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Simple Summary: Plant-derived feed additives have been gaining interest as a means to maintain
gut health in poultry. Recent studies have shown that fasting broilers up to 24 h triggers intestinal
permeability increase and might be used as an experimental model to challenge gut health. The present
study has demonstrated that feeding broiler chickens with an olive pomace extract rich in bioactive
anti-inflammatory compounds do not negatively affect growth performance. Moreover, the olive
pomace extract reduced some of the negative effects that a short-term fasting period induced in the
intestine of broiler chickens.

Abstract: The effects of supplementing chicken diets with an olive pomace extract (OE) from Olea
europaea on performance and gut health after a challenge of intestinal permeability (IP) increase
were studied. Treatments included a control diet with no additives (CF), and diets supplemented
with 100 ppm of monensin (MF) or with 500 (OE500F) and 1500 ppm (OE1500F) of an OE. At 14 d,
all birds, except those allocated in a control group (CNF), were submitted to a 15.5 h short-term fasting
period to induce IP increase. Fasting increased (p < 0.05) lactulose/mannitol ratio and Alpha 1 Acid
Glycoprotein concentration, and reduced (p < 0.001) villus/crypt ratio. Moreover, a down-regulation
of Claudin-1 (p < 0.05), an up-regulation of TLR4 and IL-8 (p < 0.05) ileal gene expression was
observed in CF birds compared to CNF. OE500F treatment reduced duodenal crypt depth compared
to CF (p < 0.05; OE linear effect). Mannitol concentration and ileal IL-8 expression were reduced
in OE500F compared to CF and OE1500F (p = 0.05). Fasting challenge induced an increase in IP
triggering an inflammatory response. Supplementation of OE up to 1500 ppm did not affect growth
performance and alleviated some of the negative effects of the fasting challenge.

Keywords: broiler chicken; olive pomace extract; short-term fasting; intestinal permeability;
gut health; anti-inflammatory

1. Introduction

The current need to find alternatives to the use of antibiotics in poultry feeds is opening
opportunities for feed additives such as phytochemicals [1,2]. Phytochemicals are a heterogeneous
group of substances, including aromatic plants, volatile compounds (essential oils) and plant extracts,
which exert the desired effects on the intestinal health because of their content of secondary metabolites
(e.g., polyphenols, terpenes) [3]. Diverse combinations of natural alternatives have shown to promote
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growth and enhance gut health, but their mechanisms of action are not fully understood [2]. Moreover,
bioactive phytochemicals can stimulate innate immunity and might be an alternative to control
coccidiosis in poultry [4]. According to Gadde et al. [5], antibiotic alternatives should be developed on
the antibiotic mechanism of action to achieve non-antibiotic surrogates. In this regard, Niewold [6]
suggested that antibiotic substances fed at a sub-therapeutic dosage reduce the host inflammatory
response by decreasing pro-inflammatory cytokine production. Thus, antibiotics generate energy
saving from immune function and, consequently, promote animal growth [6,7].

By-products from olive oil mill processing are rich in bioactive substances, including polyphenols,
triterpenic acids and oleuropeosides, with anti-inflammatory and antioxidant properties [8–10].
During the last years, many studies have focused on the utilization of these by-products in
poultry feeding, showing positive effects in broiler chickens’ growth performance and antioxidant
capacity [11,12], or enhancing egg weight, yolk index, intestinal absorption capacity with no negative
effects on laying hens’ performance [13,14]. Moreover, several authors have tested different olive
pomace extracts in broiler chickens, pigs, cattle and sea bream, showing positive results in intestinal
health, gut integrity and innate immune functions [15–18].

Intestinal barrier plays an important role in nutrient digestion, and gut barrier disturbances, such
as microbial dysbiosis, leaky gut, and inflammation of the mucosal tissue, alter health and performance
in poultry [19,20]. In this context, a short-term fasting period (<24 h) has been shown to increase the
intestinal permeability in broiler chickens and might be a good model to test dietary effects on gut
barrier functions [21,22]. The present study aims to investigate the effects of supplementing broiler
chickens’ diets with a bioactive olive pomace extract (OE) from Olea europaea on growth performance,
and whether it will help to maintain gut health after a challenge of intestinal permeability increase
induced by a short-term fasting period. The rationale behind this study is that bioactive compounds of
the OE have barrier function-enhancing activities when intestinal permeability increases.

2. Materials and Methods

2.1. Housing and Experimental Animals

The feeding trial was carried out at Universidad Politécnica de Madrid experimental facilities
(Agricultural Production Department, Madrid). All experimental procedures were accepted by the
animal Ethics Committee of the Universidad Politécnica and Comunidad de Madrid (reference: PROEX
007/15) in compliance with the Spanish Guidelines for the Care and Use of Animals in Research [23].

