, 2008), and are involved in vital cell functions
such as cell life-cycle regulation (Midic et al., 2009). The flexibility
of the peptide and often transient nature of the interaction (Tu et al.,
2015) makes them difficult to study experimentally. Thus, computa-
tional protein–peptide docking methods are needed to understand
the molecular mechanisms and details of the interactions (Helander
et al., 2015; Petsalaki and Russell, 2008; Wei et al., 2019).

The approaches to solving the peptide–protein docking prob-
lem ranges from advanced searches for structural templates of
interaction such as with InterPep2 (Johansson-Åkhe et al., 2020)
or SPOT-peptide (Litfin et al., 2019), to exhaustive sampling of
docked conformations as in PIPER-FlexPepDock(Alam et al.,
2017) or pepATTRACT (Schindler et al., 2015), and end-to-end
machine-learning generated models of interaction as with the input
adapted AlphaFold protocols (Tsaban et al., 2022) or AlphaFold-
Multimer (Evans et al., 2021). Common to most of the docking
approaches is the need for a final step of all-atom refinement to

optimize the final structures. Several of the methods above use the
Rosetta FlexPepDock refinement protocol (Raveh et al., 2010) for
this final step.

Neural networks have dominated the fields of protein structure
quality assessment and tertiary structure prediction lately
(Kryshtafovych et al., 2019; Pereira et al., 2021), with neural net-
work architectures moving away from the generalized solutions
based on ideas from image recognition and toward specialized archi-
tectures for the protein structure problem, like AlphaFold2 which
combines attention layers, triangle multiplicative updates for graph
inference and 3D-equivariant transformers to go from sequence
alignment to structure prediction (Jumper et al., 2021). To describe
molecules and protein structures as graphs is an intuitive representa-
tion. Graph neural networks and graph convolution networks have
both seen use and great success in areas such as function prediction
(Gligorijevic et al., 2019), protein–protein interaction site prediction
(Fout et al., 2017) and tertiary structure quality assessment
(Baldassarre et al., 2021).

Previously, we developed InterPepRank, a small graph convolu-
tion network, for coarse-grained peptide–protein complex structure
quality assessment using a limited vertex and edge-space, trained on
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rigid-body-docked structures (Johansson-Åkhe et al., 2021). Here,
we introduce the InterPepScore scoring term for use with the
Rosetta FlexPepDock refinement protocol by continually predicting
DockQ score (Basu and Wallner, 2016) during FlexPepDock Monte
Carlo sampling. InterPepScore utilizes a network architecture simi-
lar to that of InterPepRank, but includes learnable edge- and global
features with a more complex information-passing scheme through
the graph, as well as an unlimited vertex- and edge-space, to better
tackle the more detail-oriented refinement problem. When
InterPepScore is added as an additional scoring term, it consistently
improves the performance by increasing the quality of the refined
models, and will as such improve any docking pipeline using
FlexPepDock for its final refinement.

2 Methods and development

2.1 Dataset
To train and benchmark the method, 6857 peptide–protein com-
plexes from the PDB (Berman et al., 2000) (December 12, 2018)
were redundancy reduced down to 684 complexes by clustering at
30% sequence identity. In this case, a peptide–protein complex was
considered any protein–protein complex where one ‘receptor’ chain
was at least 50 residues in length and shared at least 200 Å2 of con-
tact surface with a ‘peptide’ chain of less than or equal to 25 resi-
dues. Complexes with post-translational modifications of the
peptide or interacting interface were not included in the dataset. All
other post-translational modifications of the receptor structures
were reset to the unmodified residues.

A set of 109 complexes were selected as a test set and a separate
set of 95 complexes selected as validation set. The sets were gener-
ated randomly, but if any receptor of any set shared a CATH super-
family annotation with any other set, the randomization was
repeated until the sets shared no such connections. In the case that a
receptor had no CATH annotation, it was awarded the same anno-
tation as the chain in the full non-redundancy-reduced set that it
matched to with the largest TM-score when aligned with TM-align
(Zhang and Skolnick, 2005).

The training set was constructed by including every complex
from the initial non-redundancy reduced set which did not share a
CATH superfamily annotation with neither the test set nor the valid-
ation set, resulting in 4447 peptide–protein complexes for training,
evenly distributed between the three primary CATH classes.

