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Mitonuclear conflict and cooperation
govern the integration of genotypes,
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The mitonuclear genome is the most successful co-evolved mutualism in the
history of life on Earth. The cross-talk between the mitochondrial and
nuclear genomes has been shaped by conflict and cooperation for more
than 1.5 billion years, yet this system has adapted to countless genomic reor-
ganizations by each partner, and done so under changing environments that
have placed dramatic biochemical and physiological pressures on evolving
lineages. From putative anaerobic origins, mitochondria emerged as the
defining aerobic organelle. During this transition, the two genomes resolved
rules for sex determination and transmission that made uniparental inheri-
tance the dominant, but not a universal pattern. Mitochondria are much
more than energy-producing organelles and play crucial roles in nutrient
and stress signalling that can alter how nuclear genes are expressed as phe-
notypes. All of these interactions are examples of genotype-by-environment
(GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more
generally context-dependent effects on the link between genotype and phe-
notype. We provide evidence from our own studies in Drosophila, and from
those of other systems, that mitonuclear interactions—either conflicting or
cooperative—are common features of GxE and GxG. We argue that mitonuc-
lear interactions are an important model for how to better understand the
pervasive context-dependent effects underlying the architecture of complex
phenotypes. Future research in this area should focus on the quantitative
genetic concept of effect size to place mitochondrial links to phenotype in
a proper context.

This article is part of the theme issue ‘Linking the mitochondrial
genotype to phenotype: a complex endeavour’.
A given gene will manifest itself in different ways depending on the complex of other
genes surrounding it. For this gene, that complex or genotype will comprise its
genotypic environment, in which it expresses itself

—Sergei Chetverikov, 1926 [1, p. 223]
1. Introduction
Mitochondria influence most phenotypes in all eukaryotes. This may be true for
other subcellular structures like ribosomes, the endoplasmic reticulum or cen-
trioles, but mitochondria are so much more interesting because they have
their own polyploid genome that is distributed across the cytoplasm and is dis-
tinct from the nuclear genome. This dual genomic architecture of eukaryotes is
an exquisite example of evolutionary contingency [2] and arguably the most
successful co-evolved mutualism in the history of life [3]. The union of an
archaebacterium and a eubacterium that has been resolved as a eukaryotic
cell consolidated distinct genetic, biochemical and ecological systems into a
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novel life form that permitted an explosion of biodiversity [4].
The origin and evolution of mitochondria have been credited
as causal factors in the evolution of eukaryotes, multicellular-
ity, the origin and maintenance of sex, the predominance of
two mating types, the driving force behind speciation, the
cause of ageing, the source of male fitness variation, among
others. These ideas were clearly articulated almost 30 years
ago by Cosmides & Tooby [5], which have been reviewed
extensively [6–10] and are revisited by papers in this issue.
Cosmides & Tooby [5] were the first to place this broad
sweep of ideas in the context of intragenomic conflicts, and
these ideas have been extended more recently [9,11,12]. Like
any merger and acquisition, the interest of each unit differs,
which is the source of the conflict. But some form of
cooperation must ensue for the new emergent unit to be
successful [13].

Here we will leave the macroevolutionay aspects of
this topic to others and focus on the microevolutionary
processes by which mitochondria are part of the link between
genotype and phenotype. We revisit the concepts of mito-
nuclear conflict and cooperation from the perspective of
gene-by-gene (GxG) and genotype-by-environment (GxE)
interactions with a focus on experimental, quantitative
genetic approaches in current day organisms. We propose
the most important role that mitochondria play in linking
genotype to phenotype is through their context-dependent
epistatic and GxE interactions with the nucleus and the
environment. These interactions are the basis of putative
conflicts and cooperation that govern ongoing mitonuclear
evolution and are the legacy of macroevolutionary
conflict resolution. Understanding the link between genotype
and phenotype is a central challenge of biomedical
research, and while mitochondria are one of many players
in this link, the mitonuclear interactions are the integra-
tive context for discovering the causal mechanisms in the
genotype–phenotype map.
2. Conflict, cooperation and the quantitative
genetics of mitonuclear interactions