The trial was conducted on 660 one-day-old male broiler chicks (Cobb 500) from a commercial
hatchery (Incubadora Uvesa, Tudela, Navarra, Spain). Animals were randomly assigned to 30 floor
pens (1.1 × 1.1 m) with 22 chickens per pen (6 pen/treatment × 5 treatments) provided with a hopper
feeder, bell drinker and bedded with wood shaving. The facility temperature was kept at 34 ◦C during
the first week of age and gradually decreased (at rate of 2 ◦C per week) to 26 ◦C at 5 weeks of age.
Humidity and ventilation were automatically controlled. The lighting program started with 24L:0D
during the first week and 18L:6D light afterwards.

2.2. Diet and Experimental Design

The feeding program consisted of a starter feed (23.0% of crude protein (CP) and 2974 kcal/kg
of apparent metabolizable energy (AME)), fed in crumbles from 1 to 21 d of age; and a grower
feed (CP = 21.8%, AME = 3088 kcal/kg), fed from 21 to 32 d of age as pellets with 3 mm diameter.
The composition of the starter and grower basal diets is shown in Table 1. The basal diet with no
medication and no additives was used as a negative control. The other three diets were obtained
by adding on top of the basal diet 500 (OE500F) or 1500 ppm (OE1500F) of an olive pomace extract
provided by Lucta S. A. (Madrid, Spain), or 100 ppm of monensin (MF) (Elanco Valquimia S. A.) and
used as a positive control. Supplemented OE was a standardized olive pomace extract containing ≥10%



Animals 2020, 10, 349 3 of 13

of triterpenes and ≥2% of polyphenols, quantified by HPLC-UV as oleanolic acid and hydroxytyrosol
equivalents, respectively. Diets were manufactured at IRTA (Mas de Bover, Constantí, Spain).

At the beginning of the trial, chickens were divided at random into 5 groups. One group was fed
the control diet ad libitum throughout the feeding trial, from 1 to 32 d of age (treatment control no
fasted, CNF). The other 4 groups were also fed ad libitum from 1 to 32 d of age except for a short-term
fasting period (F) of 15.5 h at 14 d of age. They received the control diet (treatment control and fasted,
CF) or any of the supplemented diets (OE500F, OE1500F and MF).

Table 1. Composition of starter experimental diets (%, as fed basis, unless otherwise indicated) of
experimental diets.

Item 1 Starter Diet Grower Diet

Ingredient composition

Maize 54.28 56.41
Soybean meal (48% CP) 38.43 35.73

Soybean oil 3.50 1.44
Animal fat - 3.00

Dicalcium phosphate 1.82 1.74
Calcium carbonate 0.76 0.71

Salt 0.40 0.38
DL-methionine 0.29 0.22

L-lysine HCl 0.13 0.03
L-threonine 0.02 -

Minerals and Vitamins 2 0.30 0.30
Choline chloride 0.05 0.02

Noxyfeed 3 0.02 0.02

Calculated composition

AME, Kcal/Kg 2974 3088
Crude protein 23.0 21.8

Ash 6.30 5.90
Ether extract 6.10 7.10

Lysine 1.29 1.20
Methionine 0.62 0.55

Methionine + cysteine 0.97 0.90
Threonine 0.84 0.82

Tryptophan 0.25 0.25
Calcium 0.95 0.90

Total phosphorus 0.70 0.67
Non phytate phosphorus 0.45 0.43

Sodium 0.17 0.16

Analyzed composition (% DM)

Dry matter 88.4 89.2
Ash 6.30 6.10

Crude protein 23.8 21.2
Ether extract 6.94 7.50

Gross energy (Kcal/kg) 4030 4082
1 CP, crude protein; AME, apparent metabolizable energy; DM, dry matter. 2 The premix provides per kg feed:
Vitamin A (E672) 10000 UI; vitamin D3 (E671) 4800 UI; vitamin E (alfa tocopherol) 45 mg; vitamin B1 3 mg; vitamin
B2 9 mg; vitamin B6 4.5 mg; vitamin B12 40 µg; vitamin K3 3 mg; calcium pantothenate 16.5 mg; nicotinic acid 51 mg;
folic acid 1.8 mg; biotin 0.15 mg; Fe (E1) (from FeSO4·H2O) 54 mg; I (E2) (from Ca(IO3)2) 1.2 mg; Cu (E4) (from
CuSO4·5H2O) 12 mg; Mn (E5) (from MnO) 90 mg; Zn (E6) (from ZnO) 66 mg; Se (E8) (from Na2SeO3) 0.18 mg. 3

ITPSA, Barcelona, Spain. Contains BHT+ propyl gallate (56%) and citric acid (14%).