2.2 Generating initial starting structures
The purpose of InterPepScore is to aid in Rosetta scoring of peptide–
protein complexes during refinement by guiding the refinement pro-
cess toward more native-like structures. Thus, the training data
should consist of several snapshots from the FlexPepDock refine-
ment processes, trajectories of peptide refinement starting from
models of varying quality.

The initial models used as starting points for the FlexPepDock
trajectories for training and validation as well as the models to refine
for testing and benchmarking were generated using three different
schemes: (i) perturbation of the native peptide similarly to the ori-
ginal FlexPepDock refinement paper (Raveh et al., 2010), (ii) rigid-
body-docking with several sampled peptide conformations similarly
to PIPER-FlexPepDock (Alam et al., 2017) and (iii) template-based
docking similarly to InterPep2 (Johansson-Åkhe et al., 2020).

For the test and validation sets, each scheme for generating start-
ing points contributed with four starting models, in total 12 starting
points per complex for all three schemes.

For the training set, a total of 440 000 starting points were gen-
erated evenly distributed between CATH superfamilies in the set, to
not bias the training set toward particular folds. Half of all starting
points were generated by rigid-body-docking, and the remaining
were evenly distributed between perturbation from the native fold
and template-based docking, respectively.

The sets would need to contain both possible to refine (already
close but not identical to the native structure) and difficult to refine
(further from native structure) starting positions, optimally evenly

distributed between different CATH superfamilies and starting point
generation schemes so as not to bias the trained InterPepScore. To
ensure sufficient number of starting points close to the correct struc-
ture to enable refinement, for each complex, exactly half of all start-
ing points from each generation scheme were forced to have an
LRMSD < 5.5 Å or any contiguous stretch of at least half the pep-
tide (or 5 residues, whichever is larger) with an LRMSD < 4.0 Å.
The first cutoff was chosen as it is the limit for salvageable decoys
from FlexPepDock protocol paper (Raveh et al., 2010). For longer
peptides, sometimes more of the peptide is modeled than what is ac-
tually in contact with the receptor, which is why the second cutoff
was also used. The forced selection was obtained by continually dis-
carding generated positions and generating new ones until the
thresholds were satisfied. Starting positions satisfying these criteria
are referred to as ‘salvageable’. This resulted in half of all starting
positions for each complex having high LRMSD and half having
low, and the distribution of high versus low starting positions were
the same for each complex for each generation scheme. As each
CATH superfamily contributed an equal amount of poses to the set,
there should be no bias in the training set toward any specific
CATH superfamily or refinement difficulty.

Details for how starting points were generated using the different
schemes can be found below:

I. Perturbation of the native position: PyRosetta was used to apply

random shear, small, rigid-transformation and rigid-rotation

movements to the native peptide. In this starting point gener-

ation scheme, the magnitude of the changes applied were modi-

fied after each starting point generated in accordance with if that

point became salvageable or unsalvageable (increased movement

sizes if the point became salvageable and vice versa).

II. Rigid-body docking: Rigid configurations of the peptide was

generated as in the PIPER-FlexPepDock paper and docked with

PIPER on the receptor surface (Alam et al., 2017). The best-

scoring decoys by PIPER score were selected.

III. Template-based docking: The receptor was aligned by TM-align

to every protein–protein complex in the PDB (Zhang and

Skolnick, 2005). The same rigid configurations for the peptide as

used for the rigid-body docking were structurally aligned to the

other side of the interface for the best scorers by use of

InterComp (Mirabello and Wallner, 2018).

In separate tests, structures generated by AlphaFold-Multimer-
v1 (Evans et al., 2021) are refined. These structures are generated by
running AlphaFold-Multimer with standard settings while disallow-
ing templates.

