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A method to calibrate a camera 
using perpendicularity of 2D lines in 
the target observations
Guan Xu1, Anqi Zheng1, Xiaotao Li2 & Jian Su1

Camera calibration based on point features leads the main trends in vision-based measurement systems 
for both fundamental researches and potential applications. However, the calibration results tend to 
be affected by the precision of the feature point extraction in the camera images. As the point features 
are noise sensitive, line features are more appropriate to provide a stable calibration due to the noise 
immunity of line features. We propose a calibration method using the perpendicularity of the lines on a 
2D target. The objective function of the camera internal parameters is theoretically constructed by the 
reverse projections of the image lines on a 2D target in the world coordinate system. We experimentally 
explore the performances of the perpendicularity method and compare them with the point feature 
methods at different distances. By the perpendicularity and the noise immunity of the lines, our work 
achieves a relatively higher calibration precision.

Camera is considered as an important instrument in the researches of three-dimensional reconstruction and 
computer vision1–5. The purpose of camera calibration is to obtain the transform parameters between the 2D 
image and the 3D space, which is crucial for the applications of biology6, materials7, image processing8–11, photon 
imaging12–16, physical measurement17–20, object detection21 and sensors22,23. A camera calibration system normally 
includes a CCD camera to capture the 2D image and a calibration target that is placed in the view filed of the cam-
era in the 3D space. The measurement precision of the camera depends on the calibrated parameters. Therefore, 
it is significant to calibrate the camera with a precise approach.

The camera calibration is widely studied in recent years. It can be classified in three main categories, 3D 
cube-based calibration method, 2D plane-based calibration method and 1D bar-based calibration method. The 
3D calibration methods are initially developed by Abdel-Aziz24. A 3D cubic target is established to provide the 
coordinates of the 3D points. The direct linear transform is invented to determine the transform matrix of the 
camera. Xu25 donated a three-DOF (degree of freedom) global calibration system to accurately move and rotate 
the 3D calibration board. A three-DOF global calibration model is constructed to calibrate the binocular systems 
at different positions. Then, the 2D plane-based methods26–30 are provided to promote the convenience of the 
on-site calibration and to simplify the target fabrication. A calibration method is proposed by Ying31 based on 
the geometric invariants. The camera parameters are solved by the projections of two lines and three spheres in 
the camera calibration. Shishir32 presented a method to calibrate a fish-eye lens camera. The camera is calibrated 
by defining a mapping between the points in the world coordinate system and the corresponding point locations 
in the image plane. Bell33 proposed a method to calibrate the camera by using a digital display to generate fringe 
patterns that encode feature points into the carrier phase. These feature points are accurately recovered, even if 
the fringe patterns are substantially blurred. Zhang34 outlined a camera calibration method that based on a 1D 
target with feature balls. The camera calibration is solved if one point is fixed. A solution is developed if six or 
more images of the 1D target are observed. Later, Miyagawa35 presented a simple camera calibration method from 
a single image using five points on two orthogonal 1D targets. The bundle adjustment technique is proposed to 
optimize the camera parameters. On the whole, although the accurate camera calibration is achieved by the 3D 
calibration targets, the precise 3D target is always difficult to be fabricated and carried. Moreover, it is difficult to 
apply in many fields due to the volume of the 3D target. The 2D methods are investigated to provide a convenient 
calibration compared with the 3D methods. A 2D calibration target contributes sufficient information of geomet-
rical features to accurately calibrate the camera36–38. Besides, the 2D calibration target is in moderate size and 
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easy to be fabricated. Although the 1D target takes the simplest model in geometry, the 1D calibration method 
generates less information compared with the 2D calibration method in one image.

A reliable method is outlined in this paper according to the 2D calibration target. As the point features are 
normally adopted in the 2D calibration method, the transform matrix is calculated by the relationship between 
the 2D projective lines in the image and the lines in the 3D space. Then, the reprojection errors of the lines are 
studied in order to verify the validity of the method. The point-based calibration methods are compared with the 
line-based method to evaluate the accuracy and the noise immunity in the calibration process. Finally, the lines 
on the target are reconstructed by the projective lines and the transform matrix with the camera parameters. The 
objective function is built and optimized by the perpendicularity of the reconstructed lines. The perpendicularity 
method is compared with the original methods to evaluate the performances of the approaches.