2.3. Short-Term Fasting Period and Intestinal Permeability Study

From 1 to 14 d of age, animals were fed their respective experimental diets. At day 14, birds from
all treatments, except those of CNF, were feed deprived for 15.5 h. Intestinal permeability was measured
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by the lactulose/mannitol (L/M) test following the protocol described by Gilani et al. [22]. To this end,
following the 15.5 h fasting period (15 d of age), two birds per pen (12 chicks per treatment) were
randomly selected and administered an oral gavage of lactulose and mannitol. Lactulose and mannitol
solution contained 25 g lactulose and 5 g of mannitol (Sigma Aldrich, Alcobendas, Madrid, Spain)
dissolved in 100 mL Milli-Q water at 25 ◦C. Birds were slaughtered (CO2 atmosphere asphyxiation)
and sampled 90 min after the oral gavage. After this short-term fasting period, 16 chickens per pen
were fed their respective diets ad libitum until the end of the trial at 32 d of age.

2.4. Experimental Diet Analysis

The experimental feed was analyzed following the standard methods of AOAC [24] for dry matter
(934.01), ether extract (920.39), total ash in muffle (942.05) and crude protein by combustion method
(968.06) using FP-528 nitrogen analyzer (LECO®, St. Joseph, MI, USA). The gross energy was analyzed
by adiabatic bomb calorimeter (PARR, 1356 model, Parr Instrument Company, Moline, IL, USA).

2.5. Productive Traits and Sampling

To calculate the average daily gain (ADG), average daily feed intake (ADFI) and feed conversion
ratio (FCR), body weight and feed intake were recorded per pen at 7, 14, 21, 28 and 32 d of age. At 15 d
of age (after the 15.5 h fasting period), the two birds per pen randomly selected for the intestinal
permeability study were slaughtered by asphyxiation in CO2 and sampled. For gene expression
analysis, 200 mg of ileal mucosal scraping were taken in RNA later (Invitrogen, Carlsbad, CA)
following the manufacturer’s instructions, and further stored at −80◦C. For intestinal morphology, 3 cm
length segments for the middle part of duodenum were collected and stored in 10% neutral buffered
formaldehyde solution. To obtain the plasma, blood samples were collected immediately post-mortem
via cardiac puncture into tubes containing EDTA and aprotinin (BD Vacutainer®, Plymouth, UK), held
in ice for 30 min, centrifuged at 2000× g for 10 min and stored at −80 ◦C to later analyze alpha-1-acid
glycoprotein (AGP), cytokines and lactulose and mannitol concentration. At the end of the trial (32 d
of age), remaining animals were slaughtered by asphyxiation in CO2 atmosphere.

2.6. Plasma Lactulose and d-Mannitol Concentrations Analysis by Ultra-Performance Liquid Chromatography
(UPLC)

Determination of plasma lactulose and d-mannitol concentrations were performed in an Acquity
UPLC (Waters Corp., Mildford, MA, USA) connected to a Xevo-G2 Qtof mass spectrometer (Waters
Corp., Mildford, MA, USA) operating in full scan negative mode (100 to 1200 m/z). Chromatographic
separation was achieved with a linear gradient using a BEH amide column (21 × 100 mm, 1.7 µm,
Waters Corp., Mildford, MA, USA) and mobile phases comprising A = 10 mM ammonium acetate in
ACN:H2O (9:1) and B = 10 mM ammonium acetate in ACN:H2O (4:6). Flow rate was set to 0.5 ml/min
and oven temperature to 40 ◦C. Leucine-enkephalin (200 ng/ml) was used as lock mass. Data processing
was performed with QuanLynx software (Waters Corp., Mildford, MA, USA). Ion areas were used for
quantification based on standard curves prepared using authentic standards and raffinose as internal
standards (IS). Plasma samples (25 µL) were submitted to protein precipitation with 56 µL of IS solution.
Four independent replicates per sample were prepared and analyzed.

2.7. Cytokine and Alpha 1 Acid Glycoprotein (AGP) Plasma Concentration

Cytokine quantification in plasma was performed with commercial ELISA according to
manufacturer’s instructions (IL-1β, SEA565Ga; IL-8, SEA080Ga, Wuhan USCN Business Co. Ltd.,
Wuhan, China). Kit standards and test samples optical densities were read at 450 nm by an
ELISA plate reader (Sunrise Microplate Reader, Tecan Trading AG, Switzerland). AGP plasma
concentration was measured using ELISA Kit (ab157690; Abcam, Cambridge, MA, USA) according to
the manufacturer’s instructions.
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2.8. Gene Expression Analysis

