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Abstract
The identification and treatment of “one-inflation” in estimating the size of an
elusive population has received increasing attention in capture–recapture litera-
ture in recent years. The phenomenon occurswhen the number of units captured
exactly once clearly exceeds the expectation under a baseline count distribution.
Ignoring one-inflation has serious consequences for estimation of the population
size, which can be drastically overestimated. In this paper we propose a Bayesian
approach for Poisson, geometric, andnegative binomial one-inflated count distri-
butions. Posterior inference for population size will be obtained applying a Gibbs
sampler approach. We also provide a Bayesian approach to model selection. We
illustrate the proposed methodology with simulated and real data and propose a
new application in official statistics to estimate the number of people implicated
in the exploitation of prostitution in Italy.
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1 INTRODUCTION

A popular methodology to estimate the size of an elusive population is the capture–recapture method, originally used
to estimate animal abundance. When the captures/observations are continuously collected over a fixed interval of time,
and time is considered uninfluential, the total number of captures for each unit is the sufficient statistic. Here we focus
on this setting, usually called “repeated counting data” (Böhning & Schön, 2005). To estimate the population size, the
observation/capturing counting process must first be modeled.
In Farcomeni and Scacciatelli (2013), “one–inflation” is explicitly mentioned for criminal populations as a (simple)

particular case in a broader class of behavioral effects. In more recent years, a series of papers—see, for example, Godwin
and Böhning (2017), Godwin (2017), Godwin (2019), Böhning et al. (2018), and Böhning and Friedl (2021)—have been
devoted specifically to the phenomenon in repeated counting data.
One-inflation consists in an excess of “ones” in the observed data, that is, more units than expected are captured exactly

once. The excess of “ones” is usually evaluated with respect to a chosen family of counting distributions: Godwin and
Böhning (2017) considered one-inflationwith respect to a “base” Poissonmodel, while Böhning and Friedl (2021) analyzed
the inflation in the geometric case. One-inflated negative binomialwas introduced inGodwin (2017), and the finitemixture
of one-inflated Poissons (OIPs) in Godwin (2019).
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One-inflation can occur for different reasons; for instance, when some units of the population can no longer be captured
after the first capture. Suchmay be the case of some wild animal populations. In fact, animals experiencing a capture may
find it so unpleasant that some develop the will and ability to avoid subsequent captures. Much the same mechanism
may also occur in human populations, particularly when the first capture is a matter of law enforcement, involves impris-
onment, or reveals an undesirable characteristic/behavior. See Godwin and Böhning (2017) for ample discussion of the
justifications and conditions for one-inflation in capture–recapture, also including an interpretation of one-inflation as
limiting case of the so-called “trap shy” behavioral model; see, for example, p. 37 of McCrea and Morgan (2014) or p. 119
of Borchers et al. (2002). One-inflation deserves specific attention due to its effect on population size estimators. In fact,
when not taken into account, one-inflation causes overestimation of the total population size. This also applies to the
well-known lower bound Chao estimator, as discussed in Chiu and Chao (2016) and Böhning et al. (2018).
In this paper we propose a Bayesian approach for counting datamodels with one-inflation. The properties of ourmodels

are analyzed with both simulation studies and real data applications. In particular, we apply our models to real data to
estimate the size of some illegal populations active in Italy in 2014 and some real data available from the literature on
capture–recapture, where the issue of one-inflation has been recognized.
The paper is organized as follows: In Section 2 we introduce the notation for repeated counting data and broadly illus-

trate Bayesian inference for population size with this kind of data. We describe the general model for one-inflated count
data under an unspecified counting distribution and outline a Gibbs sampler algorithm to handle the one-inflatedmodels.
We also introduce a formal Bayesian procedure for model comparison in the presence of one-inflated models. Section 3
specifies the results under the Poisson and geometric assumptions, corroborating our proposal with a simulation study.
In Section 4 we introduce the negative binomial distribution and its one-inflated counterpart discussing the boundary
problem via a simulation study. In Section 5 we illustrate some applications to real cases: First we show the results of
our inference on data on prostitution exploitation in Italy in 2014; moreover, we apply our models to some popular data
sets in capture–recapture literature. Section 6 concludes the paper with some remarks and discussion of open issues for
further investigation.

2 BAYESIAN INFERENCE FOR POPULATION SIZE

According to the standard formulation, consider a closed population (no births, deaths, or migration) of size𝑁. For each
unit in the population, let 𝑌 be a random variable taking value 𝑗 = 0, 1, 2, … if the individual is observed/captured 𝑗
times. We only observe the 𝑛 individuals, 𝑛 ≤ 𝑁, which are captured at least once. Let 𝐲 = (𝑦1, … , 𝑦𝑛) be the vector of the
individual number of captures. Note that 𝐲 will denote the result of the capture–recapture experiment, which comprises
both the number 𝑛 of captured individuals and the number of captures for each observed individual.
Let 𝑛𝑗 denote the number of individuals observed 𝑗 times, that is, 𝑛𝑗 is the frequency of count 𝑗 in sample 𝐲. Our interest

is to estimate the number of uncaptured units 𝑛0, and, consequently, the total population size𝑁 = 𝑛 + 𝑛0, on the basis of
some model for the observed 𝑛𝑗 .
Bayesian inference for the population size𝑁 can be obtained with standard Markov chain Monte Carlo (MCMC) algo-

rithms. In fact, let𝑓(𝑦|𝜃) = 𝑃(𝑌 = 𝑦|𝜃) for 𝑦 = 0, 1…, be the probability distribution function for𝑌. The generic expression
for the likelihood 𝑓(𝐲|𝜃,𝑁) is

𝑓(𝐲|𝜃,𝑁) = (𝑁
𝑛

)
𝑓(0|𝜃)𝑁−𝑛 𝑛∏

𝑖=1

𝑓(𝑦𝑖|𝜃). (1)

Assuming independent priors for 𝜃 and 𝑁, that is, 𝑝(𝜃,𝑁) = 𝑝(𝜃)𝑝(𝑁), the posterior distribution 𝑝(𝜃,𝑁|𝐲) can easily be
drawn by, for example, updating the conditional distributions

𝑝(𝜃|𝑁, 𝐲) ∝ 𝑓(0|𝜃)𝑁−𝑛 𝑛∏
𝑖=1

𝑓(𝑦𝑖|𝜃) 𝑝(𝜃)
and

𝑝(𝑁|𝜃, 𝐲) ∝ (𝑁
𝑛

)
𝑓(0|𝜃)𝑁−𝑛 𝑝(𝑁).
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We can generate from those posteriors via Gibbs or Metropolis–Hastings steps, according to the parametric family for 𝑌
and the prior for 𝑁.
In the Bayesian literature, common choices for the (default or noninformative) prior over 𝑁 are:

(1) 𝑝(𝑁) ∝ 𝑁𝑙 for 𝑙 ∈ {−2,−1, −1∕2, 0} possibly truncating the prior to an opportune upper bound; 𝑙 = −1 corresponds
to the Jeffreys’ prior which is improper;

(2) Rissanen’s prior (Rissanen, 1983), which is always proper and is given by 𝑝(𝑁) ∝ 2− log
∗
(𝑁), where log∗(𝑁) is the sum

of the positive terms in the sequence {log2(𝑁), log2(log2(𝑁)), …}.

See Tardella (2002), Wang et al. (2007), and Xu et al. (2014) for extensive simulation studies.
Note the following:

(1) by assuming 𝑝(𝑁) ∝ 1∕𝑁, the full conditional distribution of 𝑛0 = 𝑁 − 𝑛 is negative binomial with size parameter 𝑛
and probability 𝑓(0|𝜃) whatever the model for 𝑌 may be;

(2) the full conditional of 𝜃 corresponds to its posterior distribution when the zero counts are also known.

For example, when 𝑌 is Poisson(𝜆) and a priori we take the conjugate prior for 𝜆, which is Gamma(𝛼𝜆, 𝛽𝜆), the latter
step consists solely in the generation of a Gamma distribution with parameters given by 𝛼𝜆 + 𝑠 and 𝛽𝜆 + 𝑛 + 𝑛0, where
𝑠 is the sum of the observed captures. Similarly, when 𝑌 is geometric(𝑝) and a priori we take the conjugate prior for 𝑝,
which is Beta(𝛼𝑝, 𝛽𝑝), this step consists in the generation of a Beta distribution with parameters 𝛼𝑝 + 𝑛 + 𝑛0 and 𝛽𝑝 + 𝑠.