Results
In the process of the camera calibration, it is important to provide the relationship between the coordinates of the 
2D image and the ones of the 3D space. A method is proposed for the camera calibration according to the perpen-
dicularity of 2D lines in Fig. 1. A 2D target with the checkerboard pattern is adopted as the calibration object to 
construct the perpendicularity of 2D lines. The world coordinate system Ow-XwYwZw is attached on the 2D cali-
bration board and the original point of the world coordinate system Ow is located at the upper left corner of the 
2D calibration board. The axes OwXw and OwYw are defined along two vertical sides of the target. The 2D calibra-
tion board is arbitrarily placed in the view filed of the camera. Oc-XcYcZc indicates the camera coordinate system. 
The original point of the camera coordinate system Oc is located at the optical center of the camera. OcXc, OcYc are 
respectively parallel to OpXp, OpYp of the image coordinate system. OcZc is the optical axis that is perpendicular to 
the image plane. ai and bi are two perpendicular lines generated from the checkerboard pattern on the 2D target. 
As the world coordinate system is attached to the 2D target, ai and bi are defined in the world coordinate system. 
′ai  and ′bi  are the lines in the image coordinate system corresponding to the two perpendicular lines ai and bi in 

the world coordinate system. The transformation from the world coordinate system to the image coordinate sys-
tem is a typical projective transformation; therefore, the line ′ai  is not usually perpendicular to the line ′bi  in the 
image. The vectors of the two lines ′ai  and ′bi  can be solved from the observations of the camera.

According to the calibration method, the transform matrix Ha is generated from the 2D lines in the world 
coordinate system and the 2D projective lines in the image coordinate system, firstly. Then, the initial solutions 
of the intrinsic parameters of the camera are contributed by the transform matrices of the observations. Finally, 
the optimal solutions are provided by minimizing the objective function. The following experiments are divided 
to two aspects, the initial solution experiments and the optimal solution experiments, in order to verify the valid-
ity of the method based on the perpendicularity of 2D lines. The point-based methods proposed by Zhang37 
and Tsai39 are adopted as the comparative methods. The two methods are 2D plane-based calibrations. An A4 
paper with the checkerboard pattern is covered on the 2D target. The size of each square is 10 mm ×​ 10 mm. 
Four capture distances, 400 mm, 500 mm, 600 mm and 800 mm, are chosen to study the effect of distance in the 
experiments, respectively. For each distance, ten images are captured to calibrate the camera. The resolution of the 
images is 1024 ×​ 768. In the process of camera calibration, 32 lines are defined by the checkerboard paper in the 
world coordinate system. Figure 2(a–d) show the original images observed at the distances of 400 mm, 500 mm, 

Figure 1.  The method to calibrate a camera using perpendicularity of dual 2D lines in observations.  
Ow-XwYwZw, Op-XpYp and Oc-XcYcZc indicate the world coordinate system, the image coordinate system and the 
camera coordinate system, respectively. Ha is the homography matrix from the world coordinate system to the 
image coordinate system. ai and bi are two perpendicular lines in the world coordinate system. ′ai  and ′bi  are the 
two projective lines of ai and bi in the image coordinate system.
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600 mm and 800 mm in the first group of images, respectively. Similarly, Fig. 2(e–h) are the second group of 
images at the distances of 400 mm, 500 mm, 600 mm and 800 mm, respectively.