Because mitochondria are central to cellular metabolism,
and many examples of mitochondrial DNA (mtDNA)
mutations causing human disease have been documented,
there is no doubt that mitochondria play some role in the gen-
otype–phenotype map. How mitochondria may be driving
evolutionary changes in the link between genotype and phe-
notype, and whether conflict and cooperation are part of this
dynamic needs to be addressed with experimental analyses.
The most interesting and tractable contexts for these exper-
iments involve the conflicts between mtDNA and nuclear
genotypes, between mitonuclear genotypes in different
sexes and between mitonuclear genotypes in different
environments. To demonstrate conflict, one must show that
the phenotype of one of these factors is compromised (or
not optimized) by the presence of the other factor. To demon-
strate cooperation, one must show that interaction between
the factors allows one or more of the factors to enjoy an
improved phenotype, or longer persistence in populations,
owing to the fitness of the emergent higher unit [13–15].
This, in turn, requires functional polymorphism among
mtDNAs and interacting nuclear genes.
(a) Nuclear genes in mitochondrial environments
The opportunity for mtDNA and nuclear factors (or any
genetic factor) to influence phenotype depends on the
quantitative genetic concept of the effect size or the standar-
dized difference in mean phenotype between individuals of
two allelic or genotypic classes. For a diploid nuclear locus,
the homozygous effect, a, would be half the difference
in mean phenotype between alternative homozygotes (e.g.
for the phenotypes of NN versus nn homozygotes,
a = (NN− nn)/2). This is typically quantified as the propor-
tion of the phenotypic standard deviation in the mapping
population (σP): thus, effect size = a/σP [16]. For haploid
mtDNAs, this would be the difference in mean pheno-
type between individuals carrying alternative mtDNAs
(e.g. for the phenotypes of M versus m mtDNA haplotypes,
a =M−m and effect size = a/σP). In natural populations, the
strength of an effect size would be the mean of each effect
size across all the genetic backgrounds that a particular
nuclear or mtDNA allele finds itself. Because functional poly-
morphism is well known in both nuclear and mtDNA
genomes in nature, conflicts will arise if there are nuclear
backgrounds in which either the M or the m mtDNA is not
fit; and likewise for the N or the n nuclear allele in either
the M or n mtDNA background. In short, each genetic
factor provides an environment for the other (figure 1).
Theory and experimental work demonstrate that for haploid
mtDNA, this conflict will be resolved with the elimination of
one mtDNA variant due to non-zero effect sizes for mtDNA
that cannot be easily maintained in haploid systems even
with autosomal modifiers [17–19]. However, when interact-
ing nuclear loci are X-linked (in XX/XY systems), the
dynamics of the nuclear variation can help maintain joint
nuclear and mtDNA variation in a system that is consistent
with cooperation [3]. The long-term fate of these polymorph-
isms depends on whether the mitonuclear epistatic
interactions are positive or negative, which in turn will deter-
mine whether conflicts are resolved through cooperation or
purging of polymorphisms. In general terms, the effect
sizes and signs of the mtDNA, nuclear and interaction effects
determine the dynamics of the system, and these factors
probably vary in unpredictable ways in nature. A more com-
plete examination of these interactions has been presented by
Wade & Drown [20].

(b) Mitochondrial genes in sex environments
The uniparental transmission of mtDNA presents a clear con-
text for different links between mtDNA genotype and
phenotype, especially with respect to sex-specific effects.
Maternal transmission of mtDNA and biparental trans-
mission of nuclear chromosomes establishes conflict, where
mtDNA alleles’ interests are linked to female fitness, and
nuclear alleles’ interests depend on both male and female fit-
ness [5,21]. This transmission dynamic allows selection to
operate on mtDNAs in females, but not in males. Haploid
selection should purge female-limited mtDNA effects but
allow male-limited deleterious mtDNA effects to persist in
populations if they were neutral or beneficial in females. It
follows that mtDNA variance in effect sizes should be small
in females, but large in males, a condition that has been
dubbed Mother’s Curse [22]. Evidence in support of this
has been provided in Drosophila [3,23,24] and humans [25],
but it is not a universal phenomenon [26–29].
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Figure 1. Mitochondrial effects are dominated by epistatic and environmental interactions. (a) illustrates a mitonuclear epistatic (GxG) interaction for a phenotype.
The three nuclear genotypes at an autosomal locus (NN, Nn, nn) might show different norms of reaction across alternative mtDNA backgrounds (M and m).
(b) Different mitonuclear genotypes (denoted as mtDNA; nuclear genotype) may have different phenotypes in different sexes. Here, the sex of the organisms
provides a distinct environment for the genotype. (c) A typical genotype-by-environment (GxE) interaction where alternative genotypes have different phenotypes
across a range of environments. The relative contributions of mtDNA and nuclear genes to these phenotypes are context dependent. Importantly, (d ) demonstrates
that the effect size for a given mtDNA or genotype might be large in any one environment but may be very small when averaged across all genetic and
environmental backgrounds encountered in nature (i.e. marginal effect sizes are small). (Online version in colour.)
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A key question in Mother’s Curse is whether nuclear
modifiers of male deleterious mtDNA effects can arise. It
has been shown that inbreeding or assortative mating can
minimize the impact of Mother’s Curse [30,31] by permitting
nuclear modifiers to be effective despite a lack of mtDNA
transmission in males. As noted above, the dynamics of
mtDNA–X-chromosome interactions can permit cooperative
interactions that might compensate for male deleterious
effects [3]. The Y chromosome provides one source of
Mother’s Curse modifiers given its male-limited trans-
mission, which should facilitate compensatory mutations
[32]. And in ZW species where females are the heterogametic
sex, the co-transmission of genetic elements provides a differ-
ent set of conflicts and cooperative interactions that can
modify Mother’s Curse and introduce a parallel Father’s
Curse [32]. A critical question in these studies concerns the
generality of the Mother’s Curse phenomenon, given the
studies that do and do not support the predicted pattern
[24,26]. It seems reasonable that the context-specific nature
of mitonuclear epistatic interactions could enhance or mask
Mother’s Curse patterns owing to either positive or negative
fitness trajectories for joint mitonuclear genotypes [20].
Connallon et al. [33] examined the population genetics par-
ameters that drive the Mother’s Curse phenomenon and
found that large and small effective population sizes may
promote it, while intermediate effective population sizes
may not result in this pattern. The significance of this
depends again on the effect size of the mtDNA and nuclear
background alleles, averaged across their respective genetic
backgrounds and, most notably, across each sex background.
In this way, we consider sex as yet another component of the
genetic background or a form of environmental background.
(c) Mitonuclear genotypes in external environments
Virtually all phenotypes have some degree of environmental
sensitivity, also known as phenotypic plasticity. For mito-
chondrial and nuclear genetic interactions, their central role
in cellular function should be highly responsive to environ-
mental variation. Here an analogous form of conflict and
cooperation presents itself, and again the critical factor is
the effect size of each mtDNA or nuclear allele across
the range of environments that either may encounter in the
realization of an organism’s life history. An allele that is
favoured in one environment but deleterious in another—a
condition of crossing reaction norms or GxE interactions—
could be maintained in the entire population. This describes
the Levene model of a balanced polymorphism [34], and
the environment generates a form of conflict for the genetic
polymorphism. The conflict can be resolved or purged,
depending on the genetic exchange between niches or relative
proportions of alternative niches in the overall environment.
Alleles or mtDNAs showing GxE could have very large
effect sizes in the extremes of the environmental range but
small effect sizes averaged across all environments (figure 1).
This GxE condition is exactly analogous to the GxG inter-
action for a mitonuclear epistasis that might maintain, or at
very least, influence genetic variation.