2.1 One-inflated models

We assume that in our population a specific behavioral mechanism is at work, by virtue of which an individual that would
otherwise face multiple captures now has a positive probability 𝜔 of being captured just once.
Let 𝑌 denote the observed number of captures for a unit, and 𝑌∗ the latent value we would observe without the behav-

ioral mechanism. The two variables are linked by means of the following infinite transition matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ⋯

0 1 0 0 0 ⋯

0 𝜔 1 − 𝜔 0 0 ⋯

0 𝜔 0 1 − 𝜔 0 ⋯

0 𝜔 0 0 ⋱

⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the (𝑘, 𝑗)th element represents the conditional probability 𝑃(𝑌 = 𝑗 − 1 | 𝜔,𝑌∗ = 𝑘 − 1). When 𝑘 > 1 these condi-
tional probabilities can be written as

𝑃(𝑌 = 𝑗 | 𝜔,𝑌∗ = 𝑘) = 𝜔(1−𝛿𝑘(𝑗))(1 − 𝜔)𝛿𝑘(𝑗) 𝑗 = 1, 𝑘,

where 𝛿𝑘(𝑗) is Kronecker delta.
Let 𝑓(𝑘|𝜃) = 𝑃(𝑌∗ = 𝑘 | 𝜃) be the probability distribution, depending on a given parameter, 𝜃, of the number of captures

without the behavioral effect, and let 𝐹(𝜃) denote the associated c.d.f. Then, the resulting distribution for 𝑌 is the one-
inflated model defined as follows:

𝑃(𝑌 = 𝑗 | 𝜃, 𝜔) = ⎧⎪⎨⎪⎩
𝑓(0|𝜃) if 𝑗 = 0;

(1 − 𝜔)𝑓(1|𝜃) + 𝜔(1 − 𝑓(0|𝜃)) if 𝑗 = 1;

(1 − 𝜔)𝑓(𝑗|𝜃) if 𝑗 > 1.



TUOTO et al. 915

The conditional distribution of 𝑌∗ when 𝑌 = 𝑗 is concentrated on 𝑗 when 𝑗 ≠ 1, while, when 𝑗 = 1, we have:

𝑃(𝑌∗ = 𝑘 | 𝑌 = 1, 𝜃, 𝜔) =

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑘 = 0;

𝑓(1|𝜃)
𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃)) if 𝑘 = 1;

𝜔𝑓(𝑘|𝜃)
𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃)) if 𝑘 > 1.

(2)

2.2 Gibbs sampler for one-inflated models

Bayesian inference for one-inflated models can be obtained by simulating the posterior distribution of 𝜃, 𝜔,𝑁, 𝑦∗1 , … , 𝑦
∗
𝑛

given the observed data 𝐲, where 𝑦∗1 , … , 𝑦
∗
𝑛 indicate the unknown captures that the 𝑛 observed units would have faced

without the behavioral mechanism. Let us assume that the parameters 𝜃, 𝜔, and 𝑁 are a priori independent and let
𝑝(𝜃, 𝜔,𝑁) = 𝑝(𝜔)𝑝(𝜃)𝑝(𝑁) denote the prior distribution. The general expression for the posterior distribution of one-
inflated models augmented with the vector 𝐲∗ = (𝑦∗1 , … , 𝑦

∗
𝑛) is

𝑝(𝜃, 𝜔,𝑁, 𝐲∗|𝐲) ∝ 𝑝(𝐲|𝜃, 𝜔,𝑁, 𝐲∗)𝑝(𝐲∗, 𝜃, 𝜔,𝑁)
∝

𝑛∏
𝑖=1

𝑃(𝑌𝑖 = 𝑦𝑖|𝑦∗𝑖 , 𝜔)𝑝(𝐲∗|𝑁, 𝜃)𝑝(𝜃)𝑝(𝜔)𝑝(𝑁)
∝

(𝑁
𝑛

)
𝑓(0|𝜃)𝑁−𝑛 𝑛∏

𝑖=1

𝑃(𝑌𝑖 = 𝑦𝑖|𝑦∗𝑖 , 𝜔)𝑓(𝑦∗𝑖 |𝜃)𝑝(𝜃)𝑝(𝜔)𝑝(𝑁).
To describe our approach to simulate the posterior distribution of one-inflatedmodels, we introduce an additional latent

binary variable 𝑍𝑖 indicating the presence/absence of the behavioral mechanism, which causes the one-inflation in unit
𝑖, that is, 𝑍𝑖 is the indicator function of the event {𝑌𝑖 ≠ 𝑌∗

𝑖
}. We then have that:

𝑃(𝑍𝑖 = 1 | 𝑌𝑖 ≠ 1) = 0,

and, from (2), we have

𝑃(𝑍𝑖 = 1 | 𝑌𝑖 = 1) =
𝜔(1 − 𝐹(1|𝜃))

𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃)) .
Then, since 𝑍𝑖 = 1 implies 𝑌∗

𝑖
> 1, we have

𝑃(𝑌∗
𝑖
= 𝑘 | 𝑍𝑖 = 1) =

⎧⎪⎨⎪⎩
𝑓(𝑘 | 𝜃)

1 − 𝐹(1 | 𝜃) if 𝑘 > 1;

0 otherwise.
(3)

We can now outline a Gibbs sampler looping over the full conditionals of 𝑌∗ and 𝜔, 𝑁, and 𝜃. The updating of 𝜃 will
depend on the model assumption for 𝑌∗ and may require a Metropolis-within-Gibbs step, whereas the updating of 𝑌∗, 𝜔,
and 𝑁 can always be performed with the following exact Gibbs steps:

(1) The simulation of the full conditional of 𝑌∗1 , … , 𝑌
∗
𝑛 can be obtained in two steps, by first updating 𝑍1, … , 𝑍𝑛. In fact,

let 𝑛𝑧 =
∑𝑛

𝑖=1
𝑍𝑖 be the number of units affected by one–inflation; then, conditional on the current value of 𝜔 and 𝜃,

we can generate a value for 𝑛𝑧 from

𝐵𝑖𝑛𝑜𝑚

(
𝑛1 ,

𝜔(1 − 𝐹(1|𝜃))
𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃))

)
.
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Then, for each of the 𝑛𝑧 units, we can generate a value of 𝑌∗ by simply simulating a number of captures from the
truncated count distribution (3).

(2) Consider the prior

𝜔 ∼ 𝐵𝑒𝑡𝑎(𝛼𝜔, 𝛽𝜔),

and let 𝑛𝑧,𝑘 be the number of units among the 𝑛𝑧 for which 𝑌∗ = 𝑘, such that
∑
𝑘
𝑛𝑧,𝑘 = 𝑛𝑧. We can then write the

full conditional of 𝜔, 𝑝(𝜔 | −) as:
𝑝(𝜔 | −) ∝ 𝜔𝛼𝜔−1(1 − 𝜔)𝛽𝜔−1

∏
𝑘>1

[𝜔𝑓(𝑘 | 𝜃)]𝑛𝑧,𝑘 ⋅ [(1 − 𝜔)𝑓(𝑘 | 𝜃)]𝑛𝑘 .
That is, we can directly draw 𝜔 from

𝐵𝑒𝑡𝑎

(
𝛼𝜔 + 𝑛𝑧 , 𝛽𝜔 +

∑
𝑘>1

𝑛𝑘

)
.

(3) The full conditional distribution of 𝑁 is given by

𝑝(𝑁 | −) ∝ (𝑁
𝑛

)
𝑓(0|𝜃)𝑁−𝑛𝑝(𝑁)

and, by assuming the improper prior 𝑝(𝑁) ∝ 1∕𝑁 we can directly draw 𝑛0 from the following negative binomial(𝑁 − 1

𝑛 − 1

)
𝑓(0|𝜃)𝑁−𝑛(1 − 𝑓(0|𝜃))𝑛.

If we adopt a different prior over 𝑁, we have to implement a Metropolis step.

Finally, as we have seen, the updating of 𝜃 will depend on the model assumption for 𝑌∗. The general expression for the
full conditional of 𝜃 is:

𝑝(𝜃 | −) ∝ 𝑓(0|𝜃)𝑁−𝑛 𝑛∏
𝑖=1

𝑓(𝑌∗
𝑖
|𝜃)𝑝(𝜃).

2.3 Model selection

To test the one-inflation assumption with respect to a specific base count distribution we can adopt a fully Bayesian
approach. Let 𝑀1 be the noninflated model and 𝑀2 the one-inflated counterpart (indicated by the OI suffix, hereafter).
Model comparison can be performed by calculating the posterior model probabilities

𝑃(𝑀𝑖 | 𝐲) = 𝑝(𝑀𝑖)𝑝(𝐲|𝑀𝑖)

𝑝(𝑀1)𝑝(𝐲|𝑀1) + 𝑝(𝑀2)𝑝(𝐲|𝑀2)
,

where 𝑝(𝐲|𝑀𝑖) is the marginal likelihood that, for the models considered in this paper, can be generally written as

𝑝(𝐲|𝑀𝑖) = ∫
∞∑
𝑁=𝑛

𝑓(𝐲 | 𝜃𝑖, 𝑁,𝑀𝑖)𝑝(𝜃𝑖, 𝑁 |𝑀𝑖) 𝑑𝜃𝑖,

with 𝜃1 and 𝜃2 denoting, respectively, the parameters of the baseline and the OI counterpart models. For instance, for
Poisson model we have 𝜃1 = 𝜆 and 𝜃2 = (𝜆, 𝜔), for the geometric case we have 𝜃1 = 𝑝 and 𝜃2 = (𝑝, 𝜔). In the case of two
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models we can directly use the Bayes factor (BF) in favor of the OI

𝐵𝐹 =
𝑃(𝑀2 | 𝐲)
𝑃(𝑀1 | 𝐲) = 𝑃(𝑀2)

𝑃(𝑀1)

𝑝(𝐲|𝑀2)

𝑝(𝐲|𝑀1)
.