The coordinates of the 2D projective lines are extracted by the Hough transform40–42 in the images. Hough 
transform finds the straight line in the parameter space that is less affected by noises. So the result of the line 

Figure 2.  Two groups of the experimental images of the target with checkerboard pattern in the different 
distances. (a) The image at the distance of 400 mm in the first group experiments. (b) The image at the 
distance of 500 mm in the first group experiments. (c) The image at the distance of 600 mm in the first group 
experiments. (d) The image at the distance of 800 mm in the first group experiments. (e) The image at the 
distance of 400 mm in the second group experiments. (f) The image at the distance of 500 mm in the second 
group experiments. (g) The image at the distance of 600 mm in the second group experiments. (h) The image at 
the distance of 800 mm in the second group experiments.
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extraction is more stable than the result of the point extraction. Figure 3 shows the results of the Hough trans-
form in the polar coordinate system. A sinusoidal curve corresponds to a 2D point in the Cartesian coordinate 
system. The blue crosses symbolize the radial coordinates ρ and the angular coordinates θ of 32 lines in the polar 
coordinate system. The extraction results of the lines are illustrated in Fig. 4(a–h). It is obviously that the Hough 
transform accurately detects the lines on the calibration target.

The line-based method is compared to the point-based methods to verify the calibration validity and noise 
immunity. The transform matrix Ha of the line projection is experimentally obtained from the coordinates of the 
lines in the image coordinate system and the coordinates of the lines in the world coordinate system. Then we 
have43

′ =a aH (1)i ia a a

where aai is the line in the world coordinate system, ′a ia  is the reprojection of the line aai by the transform matrix 
Ha. The transform matrices of the Zhang’s method and Tsai’s method are denoted by Hm, Ht. We have43

Figure 3.  The results of the Hough transform in the polar coordinate system. The sinusoidal curves relate 
to the 2D points in the world coordinate system. The blue crosses represent the radial coordinates ρ and the 
angular coordinates θ of 32 lines in the polar coordinate system. (a–h) are the corresponding results to  
Fig. 2(a–h), respectively.
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=m MH (2)i im

=m MH (3)i it

where Mi is the point in the world coordinate system, mi is the point in the image coordinate system. The image 
points mi are fitted to a straight line by the least square method. The coordinates of these lines are denoted by ′a im , 
′a it . The errors of three methods are defined by

Figure 4.  The recognition results of the 2D lines in the Cartesian coordinate system. The coordinates of the 
lines are derived from the radial coordinates ρ and the angular coordinates θ in the polar coordinate system. 
(a–h) are the corresponding results of Fig. 2(a–h), respectively.
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′ ′∆ = −a a a (4)i i ia a

′ ′∆ = −a a a (5)i i im m

′ ′∆ = −a a a (6)i i it t

where Δ​aai is the error of the line-based method, Δ​ami is the error of the Zhang’s point-based method with 2D 
plane target, Δ​ati is the error of the Tsai’s point-based method with 2D plane target, ′ai  is the image line generated 
by the Hough transform, ′a ia  is the reprojection of the line aai by the transform matrix Ha, ′a im  is the fitted line 
derived from the transform matrix Hm and the reprojections of points, ′a it  is the fitted line derived from the trans-
form matrix Ht and the reprojections of points.

The errors of the perpendicularity method, Zhang’s method and Tsai’s method are shown in Fig. 5(a–h). The 
errors of the line-based method are less than the point-based methods. The first group of experiments corre-
sponds to Fig. 5(a–d). The mean errors and the variances are listed in Table 1. The second group of experiments 
corresponds to Fig. 5(e–h). The mean errors and the variances are listed in Table 2. According to the error data 
above, the errors in the X direction, Y direction and the root-mean-square errors of the line-based method are all 
far less than the errors of the point-based methods in the two groups of experiments. The errors of the line-based 
method vary indistinctively with the increasing distance. However, the errors of the point-based methods show 
the increasing trend when the distance is on the rise. The error variances of the line-based method have been 
compared with the error variances of the point-based methods. It is indicated that the variation range of the 
errors using the line-based method is smaller than the variation range of the point-based methods. The variances 
of the errors adopting the line-based method fluctuate in a small range with the increase of the distance. However, 
the variances of the errors using the point-based methods provide a significant jump with the increasing distance. 
The results reveal that the line-based method is less affected by the capture distance compared to the point-based 
methods. According to the results and analyses above, the line-based method contributes higher accuracy in the 
camera calibration process.