Total RNA was extracted from approximately 50 mg of ileal mucosal scraping with TRIzol reagent
(Invitrogen, Carlsbad, CA, USA), disrupted with a mixer mill MM-400 (Retsch, Stuttgart, Germany)
and isolated by using the GenElute Mammalian Total RNA Miniprep Kit (Sigma-Aldrich Corporation,
St. Louis, MO, USA). To prevent genomic DNA contamination, an “in column” DNase step was
performed by using the RNase-Free DNase Set (Quiagen, Australia). Extracted RNA yield and quality
were measured by spectrophotometry (EpochTM, BioTek, Winoosky, VT, USA) combined with the
Take3TM Micro-Volume Plate (BioTek, Santa Barbara, CA, USA) by absorbance at wavelengths of
260 and 280 nm. Reverse transcription of around 2400 ng of extracted RNA was performed with
the SuperScript VILO Master Mix (Invitrogen, Carlsbad, CA, USA). The quantitative Real-Time PCR
(qRT-PCR) analysis was performed in a 7300 Real Time PCR System (Applied Biosystems, Foster City,
CA, USA) with already tested and published primer conditions. To assay target genes, primers were
obtained from the literature (Table 2). Target genes were selected according to their functional roles as:
tight junction proteins (Claudin-1 and 3), enterocyte protection (HSP-70), immune function (TLR-2β,
TLR4, TGF-β4, IL-8, and Bu-1) and carbohydrate (ChREBP) and lipid (FABP6) metabolism. To quantify
the relative gene expression, UB and β Actin were used as housekeeping genes.

Samples were analyzed in triplicate using the right amount of each primer, ultra-purified water
and SYBR® Green Master Mix (Applied Biosystems, Foster City, CA, USA).

Table 2. Genes, forward and reverse primers for gene expression analysis by qRT-PCR.

Gene 1 5’-Primer Sequence Forward- 3´ 5´-Primer Sequence Reverse- 3´ Ref.

UB GGGATGCAGATCTTCGTGAAA CTTGCCAGCAAAGATCAACCTT [25]
β Actin GTGATGGACTCTGGTGATGG TGGTGAAGCTGTAGCCTCTC [26]
TLR-2β CGCTTAGGAGAGACAATCTGTGAA GCCTGTTTTAGGGATTTCAGAGAATTT [27]
TLR4 AGTCTGAAATTGCTGAGCTCAAAT GCGACGTTAAGCCATGGAAG [27]

TGF-β4 CGGCCGACGATGAGTGGCTC CGGGGCCCATCTCACAGGGA [27]
IL-8 (CXCLi2) CCTGGTTTCAGCTGCTCTGT GCGTCAGCTTCACATCTTGA [28]

Bu-1 GGTGTCCAGTGAAGGTGTG GATGCAAAGGATGGGTGTC [29]
HSP-70 GGCTGGAGAGAAGAATGTGC CAGCTGTGGACTTCACCTCA [30]

Claudin1 TGGCCACGTCATGGTATGG AACGGGTGTGAAAGGGTCATAG [27]
Claudin3 GCCAAGATCACCATCGTCTC CACCAGCGGGTTGTAGAAAT [30]

FABP6 TGATTTCCCTGGACTCAGC CCCACCTTCCATTTTGACTG [31]
ChREBP CTGAGCGATCGAAGGTGAA TCTCCATCTTGCTGGAGTCA [32]

1 UB, ubiquitin; TLR4, toll-like receptor 4; TLR-2β, toll-like receptor 2β; TGF-β4, transforming growth factor
beta 4; IL-8, interleukin 8 (former CXCLi2); Bu-1, chicken B-cell marker chB6; HSP-70, heat shock protein 70;
Claudin1, Claudin-1; Claudin3, Claudin-3; FABP6, fatty acid binding protein 6; ChREBP, carbohydrate-responsive
element-binding protein.

2.9. Intestinal Morphology Analysis

Samples collected at 15 d of age were embedded in paraffin using a tissue processor. Sections of
2.5 µm were stained with hematoxylin and eosin analyzed with an Olympus BX-40 (Olympus Optical
Co., Ltd., Tokyo, Japan) digital camera and the Soft software version 3.2 C 4040 Z (Soft Imaging System,
Olympus, GmbH, Hamburg, Germany). Images were analyzed eye blinded by the same person. Villus
height (VH) and crypt depth (CD) of 9 intact villi per section were recorded for each animal.

2.10. Statistical Analysis

Data were analyzed using SAS [33]. The data were checked for normality distribution by using
the Shapiro–Wilk’s test and homogeneity of variance was established by using the Levene’s test. Diets
were the main fixed effect in the model. For performance analysis, the experimental unit was the pen,
and for the intestinal morphology, lactulose and mannitol plasma concentration and gene expression
analysis, the animal was the experimental unit. The effect of short-term fasting on the studied variables
was determined by a contrast comparing CNF and CF groups. Polynomial contrasts were used to test
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the linear and no linear effect of OE inclusion. The positive control group (MF) was compared with
the rest of the fasted groups by using the Dunnett’s test at α = 0.05. Results are presented in tables as
mean and the standard error of means (SEM). For genes displaying efficiency different from 2 (E , 2),
Ct values were adjusted according to the previous model described by other authors [34].