2.3 Graph network architecture
InterPepScore is a global score implemented as a graph network
with protein residues as vertices and edges between residues within
10 Å (as defined between their Cb, or Ca in case of Glycine) of each
other. The 10 Å cutoff was selected as such a graph is already calcu-
lated as part of the Rosetta scoring process when any context-
dependent two-body energy is included in the scoring function
(Leaver-Fay et al., 2011) and that contact distance threshold has
previously been proven adequate for global protein prediction met-
rics (Baldassarre et al., 2021). The features of the edges denote if the
residues are covalently bound or not and if the edges are self-edges,
similarly to previous work (Johansson-Åkhe et al., 2021). The ver-
tex features are BLOSUM62 columns representing the amino acid
residues and one-hot identifiers if the residues belong to the protein
or peptide chain. BLOSUM62 matrix columns were used instead of
learning a sequence embedding given the rather small number of
unique sequences in the training set. Pre-trained sequence embed-
dings, such as Bepler (Bepler and Berger, 2019) and ProtBert
(Elnaggar et al., 2020) were tried but did not improve performance
(Supplementary Table S1), most likely because the training set is too
small to cope with the large dimensions of the embeddings (121 and
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1024, respectively). Multiple sequence alignments were not used to
ensure InterPepScore can be used as any other Rosetta scoring term
without additional pre-calculation of features.

Three layers of graph network forward passes—updating all ver-
tex, edge and global features with ELU activation as implemented
through the Graph Nets package (Battaglia et al., 2018) followed by
a final convolution of the learned global representations make up
the architecture of the network, see Figure 1. Note that
InterPepScore does not use any global input features, but only vertex
and edge features with a constant dummy-variable placeholder for
global input features. A global representation is learned after each
graph net layer. During training, dropout and batch normalization
were used. Each learning component block of the Graph Network
(blue blocks in the figure) are composed of the following, in feed-
forward order:

I. Concatenation: Concatenation of the feature vectors of all inci-

dent elements and the active elements’ own feature vectors. In

cases where the number of incident elements is unknown, the

blue boxes are always preceded by a red box, which indicates a

summation of the feature vectors of the incident elements. The

global feature vector is incident to all other elements.

II. Perceptron: The basic learning component is a simple linear

perceptron.

III. Batch normalization

IV. ELU activation

V. Dropout: During training, a 40% dropout rate of features was

employed.

2.4 InterPepScore training
InterPepScore was implemented using pyRosetta (Chaudhury et al.,
2010) and was trained and validated on Rosetta FlexPepDock simu-
lation trajectories, including both accepted and rejected structures
during the Monte Carlo sampling steps. S-score normalized LRMSD
was used as the target function with a d0 of 8.0, LRMSDnorm ¼ 1/(1
þ (LRMSD/8.0)2). A global loss for the peptide as a whole was used
rather than a per-residue loss as even if a few peptide residues are
positioned roughly correctly, this does not mean they are rotated or
angled so as to allow the rest of the peptide to bind properly. In add-
ition, some residues might not be relevant to binding at all, such as
loops sticking out from the binding site.

Trajectories were generated from initial coarse models of the
4447 peptide–protein complexes of the training set by perturbing
the native peptide (Raveh et al., 2010), rigid-body docking (Alam

et al., 2017), or template-based docking (Johansson-Åkhe et al.,
2020) (see above), and InterPepScore was trained on snapshots from
these trajectories. After performance on validation data had con-
verged, the newly trained InterPepScore was used again with
Rosetta FlexPepDock as an addition to its regular scoring terms to
generate new simulation trajectories for further training in an itera-
tive manner until performance no longer improved (after three itera-
tions). This way, the training data was kept as similar as possible to
cases which the method would be run on, resulting in a form of on-
line training where the training set is continuously updated.

Although fully differentiable with regards to vertex and edge fea-
tures, graph networks are not differentiable in regards to the add-
ition and subtraction of edges, and can as such not be used for the
gradient descent calculation for the energy minimization steps in the
FlexPepDock protocol. Minimization steps are included in
FlexPepDock at regular intervals between Monte Carlo steps if the
total score of the complex is too poor as compared to a previous
state, to solve potential clashes introduced. Analysis on validation
data showed that the minimization step did not contribute to the
final quality of refined models when InterPepScore was included in
the refinement. As the minimization steps would not take
InterPepScore into account while the other Monte Carlo-based steps
would, it is probable that including the minimization steps would
lead to situations in which it worked against the rest of the protocol.
The lack of differentiability with regards to edge addition or sub-
traction does not affect the non-minimization parts of the protocol
and the conformational space sampled by the protocol is not limited
by the removal of the minimization steps (Supplementary Fig. S1)
even though the overall number of accepted Monte Carlo cycles
decreases by 31.3% on average.