Note that we can also extend the comparison setting by simultaneously considering more than two models. For example,
in the next section we compare the Poisson and the geometric model together with the corresponding OI counterparts
for a total of four models. Assuming equal prior probabilities 𝑃(𝑀𝑖) for 𝑖 = 1, … , 𝑘, the posterior model probabilities are
proportional to the marginal likelihoods, that is, 𝑃(𝑀𝑖 | 𝐲) ∝ 𝑝(𝐲|𝑀𝑖) for 𝑖 = 1, … , 𝑘. Note. moreover, that assuming the
noninformative prior𝑝(𝑁) = 𝑐∕𝑁would producemarginal likelihoods depending on the constant 𝑐. However, in our case,
the parameter𝑁 has the samemeaning across all themodels under comparison, hence the use of the same improper prior
𝑝(𝑁) = 𝑐∕𝑁 is justified and the constant 𝑐 cancels out in the evaluation of the posterior model probabilities, see Kass and
Raftery (1995).
Analytical evaluation of the marginal likelihoods 𝑝(𝐲|𝑀𝑖) is not possible. However, we have that (see the Appendix)

𝑝(𝐲|𝑀𝑖) = 𝑐 ∫
∞∑
𝑁=𝑛

𝑓(𝐲|𝜃𝑖, 𝑁,𝑀𝑖)
1

𝑁
𝑝(𝜃𝑖) 𝑑𝜃𝑖 =

𝑐

𝑛 ∫
𝑛∏
𝑖=1

𝑓(𝑦𝑖|𝜃𝑖)
1 − 𝑓(0|𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖. (4)

Hence, the posterior model probabilities will depend solely on fitting the truncated distribution of 𝑌 to the observed cap-
tures.
To evaluate the marginal likelihood of each model numerically, we use the Chib’s approximation introduced in Chib

(1995), which can easily be obtained as a by-product of the general Gibbs algorithm illustrated in the previous section. The
details of the Chib approximation for all the models considered throughout this paper are given in the Appendix.
Finally, it is worth noting that, in the context of capture–recapture, model averaging appears to be a suitable alternative

to model selection. In fact, the quantity of interest 𝑁 has the same meaning across different models and we can easily
obtain an estimate 𝑁 of 𝑁 averaged over the eligible alternatives via the following formula:

𝑁 = 𝐸[𝑁 | 𝐲] =∑
𝑖

𝑁̂𝑀𝑖
𝑃(𝑀𝑖 | 𝐲),

where 𝑁̂𝑀𝑖
is the posterior mean of𝑁 obtained under model𝑀𝑖 . However, since the estimates of𝑁 under the base model

and under its one-inflated counterpart may show very considerable differences, definite choice between the two could be
a sensible approach in this case.

3 ONE-INFLATED POISSON AND GEOMETRIC DISTRIBUTIONS

Ifwe assume that our count data𝑌∗ follows aPoisson distribution, that is,𝑓(𝜃) represents a Poisson densitywith parameter
𝜆, the model proposed for the observed 𝑌 in previous Section 2.1 is an OIP and corresponds to the model presented in
Godwin and Böhning (2017).
The estimating procedure is based on theGibbs sampler described in Section 2.1, where, in order to complete the analysis

framework,we assume aGamma(𝛼𝜆, 𝛽𝜆) prior for 𝜆,𝛼𝜆, and𝛽𝜆 being shape and rate parameters. Let𝑛∗𝑘 be the total number
of units captured 𝑘 times after updating 𝑛0, 𝑛𝑧, and 𝑌∗, that is,

𝑛∗
𝑘
=

⎧⎪⎨⎪⎩
𝑛0 for 𝑘 = 0;

𝑛1 − 𝑛𝑧 for 𝑘 = 1;

𝑛𝑘 + 𝑛𝑧,𝑘 if 𝑘 > 1;

and let {𝑛∗} denote the set of all values 𝑛∗
𝑘
for 𝑘 = 0, 1, … We can then generate the updated value for 𝜆 from its full

conditional

𝐺𝑎𝑚𝑚𝑎

(
𝛼𝜆 +

∑
𝑘>0

𝑘 𝑛∗
𝑘
, 𝛽𝜆 + 𝑁

)
.
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TABLE 1 Simulation scenarios with data-generating models, parameter values, and expected sample size 𝐸[𝑛] (the expected values of 𝑛
are common to all three scenarios)

Scenario I Scenario II Scenario III Distribution
No inflation Low inflation, 𝝎 = 𝟎.𝟐 Substantial inflation, 𝝎 = 𝟎.𝟓 𝑵 Parameter 𝑬[𝒏]

Poi OIP OIP 500 𝜆 = 1 316
𝜆 = 2 432

1000 𝜆 = 1 632
𝜆 = 2 865

Geo OIG OIG 500 𝑝 = 0.4 300
𝑝 = 0.6 200

1000 𝑝 = 0.4 600
𝑝 = 0.6 400

If we adopt a geometric distribution for 𝑌∗, parameterized as

𝑃(𝑌∗ = 𝑘 | 𝑝) = (1 − 𝑝)𝑘𝑝,

the resultingmodel for𝑌 is called one–inflated geometric (OIG). To finalize the Bayesian analysis, we adopt a𝐵𝑒𝑡𝑎(𝛼𝑝, 𝛽𝑝)
conjugate prior for 𝑝, and its posterior conditional on the current values of 𝑛0, 𝑛𝑧, and 𝑌∗ would be equal to:

𝐵𝑒𝑡𝑎

(
𝛼𝑝 + 𝑁 , 𝛽𝑝 +

∑
𝑘>0

𝑘 𝑛∗
𝑘

)
.

3.1 A simulation study

In this section we present a twofold simulation study; on one hand, we aim to validate our proposal for inference on the
population size in the presence of one-inflation, while on the other hand the results of the simulation study illustrate
the model selection among the four models presented in the previous section, namely, Poisson (which we refer to as
model Poi), Geometric (Geo), OIP, and OIG. Specifically, we set up three main scenarios: In the first we generate from
the base distributions without one-inflation; in the second scenario, we generate from one-inflated distributions with a
low/moderate inflation rate (𝜔 = 0.2), while in the third we consider a substantial inflation rate (𝜔 = 0.5). We repeat each
scenario with two different values of the parameter (𝜆 or 𝑝) and with two different values of𝑁 (500 and 1000). We set the
parameters using values similar to those from the real cases analyzed in Section 5. The scenarios and the values of the
different parameters are summarized in Table 1.
For each combination of parameters in each scenariowe simulate 100 data sets of𝑁 units from the respective generating

model and remove the 0 counts from the sample. To simulate from the one-inflated models in Scenarios II and III, we
generate from the corresponding base model and then change each generated value greater than 1 to a 1 with probability
𝜔. All the experiments were conducted in R and the code is available as Supporting Information on the journal’s web page.
First, we set out to evaluate the sensitiveness of the estimates of the unobserved population size𝑛0 undermispecification

of the model. For each simulated data set, we consider the estimates of 𝑛0, given by the posterior mean, under all four
models, and compute relative bias calculated as the relative difference between the true value and the posterior mean of
the parameter. Table 2 shows the average percentage relative bias over the 100 replicates.
The results set out in Table 2 confirm that the estimates of 𝑛0 we obtain with a one-inflated model are always lower

than those obtained with the corresponding base model. In fact, ignoring one-inflation when present leads to severe
and systematic overestimate of 𝑛0. On the other hand, admitting one-inflation when it is not present is not such a
serious error and, on average, we moderately underestimate 𝑛0. Choosing the wrong model (Poisson instead of geo-
metric, inflated or not) can have disastrous consequences. In particular, if data come from Poi or OIP models, a Geo
or OIG model would drastically overestimate 𝑛0. If data are generated from a Geo or OIG model, choosing a Poi or
OIP model implies an equivalent underestimate of 𝑛0. Note that, the two cases having the highest relative bias under
the correct models can be justified by the observed number of captures. In particular, when the generating model is
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TABLE 2 Relative bias (%) of the unobserved units estimates, 𝑛0
Generating model 𝑵 = 𝟓𝟎𝟎 𝑵 = 𝟏𝟎𝟎𝟎

Model Parameter Inflation Poi Geo OIP OIG Poi Geo OIP OIG
Poi 1 None 1.67 198 −12 189 0.37 196 −9 190
Poi 2 None 1.28 391 −5.49 389 0.88 390 −4.12 388
Geo 0.4 None −82 −0.80 −91 −5.48 −82 −1.13 −91 −4.33
Geo 0.6 None −68 0.27 −80 −9.34 −68 0.73 −82 −6.84
OIP 1 0.2 52 514 3.41 501 52 514 2.32 507
OIP 2 0.2 37 273 0.71 246 37 272 0.38 254
OIP 1 0.5 147 497 14 339 146 496 6.04 146
OIP 2 0.5 218 883 5.38 619 219 886 3.54 614
OIG 0.4 0.2 −72 25 −91 0.92 −73 23 −91 −0.03
OIG 0.6 0.2 −55 26 −79 1.50 −56 26 −81 1.21
OIG 0.4 0.5 −39 100 −91 1.72 −39 100 −91 2.07
OIG 0.6 0.5 −16 108 −76 15 −18 104 −79 7.74