3. Results

3.1. Daily Gain, Feed Intake, and Feed Conversion Ratio

No significant differences were observed in ADG, ADFI and FCR among treatments before fasting
period (from 1 to 14 d of age), being on average 31.7 g/bird/d, 37.4 g/bird/d and 1.20 g/g, respectively.
After the fasting period the ADG of CF birds tended (p = 0.06) to be lower compared to CNF from 14 to
21 d of age. In the last period, from 21 to 32 d of age, no significant differences in performance were
observed among groups (Table 3).

Table 3. Effect of experimental diets on broiler chickens growth performance from 14 to 32 d of age 1.

Item 4 CNF CF OE500F OE1500F MF 3 SEM 2
p-Value

CNF vs. CF OE Linear OE No Linear

From 14 to 21 d

ADG (g/bird/d) 72.4 68.9 70.0 69.4 71.7 1.24 0.06 0.80 0.61
ADFI (g/bird/d) 91.0 87.6 89.0 88.4 88.8 1.46 0.11 0.69 0.59

FCR (g/g) 1.26 1.27 1.27 1.28 1.24 0.012 0.49 0.79 0.96

From 21 to 32 d

ADG (g/bird/d) 113 117 117 117 114 2.65 0.32 0.96 0.90
ADFI (g/bird/d) 165 170 169 168 164 3.48 0.28 0.62 0.95

FCR (g/g) 1.45 1.45 1.44 1.44 1.43 0.010 0.67 0.39 0.84
1 CNF, basal diet no fasted; CF, OE500F, OE1500F group, basal diet containing 0, 500 and 1500 ppm of olive pomace
extract and fasted, respectively; MF, basal diet containing 100 ppm of monensin and fasted. 2 SEM, standard error
of the mean (n = 6). 3 Fasted treatments were not significantly different to MF treatment by Dunnett’s test at 5%.
4 ADG, average daily gain; ADFI, average daily feed intake; FCR, feed conversion ratio.

3.2. Lactulose and Mannitol Concentration and L/M Ratio

Plasma mannitol concentration was significantly (p < 0.001) reduced and plasma lactulose and
L/M were significantly (p < 0.001) increased in CF birds compared to CNF on day 15 (Table 4).

Table 4. Effect of a short-term (15.5 h) fasting period and experimental diets on lactulose, mannitol and
lactulose/mannitol ratio in chicken plasma at 15 d of age 1.

Item 4 CNF CF OE500F OE1500F MF 3 SEM 2
p-Value

CNF vs. CF OE Linear OE No Linear

Mannitol (µg/mL) 33.0 22.1 27.6 25.5 25.7 1.54 <0.001 0.13 0.053
Lactulose (µg/mL) 3.79 17.4 20.3 16.1 19.0 1.91 <0.001 0.62 0.13

L/M 0.11 0.76 0.73 0.64 0.69 0.065 <0.001 0.19 0.77
1 CNF, basal diet no fasted; CF, OE500F, OE1500F group, basal diet containing 0, 500 and 1500 ppm of olive pomace
extract and fasted, respectively; MF, basal diet containing 100 ppm of monensin and fasted. 2 SEM, standard error of
the mean (n = 12). 3 Fasted treatments were not significantly different to MF treatment by Dunnett’s test at 5%.
4 L/M, lactulose:mannitol ratio.

No significant differences were observed on lactulose or the L/M plasma concentration among
fasted treatments. However, a non-linear trend (p = 0.053) on plasma mannitol was observed with the
inclusion of OE in the diet, showing higher concentration in birds fed OE500F diet compared to CF
and OE1500F groups.
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3.3. Cytokine and AGP Plasma Concentration

No differences in IL-1β and IL-8 plasma concentration were observed among treatments (Table 5).
However, AGP plasma concentration significantly (p < 0.05) increased as a consequence of fasting
(CNF vs. CF treatments). Moreover, CF treatment showed significantly (p < 0.05) higher AGP plasma
concentration compared to MF treatment.

Table 5. Effect of a short-term (15.5 h) fasting period and experimental diets on AGP, IL-1β and IL-8
concentration in chicken plasma at 15 d of age 1.