(d) Mitochondrial metabolism as a quantitative genetic
integrator

It is our opinion that experimental studies demonstrating
mtDNA phenotype effects in one or two nuclear back-
grounds or environmental contexts by no means establish
that this pattern is general in the natural world. This is an
old and thorny problem in the experimental population
and ecological genetics. The basis of this opinion lies in the
most general aspect of cellular metabolism: it has evolved
varied pathways to provide functional plasticity to respond
to varied environmental stresses. Mitonuclear interactions
provide the mechanistic basis for common features of epi-
static GxG and GxE interactions [35]. Mitochondria are now
recognized as much more than ATP factories, with central
roles in nutrient and redox sensing, as well as diverse cellular
signalling pathways [36,37]. As such, mitochondria are
central integrators of the external and internal conditions
that can translate biochemical reagents into phenotypic
traits. This role as an integrator of cellular function is prob-
ably a legacy of the cycles of conflict and cooperation that
resulted in the emergence of mitochondria from the original
endosymbiosis event [9]. This transition involved the consoli-
dation of distinct biochemistries where waste products from
the eubacterium may have provided nutrients for the archae-
bacterium and vice versa [38]. The metabolites that were the
currency for these early interactions have been retained as
part of the complex set of signals that maintain mitonuclear
communication today. Examples include electron coupling
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reactions of the respiratory chain involving H+ and NAD+/
NADH balance [39], calcium signalling [40,41] and ADP/
ATP transport [9,42,43], among many others [44].

An important component of these signalling processes is a
distinct role for the environment in the nature of the signal:
most of these metabolites have different concentrations
inside and outside of cells, and their function provides a criti-
cal signalling link between the external ecological and the
internal genetic environments. The function of mitochondria
depends critically on the integration of 37 mtDNA-encoded
gene products and approximately 1200 nuclear-encoded
gene products, which is mediated by these diffusible and
transported metabolites that serve as messengers in the ante-
rograde and retrograde signals between the two genomes.
With signalling mediated by molecules that originate both
outside the organism (nutrients, oxygen) and insidemitochon-
dria (‘mitobolites’, [36]), the distinction between G×E
interactions and G×G interactions becomes blurred.
Moreover, the reality of these biochemical and ecological inter-
actions directs the focus on the question of mitochondrial
genotypes’ effects on phenotype, to the broader context of
mitonuclear interactions’ effects on phenotype [35]. This
perspective motivates a quantitative genetic approach tomito-
nuclear interactions: mitochondrial functions as quantitative
traits.