In addition to being used for early stopping (stopping training
when performance on validation data ceases to improve), the per-
formance on the validation set was also used to find optimal hyper-
parameters regarding features such as degree of dropout, whether
batch normalization was needed during training, the number of
graph network layers, which activation function to use, the weight
with which to include InterPepScore in the scoring function, and
whether using the BLOSUM62 matrix or a pretrained embedding
for protein sequence such as Bepler (Bepler and Berger, 2019) or
ProtBert (Elnaggar et al., 2020) would be optimal as vertex features.
In general, more graph network layers and more expressive vertex
features yielded minor improvements to performance on training
data and validation data at first, but would quickly result in massive
overtraining, probably stemming from the restrictive number of
truly unique interaction complexes and sequences in the training set.
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Fig. 1. The neural network architecture of InterPepScore. E, V and G represents edge features, vertex features and global features, respectively. The blue boxes with numbers in

the graph network blocks represent the core learning elements of the network. The numbers inside boxes indicate the length of the feature vector they output. Note that in a

graph network, the V row always outputs one feature vector per vertex. Similarly, there is one feature vector per edge. The global input G is in parenthesis as InterPepScore

only uses a dummy variable as the global input, but after the first graph network layer a global representation is learned which is then used for later layers, as seen in the figure

(A color version of this figure appears in the online version of this article.)

InterPepScore 3211

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac325#supplementary-data


3 Results and analysis

3.1 InterPepScore improves refinement
The performance of the FlexPepDock refinement protocol when
including the InterPepScore scoring term was analyzed on the test
set of 109 non-redundant peptide–protein complexes that shared no
CATH superfamily annotation with any complexes from the train-
ing or validation sets. For each complex, starting points were gener-
ated the same way as for the training data. For the test and
validation sets, each scheme for generating starting points contrib-
uted with 4 starting models, in total 12 starting points per complex.
The FlexPepDock refinement protocol was run 200 times with and
without InterPepScore for each starting point. In all cases, the recep-
tor was relaxed and the exposed side-chains perturbed prior to
docking to simulate an unbound-to-bound docking scenario.

By including the InterPepScore both in the sampling and selec-
tion stage of the refinement the DockQ score is improved (Fig. 2),
resulting in more models of Acceptable and Medium quality. The
improvement is largest for the Medium quality where the original
FlexPepDock protocol produced models with a DockQ indicating
Medium quality model or better for 14.8% of the targets, which
improved to 26.1% of the targets using InterPepScore. For High
quality there is no difference, but only around 1% of the models
have that quality.

The original FlexPepDock refinement protocol already consist-
ently improves the quality of all decoys except those with high
DockQ scores, but with InterPepScore the improvement is larger
and maintained even for decoys with already excellent starting
DockQ (Fig. 3). InterPepScore not only aids in final selection, but
also leads to FlexPepDock producing higher quality models overall
(Fig. 3). As suggested in Raveh et al. (2011), the reweighted_sc score
term was used for evaluation of relaxed structures. Tests on valid-
ation data suggested small negative impact on performance when
selecting models based on total score instead (data not shown).

3.2 Starting from APO state receptors
All side-chains conformations in the test set were rebuilt before
docking and the receptors were relaxed without the peptide.
However, this might not adequately model potential backbone
changes some receptors undergo upon binding a peptide. To test if
InterPepScore aids in refinement in true unbound-to-bound refine-
ment cases as well, a second test-set was constructed from a list of
solved structures with annotated bound and unbound conforma-
tions, provided by the creators of AutoPeptiDB (London et al.,
2010). After removing all complexes where the receptor shared
CATH superfamily annotation with the training or validation set,
18 complexes remained for use in an APO/HOLO-test set. Starting

positions were generated for these complexes using the same scheme
as for the original test set (see above).

Overall, both the original FlexPepDock protocol and with added
InterPepScore manages to successfully refine the majority of starting
positions with similar performance as for the larger test set, al-
though both methods seem to struggle to refine high quality models
(Fig. 3). In addition, including InterPepScore still aids in the final
quality of decoys, increasing the fraction of cases when a model of
at least Medium DockQ-score quality is generated and selected from
38.1% of cases to 47.6% of cases. Lastly, for neither FlexPepDock
nor FlexPepDock with InterPepScore where there any significant
correlation between differences in conformational change between
the unbound and bound states of the receptor and the average differ-
ence in DockQ-score to the starting position (P-values > 0.21), fur-
ther indicating that the method is generalizable to realistic test cases.
The differences in conformation were measured as the TMScore or
RMSD of the entire receptor or the TMScore or RMSD of only resi-
dues involved in peptide binding (still superpositioning on the entire
receptor).