Item 4 CNF CF OE500F OE1500F MF 3 SEM 2
p-Value 5

CNF vs. CF OE Linear OE No Linear

AGP (µg/mL) 191 256 221 217 186 15.7 0.006 0.081 0.43
IL-1β (ng/mL) 2.66 2.14 2.47 1.95 2.59 0.53 0.47 0.90 0.78
IL-8 (pg/mL) 69.1 52.9 19.2 46.0 43.3 16.8 0.76 0.80 0.46

1 CNF group, basal diet no fasted; CF, OE500F, OE1500F group, basal diet containing 0, 500 and 1500 ppm of olive
pomace extract and fasted, respectively; MF, basal diet containing 100 ppm of monensin and fasted. 2 SEM, standard
error of the mean (n = 12). 3 Values in bold in fasted treatments are significantly different to MF treatment by
Dunnett’s test at 5%. 4 AGP, alpha-1-acid glycoprotein; IL-1β, interleukin 1β; IL-8, interleukin 8. 5 p-Values for IL-1
β and IL-8 are from root square data transformation analysis.

3.4. Gene Expression

Gene expression data are shown in Table 6. The expression of Claudin3, TLR-2β, TGF-β4, HSP-70
and Bu-1 in the ileum was not affected by a short-term fasting period. However, tight junction Claudin1
gene expression was significantly down-regulated (p < 0.05) in fasted birds. Moreover, the expression
of FABP6 was significantly (p < 0.01) and that of ChREBP tended (p < 0.10) to be down-regulated in
fasted birds. By contrast, the expression of TLR4 and IL-8 were significantly up-regulated (p < 0.05) in
fasted chickens.

Table 6. Effect of a short-term (15.5 h) fasting period and experimental diets on ileum gene expression 1.

Item 4 CNF CF OE500F OE1500F MF 3 SEM 2
p-Value 5

CNF vs. CF OE Linear OE No Linear

Claudin1 10.6 11.4 11.6 11.5 11.5 0.24 0.031 0.73 0.68
Claudin3 7.39 7.43 7.42 7.46 7.47 0.16 0.86 0.88 0.89
ChREBP 11.0 11.9 11.8 11.6 11.5 0.35 0.063 0.50 0.94
FABP6 0.15 1.08 1.22 1.07 0.82 0.19 0.001 0.96 0.53
TLR-2β 7.89 8.14 7.89 7.69 7.90 0.21 0.40 0.13 0.91
TLR4 11.4 10.8 10.8 10.6 10.7 0.20 0.032 0.50 0.47

TGF-β4 13.7 13.4 13.4 13.5 13.4 0.16 0.19 0.66 0.63
IL-8 6.84 5.80 6.68 5.86 6.54 0.35 0.041 0.90 0.053

HSP-70 7.60 8.10 8.09 7.99 7.85 0.22 0.12 0.73 0.88
Bu-1 8.88 8.61 8.18 7.92 8.37 0.22 0.39 0.032 0.78

1 CNF group, basal diet no fasted; CF, OE500F, OE1500F group, basal diet containing 0, 500 and 1500 ppm of olive
pomace extract and fasted, respectively; MF, basal diet containing 100 ppm of monensin and fasted. 2 SEM, standard
error of the mean (n = 12). 3 Fasted treatments were not significantly different to MF treatment by Dunnett’s test at 5%.
4 Values are increments of cycle threshold (∆Ct) of target gene relative to the housekeeping. Ct values are inversely
related to the RNA abundance. Claudin1, Claudin-1; Claudin3, Claudin-3; ChREBP, carbohydrate-responsive
element-binding protein; FABP6, fatty acid binding protein 6; TLR-2β, toll-like receptor 2β; TLR4, toll-like receptor
4; TGF-β4, transforming growth factor beta 4; IL-8, interleukin 8 (former CXCLi2); HSP-70, heat shock protein 70;
Bu-1, chicken B-cell marker chB6.

Among fasted treatments, a non-linear tendency (p = 0.053) of ileal IL-8 expression was observed
with OE inclusion in the diet, displaying birds fed the OE500F diet lower expression levels than those
of the CF and the OE1500F groups. Furthermore, the expression of Bu-1 linearly increased (p < 0.05)
with OE inclusion levels.
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3.5. Histology

Results of intestinal morphology of duodenum are shown in Table 7. Control fasted birds showed
significantly (p < 0.001) higher CD and lower villus height/crypt depth ratio (V/C) compared to
CNF treatment.

Table 7. Effect of a short-term (15.5 h) fasting period and experimental diets on villus height, crypt
depth and villus/crypt ratio in broiler chickens duodenum at 15 d of age.1.

Item 4 CNF CF OE500F OE1500F MF 3 SEM 2
p-Value

CNF vs. CF OE Linear OE No Linear

Villus height (µm) 1956 1907 1875 1748 1726 45.2 0.44 0.019 0.40
Crypt depth (µm) 149 181 162 158 168 6.04 <0.001 0.014 0.33

Villus/Crypt 13.3 10.8 11.6 11.3 10.4 0.50 <0.001 0.45 0.34
1 CNF group, basal diet no fasted; CF, OE500F, OE1500F group, basal diet containing 0, 500 and 1500 ppm of olive
pomace extract and fasted, respectively; MF, basal diet containing 100 ppm of monensin and fasted. 2 SEM, standard
error of the mean (n = 12). 3 Values in bold in fasted treatments are significantly different to MF treatment by
Dunnett’s test at 5%.