The central challenge of quantitative genetics is to define
the genetic architecture of phenotypes: what genes are
involved, how big are their effects, do they interact with
each other and with biotic and abiotic environmental vari-
ables. To date, an unprecedented number of studies have
looked at the effects of individual single-nucleotide poly-
morphisms (SNPs) on phenotypic variation or disease risk
in a genome-wide association (GWA) framework. The
magnitude of this scientific endeavour in humans alone is
over 3764 publications and 107 785 SNP-trait associations as
of January 2019 (https://www.ebi.ac.uk/gwas/). However,
GWA methods have produced two unexpected results [45]:
the most significant genes in these studies account for only a
small fraction of the total genetic variation for traits, and
many of the GWA hits are in non-coding regions of the
genome. The first result, known as the ‘missing heritability’
problem [46], implies that many genes of small effect, or
gene interactions, that contribute to trait variation remain
undetected. The second result implies that gene regulation is
an important component of trait variation. These results
havemotivated newmodels of the genetic bases of phenotypic
variation. The simple polygenic model invoking a few strong-
effect genes with several modifier loci is now incomplete. The
GWA data for height [47] are consistent with the classical
infinitesimal model of R.A. Fisher [48], and the role of non-
coding gene-regulatory SNPs in complex traits invokes gene
interaction in phenotypic variation. Boyle et al. [45] interpret
these findings as an ‘omnigenic’ model in which ‘core’ genes
at the hubs of regulatory networks are connected through
numerous ‘peripheral’ genes that modify core, cellular
functions. Because peripheral genes outnumber core genes
100-fold, the omnigenic model seeks to integrate the puzzle
of missing heritability with the phenotypic effects of non-
coding SNPs. While this view extends the infinitesimal
model to an extreme, interactions between core and peripheral
genes are implicit components of the omnigenic model.

How does this perspective connect with the role of mito-
chondria in the phenotype–genotype map? It has been noted
that these GWA studies neglect to include SNPs in mtDNA
[49] and often ignore the entire X-chromosome. We argue
that mitonuclear genetic variation embodies highly complex
and pervasive GxG and GxE interactions that modify orga-
nismal fitness and function in non-additive ways and is an
ideal context for evaluating the nature of the polygenic and
omnigenic models. This view has been informed by empirical
studies in the fruit fly Drosophila melanogaster and other
model organisms and follows from the enormity of functions
in eukaryotic cells that are governed by mitonuclear cross-
talk [50,51]. We suggest that the mitochondrion is a major
source of pleiotropic and epistatic phenotypic effects but
urge the field to avoid singular interpretations of mtDNA
as the primary driver of simplistic models of fitness and
adaptation. The quantitative genetic reality of average effect
sizes and a systems biology approach of integration and
interaction are warranted to understand how evolutionarily
conserved genetic pathways interact with the environment
to modify phenotypes and fitness. We recognize that
mtDNA is inherited as a single linkage group encoding
genes for multiple proteins of the core energy-producing func-
tion in cells, so it can be considered a sort of super gene
complex that may have a disproportionately large effect on a
per-base-pair basis. But the impact of mtDNA to phenotypic
variation is often a fraction of the nuclear or environmental
effects in those cases where the main effects of mtDNA,
nuclear DNA and environmental factors have been quantified.
[3,19,26,52,53]. Often, the interaction effects with mtDNA are
greater than the main effect of mtDNA, so its effect on fitness
and adaptation may be mediated by epistatic rather than
main effects. To claim that mtDNA is more important than
the entire nuclear genome as a driver of organismal fitness
and adaptation does not seem warranted by these data.
3. Nonlinear interactions: complications for
phenotypic prediction

For over a century, it has been known that genes rarely oper-
ate in isolation [54–57], and GxG nonlinear interactions
(epistases) are widespread phenomena [58,59] underlying
numerous phenotypic traits [60,61]. On first principles,
higher-order epistatic interactions are challenging to describe
because the allelic variation at individual interacting loci may
demonstrate zero or negligible statistical trait associations
[62,63]. Instead, the effects of alleles can be dependent on
the context of other alleles they find themselves interacting
with [57], resulting in ‘cryptic’ genetic and phenotypic vari-
ation [64]. The qualifying term ‘cryptic’ is used to describe
unforeseen or unpredictable outcomes of allelic pairing (or
three, four or n-level higher-order interactions) that are
revealed under very specific genetic contexts. As a result, pre-
dicting the origin, identity and effects of nonlinear and
multiplicative genetic interactions is the central challenge
for quantitative and medical genetics.