Note that while this test might be closer to a realistic case, it is
important to remember the small size of this secondary test set and
that differences might not be statistically significant. In addition,
peptides from this set are on average smaller than those from the
larger test set (9.5 residues on average as opposed to 13.5), which
might make the refinement simpler.

3.3 Is InterPepScore biased toward certain folds?
To investigate if InterPepScore is biased toward certain CATH
superfamilies, the distributions of differences in DockQ-score be-
tween refined models and their starting positions (DDockQ) were
investigated in two ways.

First, the influence of individual CATH superfamilies on the
analyses at large was measured by analyzing if the distribution of
DDockQ changed significantly when each superfamily was removed
from the test set one at a time, as analyzed through two-sided t-test
and Kolmogorov–Smirnov. In all cases the P-values where >0.4,
indicating that if there is any bias toward any superfamily, that bias
is not enough to pose a significant difference to the overall results.

Next, a two-sided t-test per CATH superfamily was made to ana-
lyze if the means of DDockQ of any single superfamily were signifi-
cantly different from the mean of the distribution of the rest of the test
set. Here, it seems as InterPepScore has some biases, i.e. it perform
relatively better or worse for some superfamilies, as does FlexPepDock
refinement without InterPepScore, see Table 1. Interestingly, the add-
ition of InterPepScore introduces a new negative bias against a super-
family (3.10.20.90) that the original FlexPepDock had no bias
against, and strengthens the already existing negative bias toward
1.10.238.10. In addition, InterPepScore also positively biases toward
three other CATH superfamilies.

The CATH superfamilies with significant biases were investi-
gated further to see if any general conclusions could be drawn
regarding InterPepScore behavior and bias. The CATH superfamily
1.10.238.10, with the largest negative bias, is EF-hand folds, which
are small bundles of a-helices connected by Calcium-binding loops.
This is a fold that both original FlexPepDock refinement and the
version improved with InterPepScore struggled with. Since all co-
factors and solvent molecules were removed in the tests in this study,
these structures lacked the Calcium atoms normally present, which
could have negatively affected the scoring of the structure.

The positive bias introduced by InterPepScore toward
1.20.920.10, a superfamily containing histone-binding proteins,
also seems to stem from the design of the dataset, which was
redundancy-reduced with regards only to the receptor and not the
peptide. As most peptides in the dataset are small, only the receptors
were used to filter out homologs between the sets, as significant se-
quence matches between peptides would be impossible without ex-
tensive review of their studies of origin to find the sequences the
peptides were exercised from. The histone interaction network
includes many interactions to histone N-terminal regions which are
often examined in the form of peptide–protein interactions, some of
which are present in the training set.

Fig. 2. For the 109 peptide–protein complexes investigated, the addition of

InterPepScore to the FlexPepDock refinement protocol both during folding and final

decoy selection consistently improves the quality of the final selected decoys as

measured by DockQ score (Basu and Wallner, 2016). With InterPepScore, the top-

scoring decoy achieves a DockQ-score of at least Medium quality (>0.49) in 26.1%

of all cases, as opposed to only 14.8% without. The DockQ cutoffs for Acceptable,

Medium and High quality have been marked with red triangles (A color version of

this figure appears in the online version of this article.)
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More interesting, perhaps, are the other superfamilies for which
InterPepScore introduced significant negative biases. 3.10.20.90 is
the ‘Phosphoatidylinositol 3-kinase Catalytic Subunit; Chain A, do-
main 1’ superfamily, belonging to the ubiquitin-like (UB-roll) top-
ology. Although the binding modes for the peptides in this
superfamily are quite varied, most of them interact with a b-sheet in
the receptor, but not through sheet reinforcement. Rather, the pep-
tide adopts various non-sheet structures, such as in the form of a
helix in contact with the side-chains of a two-strand sheet or an
extended loop making spurious b-sheet reinforcement-like contacts
but with tight loops and turns along itself. In the superfamily
2.60.210.10, toward which InterPepScore has a positive bias, inter-
actions occur through classic sheet reinforcement, indicating
InterPepScore does not simply bias against interactions through
sheet structures, but rather is perhaps biased against uncommon
sheet interactions. Examples can be found in Figure 4.