The calibration accuracy of the three methods is further analyzed by adding different levels of Gaussian noises 
to the original images. The variances of the added noises are 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02 
and 0.05, respectively. The average errors are identified by the root-mean-square errors of the lines. The line-based 
method and Zhang’s and Tsai’s point-based methods are compared in Fig. 6. The values of the Gaussian noises 
are shown by the denary logarithms and the values of the average errors are presented by the natural logarithms 
for the purpose of direct observation. Figure 6(a–d) show the relationship between the average errors and the 
values of the noises at the distances of 400 mm, 500 mm, 600 mm and 800 mm, respectively. The errors of the three 
methods are all on the increase with the increasing noises. The average root-mean-square errors of the ten images 
using the line-based method increase from 9.06 ×​ 10−5 to 4.10 ×​ 10−2 as the noises vary from 0.0001 to 0.05 at the 
distance of 400 mm. Nevertheless, the average root-mean-square errors of the ten images based on the Zhang’s 
and Tsai’s methods are from 3.02 ×​ 10−2 to 2.62 ×​ 10−1 and from 5.14×​10−2 to 3.15×​10−1, as the noises vary from 
0.0001 to 0.05 at the distance of 400 mm. Moreover, when the distance is 500 mm, the average root-mean-square 
errors of the ten images grow from 8.58 ×​ 10−5 to 3.80 ×​ 10−2. The average errors of Zhang’s and Tsai’s methods 
are from 2.81 ×​ 10−2 to 2.52 ×​ 10−1 and from 5.53×​10−2 to 3.84×​10−1, respectively. At the distance of 600 mm, the 
root-mean-square errors of the ten images using the line-based method increase from 9.88 ×​ 10−5 to 4.08 ×​ 10−2, 
respectively. The average errors of Zhang’s and Tsai’s methods are from 3.09 ×​ 10−2 to 2.61 ×​ 10−1 and from 5.54×​
10−2 to 4.20×​10−1, respectively. At the distance of 800 mm, the root-mean-square errors of the ten images using 
the line-based method grow from 9.13 ×​ 10−5 to 3.93 ×​ 10−2, respectively. The root-mean-square errors of Zhang’s 
and Tsai’s methods are from 3.21 ×​ 10−2 to 2.57 ×​ 10−1 and from 6.07×​10−2 to 3.85×​10−1, respectively. It is evi-
dent that the average errors of the line-based method steadily increase as the noises are on the rise. However, the 
average errors of the line-based method grow more slowly than the errors of the point-based methods under the 
nine levels of noises. It proves that the line-based method provides a better noise immunity compared with the 
point-based calibration methods.

The calibration results are affected by noises in the camera calibration process. Therefore, the initial solution 
of the intrinsic parameters should be optimized to approach the real values of the parameters. The perpendicular 
method is proposed to solve the optimal value of the intrinsic parameter matrix. The elements of u0 and v0 indi-
cate the principal point with pixel dimensions. As the principal point should theoretically coincide with the center 
of the image, u0 and v0 are chosen to evaluate the validity of the proposed optimal method. Figure 7 presents the 
optimal results of the initial values of the two elements u0 and v0 in the intrinsic parameter matrix. The dotted 
lines in Fig. 7 present the coordinates of the image center in the image coordinate system. Comparative experi-
ments are performed on the perpendicularity method and Zhang’s method at the different distances.

According to Fig. 7, the initial values of u0 and v0 using the perpendicularity method approach to the coor-
dinates of the center points of the images with the rising number of the images. The first few points are far away 
from the dotted lines. However, the optimal values of the perpendicularity optimal method are all near the dotted 
lines. The initial values of u0 and v0 based on Zhang’s and Tsai’s methods vary a lot with the increasing numbers 
of the images. Moreover, the optimal values are basically near the dotted lines as the number of the images is on 
the rise.