Despite these complications, large effect size interactions
between loci have been successfully mapped in polygenic
human disease (ankylosing spondylitis: HLA-B27 and
ERAP1 [65]; psoriasis: ERAP1 and HLA-Cw6 [66]). Numerous
genetic models are being developed to detect genome-wide
genetic interactions underlying complex human traits
[67–69]. Performing exhaustive searches for pairwise (and
higher-order) genome-wide interactions is a computationally
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intensive process and alternative data mining and machine
learning approaches are now routinely used to accelerate stat-
istical analyses of epistatic genes [68]. The outcomes of these
genome-wide screens produce population-level associations
usually involving thousands of individuals. However, the
more relevant granularity for personalized genomics or medi-
cine is at the individual level. This presents a problem since
even genetically identical individuals (e.g. identical twins)
demonstrate variable susceptibility (penetrance) to common
disease [70–72]. For these reasons, it has been suggested that
‘we may never be able to make accurate predictions about
disease risk in individuals using genetics alone’ [73, p. 168].

Given the phenotypic heterogeneity of genetically identical
individuals, the role of environment and epigenetics has been
strongly implied in complex traits. For example, in isogenic
Drosophila strains, there is heritable intragenotype phenotypic
variability [74], even when tested in controlled environments.
Likewise, random variability in quantitative biological traits
is routinely observed in inbred rodent strains in highly con-
trolled environments with standardized husbandry [75].
Furthermore, GxE interactions have been shown to vary in
isogenic Caenorhabditis elegans [76]. The complexity of GxG,
GxE and potentially higher-order effects requires that the
genotype–phenotype landscape changes in different high-
dimensionality environments [77]. To fully dissect, these
higher-order effects will require extensive study in model
organisms in controlled abiotic (and genetic [35]) environ-
ments. Even after extensive study, it may not be possible to
determine if genetic inference from inbred or isogenic model
organisms can translate to large effect sizes in the context of
outbred, heterozygous humans. It is likely that the genetic
effect sizes required for robust inference of mtDNA may be
generally very low, and sample sizes for good support,
prohibitively large in the face of environmental variability [78].
4. Experimental approaches to map
mitochondrial genotypes to phenotypes

As mtDNA is maternally inherited and non-recombining in
most animal species, genetic crossing designs in model organ-
isms allow the precise placement of mtDNAs with alternative
nDNA backgrounds. By introgressing distinct mtDNA haplo-
types onto isogenic nuclear chromosomal backgrounds
(nDNAs), a factorial panel of mitonuclear variation can be
assayed to identify the contribution of nDNA, mtDNA and
their epistatic interaction on fitness-related traits (figure 2).
The elegance of this approach is, however, moderately
restricted to recessive mutations with large effect sizes and
few genetic and environmental interactions. The roles of dom-
inance and heterozygosity on mtDNA interactions remain
poorly understood. To date mitonuclear effects have been
tested by generating appropriate crosses and assaying geno-
types across model animal species: Drosophila [23,24,27,28,
80–84], nematodes [85], marine copepods [86–89], yeast
[90–92], rodents [93,94], wasps [95]; human and rodent
cybrid cell lines [96–100] and plants [101].

Epistasis is widespread inDrosophila [102] and complex life-
history traits are dominated by a largely polygenic architecture.
This provides an opportunity to test predictions of the omni-
genic model as well as uncovering the common pathways
that are influenced by mtDNA and that underlie complex
traits and disease. UsingDrosophila, we take a forward genetics
approach to understand epistasis and exploit the known phys-
ical interactions between mtDNA and nDNA gene products
that should coevolve in lineages [7]. We genetically perturb
this co-evolved system by introgressing mtDNAs from
within- and between-species ofDrosophila onto various nuclear
genetic backgrounds to quantify phenotypic effects from the
whole organism to cellular respiration levels of the phenome.
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The potential GxG interaction space across all genes in the
nuclear and mitochondrial genomes is excessively large, and
by restricting our genetic model to the approximately 1200
nuclear genes and 37 mtDNA genes, we effectively narrow
this search space to a more manageable and interpretable gen-
otypic environment (figure 2). Ultimately, the goal is to
understand how phenotypes vary across the GxG interaction
(and fitness [103]) landscape to then make accurate predictions
of the phenotype from known nDNA genotypes, sequences or
mtDNA haplotype (‘whole-genome reverse genetics’ [73,104]).
rnal/rstb
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(a) Lessons from mitonuclear fruit flies
Three important lessons have emerged from our mitonuclear
introgression analyses in Drosophila. First is the falsification of
a simple mitonuclear coadaptation model. A simple coadap-
tation model would predict that coevolving entities would
function better when associated than when either entity is
transplanted on to a foreign host or associate with which it
has not co-evolved. We expect mtDNA from a different
species to disrupt co-adapted mitonuclear interactions when
placed on the nuclear background of a species with which
it has not co-evolved [7]. In multiple instances, we have
found that D. melanogaster flies carrying a Drosophila simulans
mtDNA that diverged approximately 2 Ma and which differs
at approximately 100 amino acid positions across the mtDNA
genes encoding subunits of the electron transport chain, and
approximately 400 additional substitutions in synonymous
sites, transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs), have very subtle phenotypic effects [105]. We also
note that D. melanogaster flies carrying a Drosophila yakuba
mtDNA that diverged approximately 10 Ma, and which dif-
fers at approximately 1018 nucleotide positions including
approximately 171 amino acid changes across the protein-
coding genes does not alter longevity [106] or climbing ability
(A. Spierer and D. Rand 2015, unpublished data). This means
that extensive mtDNA divergence has resulted in an effect
size not different from zero and that all fixed differences
are functionally neutral, or that a complex history of epistatic,
compensatory or cooperative mutations has left no profound
signal of a phenotypic effect for these Drosophila species pairs.
A similar result has been found in mitonuclear cybrid cell
lines in mice: cytochrome c oxidase (COX) activity is not dis-
rupted in inter-species transplants among mice species, but in
rat-mouse cybrids, a breakdown in function is observed [107].
One possible explanation for this is that purifying selection
on mtDNA mutations has removed the strong-effect
mutations allowing functionally neutral mutations to fix
between species, which is consistent with many studies in
molecular evolution [108,109].