When comparing biases, it could be interesting to analyze the
complexes for which the final selected refined models differ the most
between FlexPepDock protocol with and without InterPepScore. As
can be seen in Figure 5, there exists many complexes for which ei-
ther method performs better. Marked with blue in the figure are the
complexes in which interaction is mediated via b-sheet reinforce-
ment, which shows the positive bias introduced by InterPepScore to-
ward such interactions but with one clear outlier: the complex for
which there is the largest difference in favor of original
FlexPepDock. While this complex does indeed interact through b-
sheet reinforcement, it is also a structure reliant on zinc co-factors, a
kind of structure which InterPepScore worsens the already inherent
bias against. The complex for which the difference is largest in the
opposite direction consists of a particularly long a-helical peptide of

24 residues. This bias of peptide size seem to be a general rule. For
the cases in which the original FlexPepDock refinement protocol
failed to create and select an Acceptable model but the
InterPepScore-enhanced protocol succeeded, 59.3% of the peptides
had a length of at least 15 residues (Supplementary Fig. S4). This
can be contrasted with the fact that only 38.7% of the peptides in
the dataset overall have at least this length.

As such, the authors do not recommend including InterPepScore
when running the FlexPepDock refinement protocol on models of
complexes believed to interact through uncommon b-sheet interac-
tions. In general however, the addition of InterPepScore should im-
prove the performance, especially in cases where it us suspected the
interaction is mediated through canonical b-sheet reinforcement or
for longer peptides.

3.4 InterPepScore refines AlphaFold models
To demonstrate general functionality of InterPepScore in refine-
ment, we generated starting models for the test set using
AlphaFold-Multimer (Evans et al., 2021), and applied the refine-
ment to these starting models as for the other tests. The starting
models generated by AlphaFold-Multimer are already refined and
of high quality, with few or no clashes, more satisfied bond angles
and hydrogen bonds and less non-interacting residues, although
they are not necessarily of higher DockQ. This makes the refine-
ment problem harder, as some simple improvements such as shift-
ing the rest of the peptide into binding or resolving clashes are not
available. Indeed, although this test demonstrated a much more
modest overall model improvement compared to their starting
points (Supplementary Fig. S5), with changes most often only
within 0.02 DockQ score, the InterPepScore still enhanced
FlexPepDock refinement, significantly improving the DockQ-score
for 19/109 complexes in the test set, while 10/109 complexes got
significantly worse DockQ-score (Fig. 6). Difference greater than
two standard deviations from zero was considered significant.
FlexPepDock refinement without InterPepScore only improved 13/
109 complexes significantly, while 7/109 complexes got signifi-
cantly worse (data not shown).

The same test was also performed on starting positions generated
by AlphaFold monomer version with a 30 glycine linker as in
Tsaban et al. (2022). Even though the improvements in absolute
terms are small and most refinements (85/109) do not change the
DockQ score significantly, just as the case of AlphaFold-Multimer,
InterPepScore still improved 19/109 targets significantly, while only
5/109 targets got significantly worse (Supplementary Fig. S6).

3.5 Reduced runtime with InterPepScore
As the minimization steps of the FlexPepDock refinement protocol
were skipped when including InterPepScore as a scoring term, the

109 test-set complexes 18 APO/HOLO-set complexes

(a) (b)

Fig. 3. For each starting position for each of the 109 peptide–protein complexes of the test set, the addition of InterPepScore to the FlexPepDock refinement protocol both dur-

ing folding and final decoy selection consistently improves the quality of the final selected decoys as measured by DockQ score (a). One model is selected per starting position.