OIP with 𝜆 = 1 and 𝜔 = 0.5, the expected number of captured units is low (𝐸[𝑛] = 316 when 𝑁 = 500), and most of
them are captured exactly once (𝐸[𝑛1] = 250). The same happens in the case of OIG with 𝑝 = 0.6 and 𝜔 = 0.5 where
𝐸[𝑛] = 200 and𝐸[𝑛1] = 160. However, even in these worst cases, the relative bias decreases, as expected, when the sample
size increases.
Here we will not present the results concerning the relative root mean squared error and the relative mean absolute

error, which in any case, confirm the results presented on the relative bias.
These results are also confirmed on analyzing the coverage of the posterior credible intervals, not reported here for

brevity but computed by the R code available in the Supporting Information on the journal’s web page. The posterior
credible intervals of the one-inflatedmodel almost always contain the true values when we generate from the correspond-
ing baseline distribution. On the other hand, when we generate from a one-inflated model, the credible intervals of the
baseline model barely cover the true values. The credible intervals deriving from the Poisson models (regardless of one-
inflation) seldom cover the true value generated by the geometric distribution, and vice versa. The only exception is the
case in which we generate from OIG (𝑝 = 0.6, 𝜔 = 0.5) and estimate with a Poisson distribution (see the bottom row in
Table 2), in which case the baseline Poisson credible intervals cover the true value nearly 50% of the times.
Next, to assess the model selection criterion detailed in the previous section, Figures 1 and 2 show the posterior prob-

abilities of our four competing models calculated with Chib’s approximation. Figure 1 summarizes the results in all the
scenarios when 𝑁 = 500, while Figure 2 refers to the case 𝑁 = 1000.
It is evident that, as the number of observed units 𝑛 increases, the effectiveness of the posterior model probabilities in

identifying the correct generating model is reinforced. Note that 𝑛 depends both on 𝑁 and on the parameters 𝜆 and 𝑝.
It is also evident that a higher inflation rate will be more easily identified correctly. In fact, when 𝑁 = 1000, we would
select the true data-generating model in almost all simulations in Scenarios I and III, and in most cases in Scenario II.
For the sake of brevity, here we do not present the results when 𝑁 = 2000 or higher, since in all scenarios and parameter
combinations the posterior model probability of the generating model is close to one.
When 𝑁 = 500, we would still identify the correct generating model in the majority of cases, but we can observe some

critical situations. In particular, when the generating model is OIP with 𝜆 = 1 and 𝜔 = 0.2, and when we generate from
the OIG with 𝑝 = 0.6 and 𝜔 = 0.2, the correct model and its base counterpart are almost equally preferable. In the former
case we have 𝑛 = 316 and 𝑛1 = 183 on average, that is, most of the units are captured once. Consequently, the posterior
probabilities are very similar due to such a slight alteration in singleton counts from the basic Poisson distribution. Much
the same happens in the latter case, with an even lower number of observations (on average 𝑛 = 200).
For a simulation study using frequentist criteria for model selection (Akaike information criterion [AIC] and Bayesian

information criterion [BIC]) see Böhning and Ogden (2021).
In conclusion, as expected, the one-inflation models encompass the baseline models and, when one-inflation is not

present, the slight underestimation of𝑁 decreases as 𝑛 increases. Clearly, the choice of the distribution is a crucial aspect,
and the Bayesian approach gives us a powerful tool to deal with model selection.
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F IGURE 1 Box-plot of posterior model probabilities when 𝑁 = 500; the data-generating model is indicated above each panel

4 ONE-INFLATED NEGATIVE BINOMIAL

In this section we describe how to perform Bayesian estimation of the population size in the presence of one-inflation
when the base distribution is the negative binomial model. We also underline the inferential drawbacks related to this
distribution, which limit its general use and how the Bayesian approach mitigates these problems.
The negative binomial distribution (NB) is often adopted as a two-parameter generalization of Poisson that can take

into account overdispersed count data. It also constitutes a generalization of the geometric distribution, with respect to
which it allows for both overdispersion and underdispersion. Its use is well known in capture–recapture, and has also
been investigated in the presence of one-inflation in Godwin (2017).
Here we assume that the unobserved count 𝑌∗ follows an NB model with the following parameterization in terms of 𝑟

and 𝑝:

𝑃(𝑌∗ = 𝑘 | 𝑟, 𝑝) = Γ(𝑘 + 𝑟)

Γ(𝑟)𝑘!
𝑝𝑟(1 − 𝑝)𝑘, (5)
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F IGURE 2 Box-plot of posterior model probabilities when 𝑁 = 1000; the data-generating model is indicated above each panel

and we will call the resulting model for 𝑌 one-inflated negative binomial (OINB). In our Bayesian approach, we set two
independent priors on the parameters 𝑝 and 𝑟. For 𝑝 we take a 𝐵𝑒𝑡𝑎(𝛼𝑝, 𝛽𝑝) prior, while for 𝑟 we compare Gamma and
Inverse Gamma priors in order to evaluate the different tail behavior of these distributions on the posterior summaries.
The Gibbs sampler we developed follows the same passages presented in Section 2.1, where 𝑓(𝜃) takes the form (5).

Recall that 𝑛∗
𝑘
represents the number of units captured 𝑘 times after updating 𝑛0, 𝑍 and 𝑌∗. Then, generating from the

full conditional of 𝑝 presents no difficulties, as it turns out to be:

[𝑝 |−] ∼ 𝐵𝑒𝑡𝑎

(
𝛼𝑝 + 𝑁𝑟 , 𝛽𝑝 +

∑
𝑘>0

𝑘 𝑛∗
𝑘

)
.

To update 𝑟, we compare two different approaches: a Gaussian random-walk Metropolis–Hastings step and the two-stage
Gibbs sampler proposed by Zhou and Carin (2015). Note also that the presence of a Metropolis step does not preclude
calculation of the marginal likelihood 𝑝(𝐲|𝑀𝑖) with Chib’s approximation for the negative binomial model and for the
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corresponding OI counterpart, as illustrated in Chib and Jeliazkov (2001). The Appendix provides details of the marginal
likelihood approximation for these models.

4.1 Metropolis–Hastings

The full conditional of 𝑟 results in:

𝑃(𝑟 |−) ∝ 𝑝𝑁𝑟
∏

𝑘=0,1,…

(
Γ(𝑘 + 𝑟)

Γ(𝑟)𝑘!

)𝑛∗
𝑘 𝑟𝛼𝑟−1

𝑒𝑟𝛽𝑟
.

If we consider a Gaussian random walk Metropolis–Hastings, we accept a proposed value 𝑟′ with probability equal to the
minimum between 1 and

exp
{∑

𝑘

𝑛∗
𝑘

[
log Γ(𝑟′ + 𝑘) − log Γ(𝑟′) − log Γ(𝑟 + 𝑘) + log Γ(𝑟)

]
+𝑁(𝑟′ − 𝑟) log(𝑝) + Ψ

}
,

where

Ψ =

{
(𝛼𝑟 − 1) log(𝑟′∕𝑟) + 𝛽𝑟(𝑟 − 𝑟′) if 𝑟 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑟, 𝛽𝑟);

(𝛼𝑟 − 1) log(𝑟∕𝑟′) + 𝛽𝑟(1∕𝑟 − 1∕𝑟′) if 𝑟 ∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝛼𝑟, 𝛽𝑟).

4.2 Two-stage Gibbs sampler

Zhou and Carin (2015) exploit the representation of the negative binomial as a compound Poisson distribution, introduced
by Quenouille (1949):

𝑌∗
𝑖
∼ NB(𝑟, 𝑝) ⟺ 𝑌∗

𝑖
=

𝑙𝑖∑
𝑗=1

𝑢𝑖,𝑗,

where

𝑙𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(−𝑟 log(𝑝)) and 𝑢𝑖,𝑗
𝑖𝑖𝑑
∼ 𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐(1 − 𝑝).

They found the explicit distribution of the full conditional of 𝑙𝑖 to be the Chinese Restaurant Table (CRT) distribution with
concentration parameter 𝑟. The two Gibbs steps are then:

(1) We sample the latent counts, 𝑙𝑖 , associated with each observed count 𝑦∗𝑖 , which can be generated as:

𝑙𝑖 =

𝑦∗
𝑖∑

𝑗=1

𝑣𝑗, 𝑣𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖

(
𝑟

𝑟 + 𝑗 − 1

)
.

(2) We sample 𝑟 from its full conditional which, given the conjugacy between the Gamma prior for 𝑟 and the Poisson
distribution, results in

[𝑟 | −] ∼ 𝐺𝑎𝑚𝑚𝑎

(
𝛼𝑟 +

𝑛∑
𝑖=1

𝑙𝑖 , 𝛽𝑟 − 𝑁 log(𝑝)

)
. (6)
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Note that, since the total number of captures is often in the order of thousands, and in (6) we are only interested in
generating the sum of the 𝑙𝑖 , we can simply adopt a Gaussian approximation in the first step. That is,

∑
𝑖

𝑙𝑖 ∼ 𝑁

(∑
𝑖

𝐸[𝑙𝑖],
∑
𝑖

𝑉𝑎𝑟[𝑙𝑖]

)
.