Second, and related to the first, is that the phenotypic effects
of mtDNA mutations are greater within species than between
species: alternative D. melanogaster mtDNAs have measurable
effects on phenotype, as do alternative D. simulans mtDNAs
on D. melanogaster nuclear backgrounds, but the interspecific
effects are weak [26,105]. This demonstrates the importance
of using an mtDNA outgroup in experimental introgression
studies, as a linear relationship between mtDNA divergence
and phenotypic effect is a simple predictive model of mito-
nuclear coevolution. The third lesson is that the effects of
each mtDNA depend on the nuclear background and the
environmental conditions. This latter point is true even for a
mitonuclear introgression genotype that mimics a strong
mitochondrial disease [80,105,110]. The w501 mtDNA haplo-
type from D. simulans paired with the nuclear chromosomes
from D. melanogaster OregonR—a common laboratory strain—
has a suite of developmental, biochemical and fecundity
defects. The causative loci in this are a non-synonymous SNP
in the nuclear-encodedmitochondrial tyrosyl tRNA synthetase
gene (Aatm) and a polymorphism in the anticodon stem of its
cognate mtDNA-encoded tRNATyr. The exaggerated deleter-
ious phenotype is the first example of mitonuclear epistasis
mapped to single-nucleotide levels in Drosophila [80,105].
Despite its strong epistatic effect size, this mtDNA mutation
has only mild effects on a different nuclear background. More-
over, the epistatic ‘disease’ condition is dramatically reduced at
low temperatures, indicating mitonuclear GxE, or GxGxE
effects [111,112]. This is not a peculiar consequence of a
D. simulans mtDNA in a D. melanogaster nuclear background,
because five otherD. simulansmtDNAs on those same nuclear
backgrounds show no evidence for the epistatic effects.
Crucially, it is the chance encounter of mtDNA and nuclear
alleles that confers the deleterious phenotype, but each
polymorphism was segregating in its own populations with
minimal phenotypic effects. While tRNAs represent only
about 10% of the coding sequence of mtDNA, these genes
represent about 40% of the known cases of mitochondrial dis-
ease. This points to a critical role for tRNA charging and
protein synthesis in disease conditions, and probably in
many mitochondrial phenotypes [113]. The biology of mt-
tRNA interactions with their cognate nuclear-encoded tRNA
synthetases provides a compelling model for the mechanistic
dissection of mitonuclear interactions (figure 3).
5. Phenotypic repeatability is crucial
Motivated by the frequency of epistatic interactions in our
initial mtDNA× nDNA panel, we built a larger panel of 72
mitonuclear genotypes [26] based on fully sequenced nuclear
genomes from the Drosophila Genetics Reference Panel [115].
Despite the use of differentmtDNAs andnuclear backgrounds,
analyses of these genotypes have confirmed and extended
the three lessons described above. The limited evidence for dis-
ruption of coadaptation, the larger effects of intraspecific
mtDNA effects and the context-dependent nature of nuclear
and environmental variation have all been repeated as major
findings. Importantly, we have observed that the dietary
environment influences phenotypic variation more so than
either nuclear ormitochondrial variation (or their combination)
[26] in highly canalized traits, e.g. development time.