Similar improvements can be seen for all but already high-quality models on the unbound-to-bound refinement set of 18 complexes (b)

Table 1. CATH superfamilies with significantly different means of

differences in DockQ to starting positions (DDockQ) as compared

to the rest of the test set

CATH annotation Statistic P-value

þInterPepScore

1.10.238.10 �3.71 2.18e–4

1.20.920.10 2.56 0.0106

2.60.40.150 4.59 5.02e–6

2.60.210.10 2.36 0.0186

3.10.20.90 �2.13 0.0330

Original FlexPepDock

1.10.238.10 �3.30 0.0010

1.10.246.190 �3.67 2.57e–4

2.20.70.10 3.30 9.84e–4
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protocol could theoretically run faster with InterPepScore, enabling
greater sampling in the same time by running more iterations of the
protocol. Indeed, the skipping of the minimization steps does slight-
ly decrease the computational time required for the protocol, even
with the time added for calculating InterPepScore (Supplementary
Table S2), keeping the runtime of InterPepScore enhanced
FlexPepDock similar to that of the original protocol. However, the
scaling of InterPepScore for larger complexes is better than the mini-
mization steps, meaning that InterPepScore is relatively faster for
larger complexes.

When discussing runtime, the deciding factor in the end is how
many times the protocol needs to be run before reliably converging
on a stable sampled minimum. That is, after how many runs can the
user be certain the method has sampled the best conformation it will
select. To analyze this, a subset of 15 complexes with different
CATH superfamilies from the larger test set were randomly selected
and the protocol was run repeatedly to generate 20 000 models for
each of these complexes, both with and without InterPepScore.
Although InterPepScore-enhanced reweighted_sc remained the selec-
tion criteria with highest correlation to DockQ score, and thus opti-
mal when selecting a large number of models (as in preparation for
clustering), the interface score (I_sc) proved slightly better for select-
ing the best model for both FlexPepDock with and without

InterPepScore when a large number of models were generated (aver-
age DockQ difference to best model sampled of 0.29 versus 0.33).

With InterPepScore, it took 13 400 runs to reliably sample and
select the top decoy for 90% of the complexes as contrasted with
14 600 runs for FlexPepDock without InterPepScore. The average
DockQ scores of these top decoys were 0.504 and 0.446, respective-
ly. Thus, including InterPepScore leads to less computational time
needed overall, as time taken to run the protocol a single time
remains largely unaffected while it can be run approximately 1000
fewer times and still reliably reach optimal results.

4 Conclusion

InterPepScore is easy to use with pyRosetta and contributes signifi-
cant improvements toward the FlexPepDock refinement protocol. In
general, the score-term causes the protocol to produce better struc-
tures as measured by DockQ-score. In some cases, for example un-
common b-sheet interactions, InterPepScore introduces negative
biases in performance, while introducing positive biases for other
cases, such as classic b-sheet reinforcement.

InterPepScore serves as a proof-of-concept that machine learning
regressors can be used in combination with statistical potentials and
first principle energy functions, and can be trained to integrate into

NEGATIVE BIAS POSITIVE BIAS

Fig. 4. Examples of complexes which are part of CATH superfamilies toward which InterPepScore introduces significant biases. The two leftmost structures are part of super-

family 3.10.20.90, consisting of complexes where the peptides mostly interact with sheet structures through other modes of binding than b-sheet reinforcement, and toward

which InterPepScore introduces a negative bias. The two rightmost examples are from CATH superfamilies where peptides mainly interact through b-sheet reinforcement, and

toward which InterPepScore introduces a positive bias (2.60.210.10 and 1.20.920.10). In all images, the receptor is colored dark blue and the peptide light cyan (A color ver-

sion of this figure appears in the online version of this article.)

Fig. 5. For each complex, the difference in DockQ score for the best of the top 10

final refined models as selected by standard FlexPepDock and the InterPepScore

enhanced version. Each point represents one complex. Complexes where the peptide

interact through b-sheet reinforcement are marked with white crosses with blue bor-

der (A color version of this figure appears in the online version of this article.)

Fig. 6. The overall change in DockQ-score for the top scoring refined models as

compared to their starting positions generated by AlphaFold-Multimer. The gray

shaded area shows the boundary of two standard deviations from zero. Note the

decreased magnitude in DockQ differences from starting points as compared to the

other test sets
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docking protocols based in these. Future works may explore additional
network architectures and input features, perhaps moving to an archi-
tecture with support for edge prediction to enable differentiability in
regards to edges and thus making the regressor compatible with energy
minimization steps of the refinement protocol.

It is our hope that many of the state-of-the-art peptide–protein
docking pipelines which make use of the FlexPepDock refinement
protocol will also make use of this additional scoring term to im-
prove their refinement steps.
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