4.3 Boundary problem

The use of the NB in capture–recapture is limited by the so called “boundary problem,” see, for example, Böhning (2015).
That is, when the estimate of 𝑟 approaches zero, the Horvitz–Thompson estimation of the population size diverges. More
generally, when in the observed (truncated) data themean number of captures is close to one (which is typically the case in
the presence of one-inflation), the NB model severely overestimates 𝑁, sometimes by several orders of magnitudes, even
in simulated data generated by the NB itself. As pointed out in Godwin (2017), taking into account one-inflation alleviates
this phenomenon, but does not completely avoid it.
We can confirm that, even in our Bayesian approach to the OINBmodel, we come up against the boundary problem. In

general, we noted a great sensitivity of estimates of 𝑁 to small differences in the value of parameter 𝑟, particularly when
𝑟 < 1, and, accordingly, a great sensitivity of the estimates to specification of the prior distribution over 𝑟.
We see this phenomenon as an opportunity to investigate the usefulness of the Bayesian approach in further alleviating

the boundary problem under the OINB. To this end, we conduct a simulation study to assess the effect of different prior
specifications on the parameter 𝑟. We generate 100 replications of random values drawn from an OINB with parameters
𝑝 = 0.35, 𝑟 = 0.5, and 𝜔 = 0.5, and we go on to test two values for 𝑁, 5000 and 500. The observed sample size 𝑛 varies at
each replication; its expected value over the 100 replications is 2040, and 204 when 𝑁 = 5000 and 𝑁 = 500, respectively.
The values of these parameters are comparable to the values studied in Godwin (2017), in the frequentist setting, and they
allow us to mimic some real cases analyzed in Section 5. All the experiments were conducted in R; the code is available as
Supporting Information on the journal’s web page.
We test some prior specifications on the 𝑟 parameter, considering both the Gamma and the Inverse Gamma distribu-

tions. For estimation of 𝑟, we apply both the Metropolis–Hasting step and the two-stage Gibbs sampler proposed by Zhou
and Carin (2015), observing negligible differences in the results. The outcomes presented in this section are obtained using
the Metropolis–Hasting approach. Finally, we compare the results with the maximum likelihood estimates for the OINB.
Table 3 shows the percentage relative bias and the percentage mean squared error (MSE) of the population size esti-

mates, considering the difference between the true value and themean of the posterior distribution obtained by theMCMC
simulations. Table 3 also gives the number of cases, in percentage, where we encountered the boundary problem. In fact,
we can define the boundary problem on both 𝑟 and 𝑁̂. We adopt the following convention: On 𝑟, we set the boundary
problem if 𝑟 < 0.25, while on 𝑁̂, this is the case if 𝑁̂ > 5𝑁. Finally, Table 3 presents the results of the maximum likelihood
approach (MLE), obtained using the model proposed by Godwin (2017) and the R code provided by him as Supporting
Information.
The Bayesian procedure implements the algorithm described in Section 4.1, setting the number of replications of the

MCMCalgorithm to 2 ⋅ 106. We set, a priori, 𝑝(𝑁) ∝ 1∕𝑁, and𝐵𝑒𝑡𝑎(1, 1) for both𝜔 and 𝑝. FromTable 3, it can be seen that
a weakly informative prior specification for 𝑟, like 𝐺𝑎𝑚𝑚𝑎(1, 1) can already help reduce the boundary problem, when
compared to the MLE approach. The boundary problem can be yet further limited using the Inverse Gamma as prior
distribution for 𝑟. In the simulation, the Inverse Gamma prior has the double advantage of reducing both the boundary
problem and the MSE of the estimates, at the cost of introducing a negative bias (underestimation) of the population
size 𝑁, which is more severe for small 𝑁s. Note that we used the convention of defining the occurrence of the boundary
problemwhen 𝑟 < 0.25, while in Godwin (2017) the boundary problem is fixed at 𝑟 < 0.05. We believe that 𝑟 < 0.25 already
suffices to indicate the presence of this phenomenon since, as clearly emerges from Table 3, it corresponds approximately
to an estimate of 𝑁 5 times larger than its true value.
To further illustrate the performance of the NB and the OINB, with and without the boundary problem, we compare

them with the models considered in Section 3 via a simulation study. In particular, we generate values from the NB with
parameters 𝑁 = 5000, 𝑝 = 0.35, and from the OINB with parameters 𝑁 = 5000, 𝑝 = 0.35, and 𝜔 = 0.5, under different
scenarios for the size parameter 𝑟. For each scenario we generate 100 data sets and calculate the estimates of 𝑁 given
by the posterior mean, under the six models: Poisson, geometric, negative binomial, and their one-inflated counterparts.
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TABLE 3 Boundary cases for 𝑟 and 𝑁̂, %bias and %MSE of 𝑁̂ for some prior specifications of 𝑟. Results from MLE in the bottom row, for
comparison

N = 5000
Prior distribution of 𝒓 % Boundary cases % Boundary cases % bias of 𝑵̂ %MSE of 𝑵̂

for 𝒓 for𝑵
Gamma(0.1,0.1) 33 30 218.59 1618.82
Gamma(1,1) 11 11 97.64 859.51
InvGamma(0.1,0.1) 0 0 −10.52 6.71
InvGamma(0.5,0.5) 0 0 −15.58 5.13
InvGamma(1,1) 0 0 −19.06 5.27
InvGamma(1,2) 0 0 −26.70 7.91
MLE 16 3 91.75 2217.32
N = 500
Prior distribution of 𝒓 % Boundary cases % Boundary cases % bias of 𝑵̂ %MSE of 𝑵̂

for 𝒓 for𝑵
Gamma(0.1,0.1) 25 73 5043 1673356
Gamma(1,1) 0 8 249 7122
InvGamma(0.1,0.1) 0 0 −48 24
InvGamma(0.5,0.5) 0 0 −47 23
InvGamma(1,1) 0 0 −44 20
InvGamma(1,2) 0 0 −48 23
MLE 27 20 2422 584890

Table 4 shows the average percentage relative bias and relative MSE over the 100 replicates. As we have said, the value of
the parameter 𝑟 appears to be crucial in identifying the boundary problem for the NBmodel, and, under the OINBmodel,
𝜔, too, has a clear role. As a consequence, the critical values for 𝑟 differ under the two models. In our data generated from
the NB, with the aforementioned values for 𝑝 and 𝑁, we start to observe a substantial instability in the estimates when
𝑟 = 0.25, and the sheer overestimation of𝑁 from the NB itself appears clearly in all simulations when 𝑟 = 0.1 (not showed
in the table). When we generate from the OINB, estimates derived from the OINB itself start to show the same problem
when 𝑟 = 0.5.
We can see in Table 4 that, in the absence of the boundary problem, (𝑟 = 1.5 in both cases), the results confirm that the

two models can be safely utilized if their respective model assumptions hold; in fact, they perform better than all other
competing models. As already observed in Section 3, admitting one-inflation when it is not present leads to moderate
underestimation, while ignoring one-inflation when present causes severe overestimation of 𝑁. In fact, in all cases, the
NB overestimates 𝑁 by several orders of magnitude with data generated from the OINB.
A counterintuitive case is given by the data generated from the OINBwith 𝑟 = 0.5, in which case the OINB itself results

as the second best model, the best being the noninflated geometric. The explanation we gave to this result is the following:
The geometric model ignores one-inflation, and this fact should lead to an overestimation of 𝑁, but at the same time, it
fixes the parameter 𝑟 to 1, which is higher than the actual parameter of the generatingmodel (𝑟 = 0.5), and this fact should
imply an underestimation of𝑁. Apparently, in our simulation, these two factors balance each other, giving the geometric
a better performance than the OIG and the OINB itself.
In conclusion, when the model hypothesis are met, and the boundary problem is absent or not too serious, for values of

𝑟 greater than 0.25 under the NB, and greater than 0.5 under the OINB, the use of an Inverse Gamma prior may alleviate
the phenomenon. However, when the problem is evident, we advise against the use of the two models.

5 RESULTS ON ESTIMATING ILLEGAL POPULATIONS

Illegal activities are by their very nature difficult to measure because the people involved have obvious reasons to hide
them. In this section, we apply our models to estimate the number of people implicated in the exploitation of prostitution,
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TABLE 4 Results on %bias and %MSE of 𝑁̂

Generating model: OINB with 𝒑 = 𝟎.𝟑𝟓 and 𝝎 = 𝟎.𝟓

𝒓 = 𝟎.𝟓 (𝑬[𝒏] = 𝟐𝟎𝟒𝟎) 𝒓 = 𝟏.𝟓 (𝑬[𝒏] = 𝟑𝟔𝟗𝟓)

% bias of 𝑵̂ %MSE of 𝑵̂ % bias of 𝑵̂ %MSE of 𝑵̂
Poi −38.11 14.55 −7.25 0.54
Geo 5.19 0.38 42.31 17.94
NB (Gamma) 4 ⋅ 1013 9 ⋅ 1026 4 ⋅ 1011 2 ⋅ 1023

NB (InvGamma) 2518 2 ⋅ 105 2 ⋅ 105 2 ⋅ 1010

OIP −56.38 31.80 −19.32 3.74
OIG -29.75 8.89 12.78 1.65
OINB (Gamma) 246 2898 1.81 0.25
OINB (InvGamma) −11.73 5.68 0.49 0.19
Generating model: NB with 𝒑 = 𝟎.𝟑𝟓

𝒓 = 𝟎.𝟐𝟓 (𝑬[𝒏] = 𝟏𝟏𝟓𝟒) 𝒓 = 𝟏.𝟓 (𝑬[𝒏] = 𝟑𝟗𝟔𝟓)