Another repeatable result observed across studies is that
the proportion of phenotypic variance explained by mtDNA
genotype is much smaller than the variance explained by
other main effects (e.g. nuclear genotype, environment, sex),
when factorial designs are employed. This is true for both
insects [26,53] and yeast [116]. Additional studies inDrosophila
examining the influence of diet on mitochondrial effects reveal
similar effects where factorial contrasts can be made [117,118].
An exception to this pattern comes from the w501 epistasis
described above, where a strong mtDNA effect can dominate
the proportion of variance explained in limited 2 mtDNAs ×
2 nDNAs designs [111], but the mtDNA effect of w501 is
diminished in larger mitonuclear genetic panels [105]. More
recent RNA-seq analyses in Drosophila have revealed that the
GxG effect is more pronounced on whole-organism
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phenotypes and less so on gene expression [27]. For example,
the rank order of importance for phenotypic variation for gene
expression is nDNA effects >mtDNA effects≥ environment
effects. By contrast, for development time, the rank order is
environment effects > nDNA effects >mtDNA effects [26].

There are some other examples of strongmtDNA effects that
show varying levels of repeatability. For example, Camus et al.
[24] found a larger mtDNA effect on male longevity than on
female longevity (Fmale = 6.3, p= 0.0011; Ffemale = 0.71, p= 0.7),
consistent with Mother’s Curse. In a more recent paper using
the same mtDNA strains on different diets, mtDNA effects
were greater in females than males (proportion of variance for
mtDNA effect in males on two diets were 0.0 and 0.14; the
same values for females were 9.2 and 17.2% [119]). These data
are not consistent with the Mother’s Curse prediction, and the
two studies reveal a strong context-dependent effect of
mtDNA in different experiments. If one were to combine these
studies in an effort to tabulate a general sex-specific effect size
across both experiments, the effect sizes across mtDNAs
would be greatly diminished. Again, the repeatable lesson
from these studies is that the environment, the nuclear back-
ground or the sex of the fly can have much larger effect sizes
than the mtDNA alone (figure 1d and table 1 in [26], and table
1 in [53]). While we are fond of the Mother’s Curse idea and
have published papers consistent with the phenomenon
[3,7,23], our more recent data do not support the prediction.
We find it troublesome that Mother’s Curse gets treated as a
phenomenon of mtDNA-driven selection when publications
using common strains exist that provide both strong support
and strong rejection of the primary prediction of Mother’s
Curse (larger effect sizes across mtDNAs in males than in
females). An analogy comes from Haldane’s Rule: this pattern
has a few exceptions but it is a highly repeatable pattern seen
in both male (XY) and female (ZW) heterogametic species. In
short, Mother’s Curse is a nice idea that has variable support,
but it is a hypothesis, not a ‘rule’ illustrating genetic conflict.

Understanding the complex three-way (gene × gene ×
environment (G×G×E)) interactions underpinning phenotypes
will require an environment to be an explicit axis of variation
in manipulative experiments. Environments can then be scruti-
nized individually (figure 2b) and together to identify the
regions of gene–gene interaction (GGI) or protein–protein inter-
action (PPI) space that is consistently perturbed (figure 2c). Such
experimental designs will allow identification of the regions of
GGI or PPIs that are sensitive to mitonuclear variation. Lehner
[73] provides the basis of an elegant ‘guilt-by-association’ frame-
work to probe across-taxa mitonuclear variation with
hierarchical phenotyping (e.g. using a combination of in vitro,
in vivo, whole-organism studies, etc.). We have adopted this
approach to scrutinize GxGxE in the Drosophila mitonuclear
model (figures 2 and 4).
6. The keys to gene × gene × environment lie in
anterograde and retrograde signalling

Complex higher-order genetic and environmental interactions
are pervasive in Drosophila (figure 4) [26,27], and this has
been demonstrated for genetic designs that do not explicitly
model mtDNA variation [120,121]. In our gene expression
studies, we find a large number of transcripts are differentially
expressed across mitonuclear genotypes ([28]) and these are
further influenced by abiotic environments (e.g. hypoxia [27]
and diet [118]). These observations suggest that large
sections of GGI and PPI networks are altered in experimental
mitonuclear genotypes. The mechanisms underlying these
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effects must be governed by the myriad of signalling mole-
cules that regulate anterograde (nucleus-to-mitochondria)
and retrograde (mitochondria-to-nucleus) communication.
Considerable recent advances have been made in identifying
signalling mechanisms that transduce information about
the intra- and extracellular environments to the nucleus.
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The mitochondrial unfolded protein response (UPRmt)
[122–124] is a central component of the mitohormetic stress
response to protein toxicity [125] and involves mitochondrial
chaperones and proteases that help regulate whole-organism
phenotypes through chromatin modifications [126–128].
Owing to its key role in homeostasis, the retrograde signalling
cascade must be considered as an essential capacitor-like [129]
phenotype to help integrate the genotype to phenotype
landscape in variable environments [26].
/journal/rstb
Phil.Trans.R.Soc.B

375:20190188
7. Conflict and cooperation—negative and
positive effects by another name