The means and the variances of the initial and optimal values of u0, v0 are listed in Table 3. The calibrated 
intrinsic parameters of the camera at the different distances are shown in Table 4. Considering the experiment 
data above, the mean values of the initial u0 and v0 adopting the perpendicularity method are more close to the 
coordinates of the center point compared with the Zhang’s and Tsai’s methods. The optimal values of u0 and v0 of 
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the perpendicularity method show an obviously decreasing trend. The mean optimal values of u0 and v0 are close 
to the coordinates of the center point of the image. The optimal values of u0 and v0 based on the Zhang’s and Tsai’s 

Figure 5.  The errors of the reprojective lines adopting the line-based calibration method, Zhang’s and 
Tsai’s point-based methods in the X direction, Y direction and the root-mean-square of errors, respectively. 
(a–h) correspond to Fig. 2(a–h), respectively. The red data are the experiment errors of the line-based 
calibration method. The blue data are the Zhang’s point-based calibration method. The orange data are the Tsai’s 
point-based calibration method. The red data are located below the blue and orange data, which denote that the 
line-based calibration method contributes the higher accuracy.
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Distance Solution method Errors in X direction Errors in Y direction
Root mean 

square of errors

400 mm

Perpendicularity method
Mean 1.60 ×​ 10−5 1.21 ×​ 10−5 1.27 ×​ 10−5

Variance 1.32 ×​ 10−5 1.79 ×​ 10−5 1.55 ×​ 10−5

Zhang’s method
Mean 7.19 ×​ 10−5 5.95 ×​ 10−5 9.17 ×​ 10−5

Variance 3.58 ×​ 10−5 1.14 ×​ 10−4 5.07 ×​ 10−5

Tsai’s method
Mean 1.67 ×​ 10−4 1.82 ×​ 10−4 2.08 ×​ 10−4

Variance 1.29 ×​ 10−4 1.67 ×​ 10−4 9.48 ×​ 10−5

500 mm

Perpendicularity method
Mean 7.24 ×​ 10−6 1.39 ×​ 10−5 1.22 ×​ 10−5

Variance 9.65 ×​ 10−6 1.99 ×​ 10−5 1.53 ×​ 10−5

Zhang’s method
Mean 5.07 ×​ 10−5 6.05 ×​ 10−5 9.04 ×​ 10−5

Variance 5.04 ×​ 10−5 9.34 ×​ 10−5 6.89 ×​ 10−5

Tsai’s method
Mean 2.23 ×​ 10−4 4.77 ×​ 10−4 4.21 ×​ 10−4

Variance 1.01 ×​ 10−4 6.23 ×​ 10−4 3.98 ×​ 10−4

600 mm

Perpendicularity method
Mean 1.43 ×​ 10−6 1.40 ×​ 10−5 2.10 ×​ 10−5

Variance 1.39 ×​ 10−5 4.14 ×​ 10−5 2.83 ×​ 10−5

Zhang’s method
Mean 5.96 ×​ 10−5 8.28 ×​ 10−5 8.63 ×​ 10−5

Variance 1.22 ×​ 10−4 9.50 ×​ 10−5 1.04 ×​ 10−4

Tsai’s method
Mean 8.35 ×​ 10−4 2.75 ×​ 10−4 7.32 ×​ 10−4

Variance 9.86 ×​ 10−4 3.68 ×​ 10−4 6.32 ×​ 10−4

800 mm

Perpendicularity method
Mean 1.26 ×​ 10−6 1.40 ×​ 10−5 1.40 ×​ 10−5

Variance 1.66 ×​ 10−5 1.91 ×​ 10−5 1.68 ×​ 10−5

Zhang’s method
Mean 6.22 ×​ 10−5 3.45 ×​ 10−5 6.30 ×​ 10−5

Variance 3.08 ×​ 10−4 5.25 ×​ 10−4 2.95 ×​ 10−4

Tsai’s method
Mean 4.54 ×​ 10−4 1.97 ×​ 10−4 3.73 ×​ 10−4

Variance 3.22 ×​ 10−4 1.62 ×​ 10−4 2.18 ×​ 10−4

Table 1.   The errors of the perpendicularity method, Zhang’s method and Tsai’s method correspond to 
Fig. 5(a–d).