Among fasted treatments, the MF group showed significantly shorter VH compared to the CF
and OE500F treatments (p < 0.05), but similar than those on the OE1500F treatment. The inclusion of
OE decreased (p < 0.05), linearly, VH and CD.

4. Discussion

4.1. Effect of Fasting Period

In the present study birds fasted for 15.5 h at 14 d of age showed similar ADFI and FCR from 14 to
21 d of age than no fasted birds; however, the ADG tended to be lower in fasted birds. From 21 to 31 d
of age, short-term fasted and no fasted showed similar performance. Chamblee et al. [35] observed a
rapid compensatory growth in birds upon refeeding after short-term (12 h) fasting period. Modern
fast growing broiler breeds might need more time to fully compensate growth performance after a
short-term (less than 24 h) fasting period.

Intestinal health is determined by factors such as nutrition, microbiome and environment and their
effects on the host immunity and mucosal barrier permeability [20]. The latter has been proven to be
impaired when broiler chickens are short-term fasted (less than 24 h), as measured by FITC-d, lactulose,
mannitol and L/M ratio markers [21,22]. Lactulose is a high-molecular-weight sugar that is absorbed
via enterocyte tight junctions (paracellular transport) and mannitol is a lower-molecular-weight
sugar absorbed straight into the blood (transcellular transport) [21,22,36]. In the present study, the
concentration of mannitol significantly decreased and that of lactulose and L/M increased in the plasma
of birds after a 15.5 h fasting period, confirming the detrimental effects on intestinal permeability
observed in chickens after a short-term fasting period [22]. The observed increment in the paracellular
transport of fasted animals was associated with a decreased expression of Claudin-1 but no Claudin-3
in the ileum. Claudins are important structural components of the tight junctions and Claudin-1 and -3
are directly involved in the paracellular permeability [37]. In a recent study, Gilani et al. [30] reported
a decreased expression of Claudin-3 but no effect on Claudin-1 and other tight junction proteins in
short-term fasted birds. Despite the fact that a decreased expression of Claudin-1 has been related with
an increased permeability in intestinal disorders, there seems not to be a clear pattern for Claudin-3
expression, which may or may not be affected [38]. On the other hand, fasting period significantly
reduced FABP6 expression in the ileum, corroborating results showed by Gilani et al. [30]. This protein
is involved in bile acid transport across the epithelium, and, according to Gilani et al. [30], FABP6
downregulation in fasted birds might indicate a reduced bile acid production as a consequence of
dietary fatty acid absence. Furthermore, considering the described effect of several dietary components
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(e.g., glutamine, fatty acids) and bacteria on claudin expression [37], it seems plausible that the lack of
nutrients during fasting might affect Claudin-1 expression and increase permeability.

An increase in intestinal permeability leads to an increase of food and bacterial antigens that
might trigger an inflammatory response [39]. Birds feed deprived for 15.5 h significantly upregulated
TLR4 expression in the ileum but not that of TLR2-β. Both are regulators of the innate immune system
that induce an inflammatory response after detecting pathogenic and non-pathogenic molecules [27].
LPS produced by gram-negative bacteria or dietary fatty acids have shown to activate TLR4 and
the inflammatory response after a reduced integrity of the intestinal barrier in obesity models [40].
Moreover, IL-8 gene expression was also upregulated in the ileum after the fasting period. This
chemokine recruits heterophils at a local level in response to the presence of bacteria or inflammatory
cytokines [27,41]. A higher IL-8 expression related to the inflammatory response was observed in a gut
barrier failure model with diet and coccidiosis [27]. In addition, the expression of the anti-inflammatory
cytokine TGF-β4, and that of HSP-70 included in tissue protection and repair were not affected by the
short-term fasting. This is in agreement with Gilani et al. [30], who showed the absence of changes in
HSP-70 gene expression in the jejunum and ileum of up to 19.5 h fasted chickens. Taken together with
these results, it seems that feed withdrawal for 15.5 h induced an intestinal inflammatory response
through TLR4 signaling.

Broilers fasted during 15.5 h showed higher AGP serum concentration compared to CNF animals.
Similar findings were observed by Najafi et al. [42] in broilers after a longer period of food deprivation
(30 h). This acute phase protein has been also reported to increase in serum of birds, with an increase
of intestinal permeability caused by a rich NSP diet plus a coccidian challenge [27]. Therefore, it is
plausible that the high AGP values reported in this study are closely related to the observed intestinal
inflammation and permeability increase and/or the stress induced by feed deprivation.