The terms ‘conflict’ and ‘cooperation’ represent two ends of a
fitness continuum and we generally consider conflict as a
deleterious outcome and cooperation as competent or high
fitness state, with zero, negligible or positive phenotypic
effects. However, how these phenotypes are generated and
maintained in natural populations is poorly understood.
For example, we can artificially introgress mtDNAs across
species barriers with no obvious fitness consequences in
Drosophila using balancer chromosomes and tricks of fly gen-
etics. In this process, we are circumventing the role of hybrid
breakdown and avoiding the first contact between mito-
nuclear alleles and mtDNA haplotypes that may have been
co-adapted and isolated over speciation timescales. To what
extent cryptic genetic variation is exposed during hybridiz-
ation or in the generation of novel mitonuclear genotypes is
unknown. In wild or outbred populations of a species, any
novel mtDNA polymorphism and nuclear combination(s)
will always be tested in heterozygous nuclear backgrounds
in the F1 offspring. In almost all cases, the female in the
cross carries mitonuclear genetic combinations that are tried
and tested in a fitness sense. Hybridization will conceal fit-
ness-related mitonuclear epistasis because the effects of
recessive mitonuclear interactions are more likely to be
experienced by the individual only in the next (F2) gener-
ation. This effect is clearly illustrated in between-population
hybrids of the intertidal copepod Tigriopus californicus.
Mitochondrial sequence divergence exceeding approximately
18% between populations can be successfully introgressed
producing fertile F1 hybrids [130]. Hybrid breakdown is
then revealed in the F2 generation and associated with an
incompatibility between mtDNA-encoded COX and the
nuclear-encoded cytochrome c (Cytc) gene [131]. Recent reci-
procal F2 segregation assays of nuclear SNPs in alternative
mtDNA backgrounds are an effective means of assessing
the degree of conflict and cooperation spread across the
nuclear chromosomes [132,133].

The macroevolutionary aspects of conflict and cooperation
in mitochondrial evolution focus on competition or conflict
among different mitochondria (or mtDNAs) within early
proto eukaryotic cells. The assumption is that the competition
would be deleterious to the ‘host’ nucleus and evolutionwould
favour the elimination of this cytoplasmic polymorphism.
There is some experimental evidence that is consistent with
this deleterious-heteroplasmy scenario in a mouse model
[134]. A more recent study of a large number of mother–
offspring pairs revealed the nuclear genetic background can
exert a force of selection that keeps deleterious heteroplasmic
mutations at a minimum [135]. While these fully eukaryotic
model systems are distinct from the early cytoplasms that
shaped eukaryotes, these kinds of analyses may shed light
on how conflict and cooperation were resolved in the early
stages of eukaryotic evolution.
8. Concluding remarks
Chetverikov’s vision of a genotypic environment in 1926 [56]
forecasted the basis of our current understanding of mitonuc-
lear epistatic interactions. Mitonuclear interactions are
pervasive and have pleiotropic effects across numerous phe-
notypes. Understanding the genetic and physical arenas of
conflict and cooperation in this co-evolved unit will delineate
the first-order and higher-order genetic and environmental
effects on fitness and disease. Here we have outlined some
approaches that could help elucidate the phenotypic and
fitness landscapes and their relation to genetic variation.
Mitochondria play a special role in dissecting this geno-
type–phenotype map. It is our opinion that focusing on
the pervasive effects of GxG and GxE interactions and the
critical importance of understanding marginal effect sizes
for mtDNA across multiple backgrounds should drive the
future of research in this field (figure 1).

An important caveat for this view of mtDNA effect size is
the strength of the population structure. In species with a
strong population structure (high FST for both nuclear and
mtDNA), each mtDNA haplotype might experience only a
few alternative nuclear genotypes with which to interact.
Likewise, a strong population structure might limit the
range of external environmental factors that any mitonuclear
genotype would experience (although strong diurnal and sea-
sonal abiotic selection could still exist). In species with strong
population structure, we might see stronger opportunities for
mitonuclear coadaptation, and its breakdown by mitonuclear
‘transplant’ experiments. In species with little population
structure and high allelic variation, mtDNA and nuclear var-
iants would experience multiple different ‘backgrounds’, and
the opportunity for tight coadaptation may be limited;
however, the opportunity for epistasis and sex-specific mito-
nuclear effects could be greatly enhanced. This population
structure-mitonuclear coadaptation hypothesis could help
explain why the breakdown of mitonuclear coadaptation is
so evident in Tigriopus, which has highly structured inbred
populations, while this is not seen in large outbred species
such as Drosophila.

It is easy to construct mitochondrial genotypes that might
generate phenotypic effects that can appear supportive of
broad evolutionary trends in single publications, but inter-
preting these effects as proof that mitochondria have driven
the origin of sex, speciation, pervasive genomic conflict,
Mother’s Curse or other interesting ideas needs to be based
on a broad set of studies that fully examine context-specific
effects. Clearly, there is much still to learn.
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