% bias of 𝑵̂ %MSE of 𝑵̂ % bias of 𝑵̂ %MSE of 𝑵̂
Poi −71.04 50.48 −17.81 3.17
Geo −53.99 29.17 10.98 1.21
NB (Gamma) 162.37 2044.18 0.19 0.03
NB (InvGamma) −9.64 5.06 0.02 0.03
OIP −74.70 55.80 −19.16 3.67
OIG −57.52 33.11 10.91 1.20
OINB (Gamma) 5.71 64.03 −1.58 0.05
OINB (InvGamma) −43.97 20.43 −1.86 0.06

in Italy in 2014. In addition, in Section 5.1 we illustrate the results obtained on some well-known data sets in capture–
recapture literature.
In Italy, prostitution is neither prosecuted nor regulated, but trafficking, exploitation, and aiding and abetting of prosti-

tution are crimes subject to legal sanctions. These activities are mostly under the control of organized crime. In this study
we exploit administrative records from the Ministry of Justice, which report complaints for which the judicial authority
has initiated criminal proceedings.
On the basis of soft identifiers (date, country of birth, and gender), the perpetrators can be identified and followed over a

given time span, which is 1 year in this application. In this way, the administrative source can be viewed as listing potential
exploiters of prostitution and we can observe the number of times an individual is charged. Obviously, we cannot observe
the units not captured by the Justice system.We aim to estimate the hidden part of the population, that is, the size of those
unreported to the Public Prosecutor’s offices. Capture–recapturemodels have already been used to investigate prostitution
and sex workers; see, for instance, Rossmo and Routledge (1990), which estimates the number of street prostitutes in
1986/1987 in Vancouver, and Roberts Jr and Brewer (2006), which estimates the number of their clients. In this paper,
we aim to estimate the size of prostitution exploiters, rather than the number of prostitutes or their clients. Our data on
prostitution exploiters refer to perpetrators of adult sexual exploitation, according to the international classification ICCS
(UNODC, 2015) ; these crimes include recruiting, enticing, or procuring a person into prostitution; pimping; keeping,
managing or knowingly financing a brothel; knowingly letting or renting a building or other place for the purpose of the
prostitution of others.
Figure 3 depicts our data. The total number of observed prostitution exploiters is 𝑛 = 2740, the “one” counts are 𝑛1 =

2269. Counts greater than 5 are relatively few; 12 is the maximum number of observed captures.
We compared all three basic models analyzed in this paper and their one-inflated counterparts on these data. In all

one-inflated models we set a uniform 𝜔 ∼ 𝐵𝑒𝑡𝑎(1, 1). We set 𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1) in the geometric and OIG models, and 𝜆 ∼
𝐺𝑎𝑚𝑚𝑎(0.01, 0.01) in the Poisson and OIP. Different values for the Gamma prior were also tested, obtaining very similar
results. As for the negative binomial, the boundary problem emerged clearly, as, when adopting a 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) prior
for 𝑟, we obtained a posterior mean for 𝑁 20 times greater than any other model (498,000). For this reason, we opted for
an 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(0.1, 0.1), both on the NB and the OINB models. In all cases, the number of replications of the MCMC
algorithm is set to 106 with a thinning of 20 observations. As priors over 𝑁, we tried both Rissanen’s and the improper
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F IGURE 3 Relative frequencies of observed counts for prostitution exploitation data in Italy in 2014

TABLE 5 The posterior mode and credible intervals for the population size 𝑁, posterior mean for 𝜔 and model parameters for
prostitution exploitation data

Estimator/model 𝑵̂ 95%CI.𝑵̂ 𝝀̂ 𝒑 𝒓

Ignoring one–inflation
Poi 7210 [6780, 7689] 0.476
Geo 13332 [12415, 14394] 0.795
NB 89140 [35162, 188368] 0.665 0.088
Chao 9851 [8961, 10868]
Zelterman 10030 [9033, 11027] 0.319
Modeling one–inflation 𝜔̂

OIP 3895 [3656, 4156] 1.213 0.645
OIG 8182 [7406, 9233] 0.669 0.478
OINB 19566 [6174, 71710] 0.580 0.213 0.363
Mod.Chao.OIP 6493 [4163, 8823]
Mod.Chao.OIG 19628 [9143, 30112]

𝑝(𝑁) ∝ 1∕𝑁. The two alternatives gave almost identical results. Standard diagnostic tools confirmed the convergence of
the algorithms.
The results are summarized in Table 5 and in Figure 4. Figure 4 shows the estimated posterior distributions of 𝑛0 and

of the parameters of the one-inflated models. The regular shape of the posterior distributions is evident from Figure 4, so
the differences in adopting the posterior mode, median, or mean are quite negligible. Regularity of the posterior distribu-
tions was consistently observed in all the applications and simulations presented in this paper. Regularity of the posterior
distributions does not hold for the 𝑛0 and the 𝑟 of the OINB model, due to the boundary problem.
In the upper part of Table 5 we give the estimates deriving from the Poisson, geometric, and negative binomial that

ignore one-inflation and compare them toChao andZelterman estimators. In the lower part of the table, we give the results
from the one–inflated counterparts of the 3 models and compare them to the modified Chao estimators, as suggested in
Böhning et al. (2018). This estimator depends on the baseline distribution; we evaluate it assuming both Poisson and
geometric distribution with one-inflation (Mod.Chao.OIP and Mod.Chao.OIG, respectively), as in Böhning and Ogden
(2021).
In Figure 3, the presence of one–inflation seems likely, and is, in fact, largely confirmed by the test introduced in Sec-

tion 2.3. Both the OIP and the OIG have posterior probabilities several orders of magnitudes greater than the Poisson and
the geometric. The log marginal likelihoods are: −1863.39 (Poi), −1756.23 (Geo), −1718.21 (OIG), −1761.95 (OIP). The
OINB model was found to have by far the highest log marginal likelihood, namely −1712.25. However, we believe that
caution should be used in adopting the estimates from the OINB. In fact, the boundary problem seems evident (𝑟 = 0.2),
and the uncertainty contained in the estimate of 𝑛0 is excessive (thewidth of the interval estimates is about 25 times greater
than the total number of observed units).
As expected, if we ignore one-inflation, we risk severely overestimating the population size. Geometric and negative

binomial distributions account for heterogeneity and produce much larger estimates than the Poisson distribution.
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F IGURE 4 Posterior distributions of 𝑛0 and of the parameters of all one-inflated models for prostitution exploitation data. Vertical lines
show the posterior medians

5.1 Results from some popular case studies

In this section, we apply the Bayesianmodel to a selection ofwell-known cases popular in the capture–recapture literature.
We consider the following real cases:

1 Street prostitutes in Vancouver: The data show the count of prostitution arrests made by the Vancouver Police Depart-
ment Vice Squad for engaging in prostitution in 1986/1987, initially presented and analyzed by Rossmo and Routledge
(1990);

2 Opiate users in Rotterdam: The data show the number of applications for a methadone treatment program made by
opiate users in Rotterdam in 1994, first reported and analyzed by Cruyff and van der Heijden (2008);

3 Heroin users in Bangkok: The data provide the counts of treatment episodes by heroin users in Bangkok in 2002, avail-
able in Viwatwongkasem et al. (2008) and previously analyzed by Böhning et al. (2004).
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TABLE 6 Observed count distribution for three real cases

Real cases Counts
1. Prostitutes 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛

541 169 95 37 21 23 886
2. Opiate users 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9 𝑛10 𝑛

1206 474 198 95 29 19 5 2 0 1 2029
3. Heroin users 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9 𝑛10 𝑛11

2176 1600 1278 976 748 570 455 368 281 254 188
𝑛12 𝑛13 𝑛14 𝑛15 𝑛16 𝑛17 𝑛18 𝑛19 𝑛20 𝑛21 𝑛

138 99 67 44 34 17 3 3 2 1 9302

The observed count distribution of the three real cases are shown in Table 6. In the Vancouver prostitutes data set,
we observe 𝑛 = 886 individuals and the number of units captured once is 𝑛1 = 541. The Rotterdam opiate-user data set
contains𝑛 = 2029units and𝑛1 = 1206. The Bangkok heroin–user data set provides𝑛 = 9302 observationswith𝑛1 = 2176.
These data sets have been widely examined in capture–recapture literature, also under the one–inflation hypothesis,

see Godwin and Böhning (2017) and Godwin (2017).
We apply ourmodels to the three case–studies, with the following prior settings: For the Poisson andOIPmodels we set,

a priori,𝜔 ∼ 𝐵𝑒𝑡𝑎(1, 1) and 𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1). In the OINBmodel we set 𝑟 ∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) and 𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1).
In all our applications, the number of replications of the MCMC algorithm is 106 with a thinning of 20 observations.
Standard diagnostic tools confirmed the convergence of the algorithm. The results for all three data sets are summarized
in Table 7, which shows the posterior modes and credible intervals of𝑁, and the posterior means of themodel parameters.
The presence of one-inflation in these data sets is less severe than in the prostitution exploitation data analyzed in the

previous section. However, as expected, estimates from the base distributions are consistently greater than the correspond-
ing one-inflated estimates, confirming that we might be overestimating the population size if we ignore one-inflation.
For the Vancouver prostitute data, our model selection strategy strongly suggests the OINB distribution, its posterior