Studies in broilers have addressed the effects of a short-term (<24 h) fasting period on intestinal
morphology by measuring VH and CD [30,43]. Changes in intestinal morphology seem to be related
to the hours of feed withdrawal and to the intestinal section, with duodenum and jejunum responding
faster than ileum [30,43]. Higher VH and CD have been reported in the jejunum or in the ileum of
short-term fasted birds [43]. According to Thompson and Applegate [43], increased CD in short-term
fasted birds suggests a need of higher tissue turnover to maintain VH in order to maximize absorption
when nutrients become available again. However, there is no clear relationship between such changes
and intestinal permeability increase [30,43]. In this study, increase of intestinal permeability in fasted
birds was associated with unaltered VH but significant augmented CD in duodenum. Similar results
were observed by Chen et al. [27] in chickens at 28 d of age, with intestinal permeability increase caused
by a rich NSP diet plus a coccidial challenge. Duodenal samples of challenged birds showed similar
VH but higher CD in an attempt to enhance cell proliferation to maintain gut barrier integrity [27].
If short-term fasting effects on VH and CD are a consequence to maintain the epithelial structure, to
maximize nutrient absorption or to maintain gut integrity deserves future studies.

4.2. Effect of Olive Pomace Extract

The results of this study showed that supplementation of different levels of OE or with M did not
alter chicken performance during the different phases of the experiment. This is in agreement with
Leskovec et al. [44] in broiler chickens fed diets supplemented with an olive leaf extract. Furthermore,
King et al. [45] reported no significant differences in broiler performance after supplementing an olive
pomace extract in water. By contrast, Herrero-Encinas et al. [17] were able to detect higher ADG
and better FCR in broiler chickens fed 1000 ppm of a bioactive extract from Olea europaea from 35
to 42 d of age. Moreover, utilization of olive leaf extracts in broilers’ diet improved FCR and body
weight in the study of Sarica and Ürmez [46]. Thus, the potential beneficial effects of the bioactive
compounds of extracts from Olea europaea on productive parameters might depend on the composition
and concentration of the bioactive substances, bird age, mode of supplementation (water vs. feed).
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Among fasted birds, the significantly higher mannitol concentration was noticeable in the
plasma of birds fed the OE500F, compared to those fed the CF or the OE1500F. These results are in
agreement with Liehr et al. [16], who showed an intestinal functionality improvement by an increment
of plasma mannitol concentration in pigs fed an olive oil extract and chronically challenged with
lipopolysaccharides. Therefore, the higher mannitol concentration observed in birds supplemented
with 500 ppm of OE in our study could be related to a lower transcellular transport damage when they
were short-term fasted. However, the concentration of lactulose in the plasma and the expression of
Claudin-1 and -3 and FABP6 in the ileum were similar among dietary treatments after 15.5 h of feed
withdrawal. This might be indicative of a lack of effect of OE on paracellular transport increase after
the short-term fasting period.

Bioactive compounds of olive pomace have shown immunomodulatory effects in broiler chickens,
pigs, calves and fish by reducing the production of pro-inflammatory cytokines and increasing the
anti-inflammatory cytokines [15–18]. Interestingly, broiler chickens fed OE500F showed a significant
down-regulation of ileal IL-8 expression, compared with birds in the CF and OE1500F. Moreover,
the inclusion of OE increased Bu-1 expression, suggesting a stimulatory effect on humoral immunity.
An immunosuppressant effect on IL-8 and a stimulatory effect on Bu-1 have been observed in our
previous study with broilers fed an olive pomace extract in the growing phase [17]. Furthermore,
increased B-cell markers has been previously described in broiler chickens fed plant extracts rich in
polyphenolic compounds [47]. This immunomodulatory effect of OE deserves future research in a
context of experimentally-induced disease.

Among dietary treatments, birds fasted and fed MF and OE1500F diets showed similar VH, but
significantly lower than those fed the CF and OE500F. Moreover, the increase of OE in diets linearly
decreased CD. This is in agreement with other studies of broiler chickens, that have shown reduced
jejunal CD in birds fed with garlic extract compared to a control [48]. According to these authors, a
reduced CD suggests a lower turnover rate to maintain VH and, hence, lower energy needs to maintain
gut integrity. In the present study, this might be the case with birds fed the OE500F, as they seem to
maintain VH with lower CD. However, it was not observed with the highest dose of the extract.

5. Conclusions

Under the conditions of the present study, the inclusion of up to 1500 ppm of an extract rich in
bioactive compounds from Olea europaea in starter and grower broiler diets did not affect performance.
The 15.5 h fasting period significantly increased intestinal permeability triggering an inflammatory
response mediated by TLR4. The inclusion of 500 ppm of the OE attenuated some of the negative
effects of increased intestinal permeability associated to this short-term fasting challenge.
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