Distance Solution method Errors in X direction Errors in Y direction
Root mean 

square of errors

400 mm

Perpendicularity method
Mean 1.05 ×​ 10−5 7.31 ×​ 10−6 1.62 ×​ 10−5

Variance 1.22 ×​ 10−5 3.17 ×​ 10−5 2.10 ×​ 10−5

Zhang’s method
Mean 8.17 ×​ 10−5 4.69 ×​ 10−5 6.17 ×​ 10−5

Variance 3.65 ×​ 10−5 7.29 ×​ 10−5 5.16 ×​ 10−5

Tsai’s method
Mean 4.79 ×​ 10−4 7.20 ×​ 10−4 7.65 ×​ 10−4

Variance 4.20 ×​ 10−4 8.73 ×​ 10−4 5.01 ×​ 10−4

500 mm

Perpendicularity method
Mean 9.10 ×​ 10−6 8.72 ×​ 10−6 1.07 ×​ 10−5

Variance 1.42 ×​ 10−5 1.66 ×​ 10−5 1.35 ×​ 10−5

Zhang’s method
Mean 3.71 ×​ 10−5 8.18 ×​ 10−5 7.85 ×​ 10−5

Variance 4.99 ×​ 10−5 5.97 ×​ 10−5 5.27 ×​ 10−5

Tsai’s method
Mean 1.29 ×​ 10−3. 5.84 ×​ 10−4 1.22 ×​ 10−3

Variance 1.56 ×​ 10−4 5.40 ×​ 10−4 9.37 ×​ 10−4

600 mm

Perpendicularity method
Mean 1.98 ×​ 10−5 1.83 ×​ 10−5 2.25 ×​ 10−5

Variance 2.69 ×​ 10−5 2.36 ×​ 10−5 2.28 ×​ 10−5

Zhang’s method
Mean 4.07 ×​ 10−4 2.20 ×​ 10−4 4.77 ×​ 10−4

Variance 8.28 ×​ 10−4 9.66 ×​ 10−5 5.38 ×​ 10−4

Tsai’s method
Mean 1.68 ×​ 10−4 6.07 ×​ 10−4 4.65 ×​ 10−4

Variance 1.27 ×​ 10−4 6.92 ×​ 10−4 4.78 ×​ 10−4

800 mm

Perpendicularity method
Mean 2.48 ×​ 10−6 4.65 ×​ 10−6 3.81 ×​ 10−5

Variance 2.47 ×​ 10−6 4.82 ×​ 10−6 3.66 ×​ 10−6

Zhang’s method
Mean 1.28 ×​ 10−4 1.82 ×​ 10−4 3.91 ×​ 10−4

Variance 9.91 ×​ 10−4 4.79 ×​ 10−4 2.45 ×​ 10−4

Tsai’s method
Mean 4.72 ×​ 10−4 2.37 ×​ 10−4 4.52 ×​ 10−4

Variance 4.42 ×​ 10−4 3.69 ×​ 10−4 3.14 ×​ 10−4

Table 2.   The errors of the perpendicularity method, Zhang’s method and Tsai’s method correspond to 
Fig. 5(e–h).
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optimal methods are also close to the coordinates of the center point. However, the descending velocity of the 
perpendicularity method is higher than the velocity of Zhang’s and Tsai’s optimal methods. Moreover, the vari-
ances of the optimal values of u0 and v0 based on Zhang’s and Tsai’s methods are larger than the variances of the 
perpendicularity method, except the variances of the initial and optimal values of u0 at the distance of 400 mm, 
the optimal value of v0 at the distance of 500 mm, the initial value of u0, the initial and the optimal values of v0 at 
the distance of 600 mm, and the initial value of u0 at the distance of 800 mm.