probability being several orders ofmagnitudes greater than the competingmodels. The inflation rate𝜔 is estimated around
0.40. The base negative binomial encounters the boundary problem, as is clear from the 𝑟 estimate and even more from
the credible intervals for 𝑁. OINB and OIP models produce similar estimates for 𝑁, with the credible intervals mostly
overlapping (the 95%HPDunderOINB is slightly greater than underOIP), while theOIG’s credible interval barely overlaps
the others.
As for the Rotterdam opiate-user data, Bayesian model selection largely favors the geometric distribution, with a poste-

rior probability of 0.89, against 0.104 and 0.006 for OIG and OINB, respectively; the Poissonmodels posterior probabilities
being negligible, both the baseline and the one-inflated. In this case, the one-inflation does not seem to affect the data.
The posterior model probabilities for Bangkok heroin-user data favor the OINB model, even though the estimated

inflation rate is quite low, a mere 0.056. The boundary problem is not an issue with this data set, since the estimate of 𝑟 is
rather greater than 1.
In all cases, the OINB model produces estimates for𝑁 higher than the OIP and lower than OIG. Also the one-inflation

rate estimates under the OINB model prove always lower than the estimates obtained from the OIP model and higher
than those from the OIG. It appears that by using the OINB, part of the one-inflation component identified by the OIP is
instead explained through the two parameters of the negative binomial. The credible intervals of the OIP are consistently
smaller than those of the competing models, and barely overlap, with the exception of Vancouver prostitute data, where
actually the OINB model tends to the OIP one (note the high estimates for the parameter 𝑟).
The results in Table 7 can be compared with non Bayesian results reported in Godwin and Böhning (2017) and Godwin

(2017), for theOIP and negative binomialmodels.We note that the use of weakly informative priors leads to results that are
close to the frequentist approach. Moreover, the results from our Bayesian model selection strategy are also confirmed by
likelihood ratio tests proposed in Godwin (2017), even if likelihood ratio tests provide less strong evidence than our results.

6 CONCLUDING REMARKS AND FUTUREWORKS

In this paper we have dealt with the issue of one-inflation on repeated count data in population size estimation, adopting
a fully Bayesian approach. We discussed our model for one-inflation under an unspecified count distribution, describing
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TABLE 7 The posterior mode and credible intervals for the population size𝑁, posterior mean for 𝜔, and model parameters, for real cases

1. Prostitutes in Vancouver 𝑵̂ 95%HPD(𝑵̂) 𝝎̂ 𝝀̂ 𝒓̂ 𝒑̂

Model Poi 1240 1177–1300 1.254
Geo 2045 1906–2217 0.570
NB 3340 1977–167925 0.145 0.395
OIP 1017 982–1058 0.438 2.037
OIG 1820 1669–2003 0.192 0.517
OINB 1040 991–1238 0.399 19.104 0.862
Mod.Chao.OIP 1005 933–1077
Mod.Chao.OIG 1421 1097–1745

2. Opiate users in Rotterdam 𝑵̂ 95%HPD(𝑵̂) 𝝎̂ 𝝀̂ 𝒓̂ 𝒑̂

Model Poi 2934 2832–3038 1.174
Geo 4913 4676–5188 0.588
NB 4960 4244–6818 0.869 0.566
OIP 2500 2418–2587 0.336 1.663
OIG 4796 4491–5085 0.047 0.577
OINB 3213 2616–4665 0.157 2.861 0.692
Mod.Chao.OIP 2633 2398–2867
Mod.Chao.OIG 4745 3691–5799

3. Heroin users in Bangkok 𝑵̂ 95%HPD(𝑵̂) 𝝎̂ 𝝀̂ 𝒓̂ 𝒑̂

Model Poi 9452 9427–9477 4.134
Geo 12206 12064–12341 0.238
NB 11572 11357–11817 1.232 0.267
OIP 9364 9349–9380 0.207 5.004
OIG 12195 12056–12334 0.003 0.237
OINB 10826 10606–11098 0.056 1.627 0.302
Mod.Chao.OIP 9859 9757–9961
Mod.Chao.OIG 11810 11350–12270

a general Gibbs sampler. Specifically, we derived the conditional distributions of the model parameters under the Pois-
son and geometric assumption; moreover, to deal with data that show overdispersion, we also illustrated the Bayesian
analysis for the negative binomial model. We considered the boundary problem of the negative binomial distribution; in
the Bayesian setting the prior parameter specification might help alleviate it. A fully Bayesian model selection approach,
which includes testing for the one-inflation assumption, was developed for all the distributions considered in the paper.
Alongside the usual advantages of a Bayesian approach, namely, the possibility of incorporating any prior knowledge

in the analysis and ease in producing interval estimates of any quantity as a by-product of the estimation procedure, we
recognize a less obvious point in favor. In fact, although, admittedly, it is not common to have prior information on the
quantities at hand, evenweakly informative priors can have a positive impact on the analysis. As we saw in Section 4.3, the
use of a weakly informative prior when using a negative binomial model or its one-inflated counterpart can help stabilize
the estimation procedure and avoid the “boundary problem” in case of moderate severity. On the other hand, the choice
of the prior distribution for the size parameter of the negative binomial may affect model selection procedures, which
require additional investigation in order to allow a more general use of such distribution in capture–recapture models.
We are currently working on extensions of the current model to cope with observed and unobserved heterogeneity in

the presence of one-inflation, exploiting individual covariates, and introducing more complex hierarchical structures and
mixing models.
Moreover, we are considering the possibility of takingmodel uncertainty into accountwith amodel averaging technique

in a single procedure by exploiting the reversible jump algorithm (see Green, 1995).
In addition, when dealing with sensible data, like the prostitution exploitation data, which do not share a unique iden-

tifier, we may encounter record linkage problems. In this case, it would be important also to take into account the record
linkage process uncertainty in population size estimation; see Tancredi and Liseo (2011). Note also that linkage errors can
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themselves produce one-inflation. In fact, when matching information does not suffice to recognize multiple captures
of the same individual, the resulting missing links erroneously increase the number of singletons. However, it is worth
nothing that, unlike the case with the framework considered in this paper, linkage errors also affect the observed sample
size 𝑛.
Finally, we are investigating more general behavioral mechanisms producing different forms of inflation. For example,

we could assume that when the latent count 𝑦∗ is equal to 𝑘, instead of necessarily having an observation 𝑦 equal to 1 or
to the true value 𝑘, we have that 𝑦 follows a mixture of two distributions. In particular we may have a mixture component
with weight 1 − 𝜔 concentrated on the latent value 𝑦∗ = 𝑘. The other component with weight 𝜔 may have support on
the set {1, … , 𝑘} and can, for example, be a Binomial(𝑘, 𝜓) truncated on 0. Thus, when 𝜓 = 0 we have exactly the form of
inflation discussed in this paper while when𝜓 > 0 themodel also allows us to inflate counts greater than one, generalizing
the effects of the behavioral mechanism.
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APPENDIX: MARGINAL LIKELIHOOD CALCULATIONS
Expression (4) for the marginal likelihood is obtained by observing that

𝑝(𝐲|𝑀𝑖) = ∫
∞∑
𝑁=𝑛

𝑓(𝐲|𝜃𝑖, 𝑁,𝑀𝑖)𝑝(𝑁)𝑝(𝜃𝑖)𝑑𝜃𝑖 = ∫
∞∑
𝑁=𝑛

(𝑁
𝑛

)
𝑓(0|𝜃𝑖)𝑁−𝑛 𝑛∏

𝑖=1

𝑓(𝑦𝑖|𝜃𝑖) 𝑐𝑁𝑝(𝜃𝑖) 𝑑𝜃𝑖

= 𝑐 ∫
∞∑

𝑛0=0

(𝑛 + 𝑛0)!

𝑛! 𝑛0!

1

𝑛 + 𝑛0
𝑓(0|𝜃)𝑛0(1 − 𝑓(0|𝜃𝑖))𝑛 𝑛∏

𝑖=1

𝑓(𝑦𝑖|𝜃𝑖)
1 − 𝑓(0|𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖

=
𝑐

𝑛 ∫
∞∑

𝑛0=0

(𝑛 + 𝑛0 − 1

𝑛 − 1

)
𝑓(0|𝜃)𝑛0(1 − 𝑓(0|𝜃𝑖))𝑛 𝑛∏

𝑖=1

𝑓(𝑦𝑖|𝜃𝑖)
1 − 𝑓(0|𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖

=
𝑐

𝑛 ∫
𝑛∏
𝑖=1

𝑓(𝑦𝑖|𝜃𝑖)
1 − 𝑓(0|𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖.

Chib’s approximation is based on the identity

𝑝(𝐲|𝑀𝑖) =
𝑓(𝐲|𝜃𝑖, 𝑁)𝑝(𝜃𝑖)𝑝(𝑁)

𝑝(𝜃𝑖, 𝑁|𝐲,𝑀𝑖)

https://doi.org/10.1002/bimj.202100187


932 TUOTO et al.

valid for each point (𝜃𝑖, 𝑁). To approximate themarginal likelihoodwemay select a point (𝜃̃𝑖 , 𝑁̃) given, for example, by the
posterior means obtained with a first run of the Gibbs sampler and then estimate the value of the posterior 𝑝(𝜃̃𝑖, 𝑁̃|𝐲,𝑀𝑖)

via a second run by using the following strategies.
For the Poisson model 𝑀𝑖 , where 𝜃𝑖 = 𝜆, suppressing the model dependence in the notation hereafter, we have

𝑝(𝜃̃, 𝑁̃|𝐲) = 𝑝(𝜆̃, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝜆̃, 𝐲)𝑝(𝜆̃|𝐲) and the only quantity that needs to be estimated is 𝑝(𝜆̃|𝐲). Anyway
𝑝(𝜆̃|𝐲) =∑

𝑁

𝑝(𝜆̃, 𝑁|𝐲) =∑
𝑁

𝑝(𝜆̃|𝐲,𝑁)𝑝(𝑁|𝐲),
and by exploiting the 𝑇 realizations𝑁(1) … ,𝑁(𝑇) of 𝑝(𝑁|𝐲) from a second run of the Gibbs sampler we can estimate 𝑝(𝜆̃|𝐲)
by

𝑝(𝜆̃|𝐲) ≈ 1

𝑇

𝑇∑
𝑡=1

𝑝(𝜆̃|𝐲,𝑁(𝑡)),

where 𝑝(𝜆̃|𝐲,𝑁(𝑡)) is the density of a Gamma(𝛼𝜆 + 𝑠, 𝛽𝜆 + 𝑁(𝑡)).
Similarly, for the geometricmodel, where 𝜃 = 𝑝, we have𝑝(𝜃̃𝑖, 𝑁̃|𝐲) = 𝑝(𝑝̃, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝑝̃, 𝐲)𝑝(𝑝̃|𝐲) and the only quan-

tity that needs to be estimated is 𝑝(𝑝̃|𝐲). Anyway
𝑝(𝑝̃|𝐲) =∑

𝑁

𝑝(𝑝̃, 𝑁|𝐲) =∑
𝑁

𝑝(𝑝̃|𝐲,𝑁)𝑝(𝑁|𝐲)
and by exploiting the 𝑇 realizations𝑁(1) … ,𝑁(𝑇) of 𝑝(𝑁|𝐲) from a second run of the Gibbs sampler we can estimate 𝑝(𝑝̃|𝐲)
by

𝑝(𝑝̃|𝐲) ≈ 1

𝑇

𝑇∑
𝑡=1

𝑝(𝑝̃|𝐲,𝑁(𝑡)),

where 𝑝(𝑝̃|𝐲,𝑁(𝑡))is the density of a Beta (𝛼𝑝 + 𝑁(𝑡), 𝛽𝑝 + 𝑠).
For the OIP model where 𝜃 = (𝜆, 𝜔)we have 𝑝(𝜃̃, 𝑁̃|𝐲) = 𝑝(𝜆̃, 𝜔̃, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝜆̃, 𝜔̃, 𝐲)𝑝(𝜆̃, 𝜔̃|𝐲). In this case we need to

estimate 𝑝(𝜆̃, 𝜔̃|𝐲) where
𝑝(𝜆̃, 𝜔̃|𝐲) =∑

𝑁

∑
𝐲∗
𝑝(𝜆̃, 𝜔̃, 𝑁, 𝐲∗|𝐲) =∑

𝑁

∑
𝐲∗
𝑝(𝜆̃, 𝜔̃|𝐲,𝑁, 𝐲∗)𝑝(𝑁, 𝐲∗|𝐲).

Then, by exploiting the 𝑇 realizations 𝐲∗
(1)
, 𝑁(1), … , 𝐲

∗
(𝑇)
, 𝑁(𝑇) of 𝑝(𝐲∗,𝑁|𝐲) from the the first Gibbs sampler run, we can

estimate 𝑝(𝜆̃, 𝜔̃|𝐲) by
𝑝(𝜆̃, 𝜔̃|𝐲) ≈ 1

𝑇

𝑇∑
𝑡=1

𝑝(𝜆̃, 𝜔̃|𝐲, 𝐲∗
(𝑡)
, 𝑁(𝑡)).

Note that 𝜆 and 𝜔 are conditionally independent given 𝐲, 𝐲∗ and 𝑁. Moreover the conditional distribution 𝜆|𝐲, 𝐲∗,𝑁 is
Gamma(𝛼𝑙 +

∑
𝑘>0

𝑘𝑛∗
𝑘
, 𝛽𝑙 + 𝑁) while the conditional distribution 𝜔|𝐲, 𝐲∗,𝑁 is Beta(𝛼𝜔 + 𝑛𝑧, 𝛽𝜔 +

∑
𝑘>1

𝑛𝑘).
Similarly, for the OIG model where 𝜃 = (𝑝, 𝜔) we can follow exactly the same strategy by factorizing the posterior

distribution as 𝑝(𝜃̃, 𝑁̃|𝐲) = 𝑝(𝑝̃, 𝜔̃, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝑝̃, 𝜔̃, 𝐲)𝑝(𝑝̃, 𝜔̃|𝐲) and estimating 𝑝(𝑝̃, 𝜔̃|𝐲) by
𝑝(𝑝̃, 𝜔̃|𝐲) ≈ 1

𝑇

𝑇∑
𝑡=1

𝑝(𝑝̃, 𝜔̃|𝐲, 𝐲∗
(𝑡)
, 𝑁(𝑡)).

where 𝐲∗
(1)
, 𝑁(1), … , 𝐲

∗
(𝑇)
, 𝑁(𝑇) are 𝑇 realizations from 𝑝(𝐲∗,𝑁|𝐲) obtained from the first Gibbs sampler run. Also in this

case 𝑝̃ and 𝜔̃ are conditionally independent given 𝐲, 𝐲∗,𝑁. The conditional distribution 𝑝|𝐲, 𝐲∗,𝑁 is Beta(𝛼𝑝 + 𝑁, 𝛽𝑝 +∑
𝑘>0

𝑛∗
𝑘
) while and 𝜔|𝐲, 𝐲∗,𝑁 is Beta(𝛼𝜔 + 𝑛𝑧, 𝛽𝜔 +

∑
𝑘>1

𝑛𝑘).
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For the negative binomial model we have 𝜃 = (𝑝, 𝑟) and the posterior can be factorized as

𝑝(𝜃̃, 𝑁̃|𝐲) = 𝑝(𝑝̃, 𝑟, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝑝̃, 𝑟, 𝐲)𝑝(𝑝̃|𝑟, 𝐲)𝑝(𝑟|𝐲),
where, as in the previous models, the conditional density 𝑝(𝑁̃|𝑝̃, 𝑟, 𝐲) is known. The conditional density 𝑝(𝑝̃|𝑟, 𝐲) can be
obtained by an extra run of the Gibbs sampler with 𝑟 fixed to 𝑟. In fact

𝑝(𝑝̃|𝑟, 𝐲) =∑
𝑁

𝑝(𝑝̃, 𝑁|𝑟, 𝐲) =∑
𝑁

𝑝(𝑝̃|𝑁, 𝑟, 𝐲)𝑝(𝑁|𝑟, 𝐲)
and the conditional distribution 𝑝|𝑁, 𝑟, 𝐲 is Beta with parameters 𝛼𝑝 + 𝑁𝑟, 𝛽𝑝 + 𝑠. Instead the calculation of the marginal
posterior 𝑝(𝑟|𝐲) can be obtained following the approach proposed by Chib and Jeliazkov (2001).
For the OI negative binomial we have 𝜃 = (𝑝, 𝑟, 𝜔) and the posterior can be factorized as

𝑝(𝜃̃, 𝑁̃|𝐲) = 𝑝(𝑝̃, 𝜔̃, 𝑟, 𝑁̃|𝐲) = 𝑝(𝑁̃|𝑝̃, 𝑟, 𝜔̃, 𝐲)𝑝(𝜔̃, 𝑝̃|𝑟, 𝐲)𝑝(𝑟|𝐲).
Also in this case the conditional density 𝑝(𝑁̃|𝜔̃, 𝑝̃, 𝑟, 𝐲) is known and 𝑝(𝜔̃, 𝑝̃|𝑟, 𝐲) can be obtained by an extra run of the
Gibbs sampler with 𝑟 fixed to 𝑟 by

𝑝(𝑝̃, 𝜔̃|𝑟, 𝐲) ≈ 1

𝑇

𝑇∑
𝑡=1

𝑝(𝑝̃, 𝜔̃|𝑟, 𝐲, 𝐲∗
(𝑡)
, 𝑁(𝑡)).

Note that the parameters 𝑝 and 𝜔 are conditionally independent given 𝑟, 𝐲, 𝐲∗, and 𝑁 with 𝑝|𝑟, 𝐲, 𝐲∗, and 𝑁, which is
Beta(𝛼𝑝 + 𝑁𝑟, 𝛽𝑝 +

∑
𝑘>0

𝑘𝑛∗
𝑘
) and 𝜔|𝐲, 𝐲∗,𝑁 which is, as in the previous inflated models, Beta(𝛼𝜔 + 𝑛𝑧, 𝛽𝜔 +

∑
𝑘>1

𝑛𝑘).
Finally, as for the noninflated negative binomial counterpart, the calculation of the marginal posterior 𝑝(𝑟|𝐲) can be
obtained following the approach proposed by Chib and Jeliazkov (2001).
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