Discussion
In the experiment results, the line-based calibration method contributes an initial solution with higher accuracy. 
The perpendicularity method describes a better optimization approach. In the camera calibration process, the 
coordinates of the geometrical features significantly affect the accuracy of the camera calibration. In the per-
pendicularity method, the Hough transform is employed to extract the coordinates of the lines. As the Hough 
transform takes the advantage of the higher noise immunity than the point extraction method, the coordinates of 
lines are more accurate than the coordinates of points for the geometrical features. Furthermore, the 2D lines are 
stable features with respect to the variable distance. However, the 2D points that are identified in a close observa-
tion are smaller in a far observation. As the noise effects are the same on the images, the point feature tends to be 
recognized in the different locations for different distances. Finally, as the lines pass though the feature points, the 
objective function adopts the perpendicularity of the lines as the optimal object, which includes more geometrical 
information than the feature point superposition.

Methods
The previous method adopts points as the calibration features. Consequently, Harris corner detector38 is often 
chosen to extract point coordinates in the image to calibrate the camera. In this paper, the coordinates of the 
lines in the image coordinate system are generated from the Hough transform40,41. The coordinates of a random 
2D point in the Cartesian coordinate system correspond to a sinusoidal curve with two parameters, the radial 
coordinate ρ and the angular coordinate θ, in the polar coordinate system. Thus, a line in the Cartesian coordi-
nate system is transferred to a series of sinusoidal curves in the polar coordinate system by the Hough transform. 
The polar coordinates of the crossing point of the sinusoidal curves relate to the correct coordinates of the line 

Figure 6.  Average logarithmic errors of the line-based calibration, Zhang’s and Tsai’s point-based 
calibrations related to the logarithms of noises and the serial number of lines. (a) The comparison of the 
errors using the line-based method and the point-based methods at the distance of 400 mm. (b) The comparison 
of the errors using the line-based method and the point-based methods at the distance of 500 mm. (c) The 
comparison of the errors using the line-based methods and the point-based methods at the distance of 600 mm. 
(d) The comparison of the errors using the line-based method and the point-based methods at the distance of 
800 mm.
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Figure 7.  The calibration results of the principle point (u0, v0) generated from the perpendicularity 
method, Zhang’s method and Tsai’s method. The red marks show that the initial solutions and the optimal 
solutions of the perpendicularity method vary with the number of the images. The blue marks show that the 
initial solutions and the optimal solutions of Zhang’s method vary with the number of the images. The orange 
marks show that the initial solutions and the optimal solutions of Tsai’s method vary with the number of the 
images. (a) The initial and the optimal values of u0 of the perpendicularity method, Zhang’s and Tsai’s methods 
at the distance of 400 mm. (b) The initial and the optimal values of v0 of the perpendicularity method, Zhang’s 
and Tsai’s methods at the distance of 400 mm. (c) The initial and the optimal values of u0 of the perpendicularity 
method, Zhang’s and Tsai’s methods at the distance of 500 mm. (d) The initial and the optimal values of v0 of the 
perpendicularity method, Zhang’s and Tsai’s methods at the distance of 500 mm. (e) The initial and the optimal 
values of u0 of the perpendicularity method, Zhang’s and Tsai’s methods at the distance of 600 mm. (f) The 
initial and the optimal values of v0 of the perpendicularity method, Zhang’s and Tsai’s methods at the distance of 
600 mm. (g) The initial and the optimal values of u0 of the perpendicularity method, Zhang’s and Tsai’s methods 
at the distance of 800 mm. (h) The initial and the optimal values of v0 of the perpendicularity method, Zhang’s 
and Tsai’s methods at the distance of 800 mm.
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Distance Solution method

u0 v0

Initial value Optimal value Initial value Optimal value

400 mm

Perpendicularity method
Mean 553.26 524.83 420.71 407.47

Variance 83.60 32.96 65.54 21.76

Zhang’s method
Mean 556.51 556.33 366.39 425.10

Variance 73.54 26.85 85.10 21.06

Tsai’s method
Mean 582.10 546.04 456.91 446.26

Variance 53.38 38.32 15.25 28.83

500 mm

Perpendicularity method
Mean 599.10 528.58 427.51 459.37

Variance 59.63 6.33 23.48 30.78

Zhang’s method
Mean 590.88 656.13 539.52 405.62

Variance 50.69 116.43 135.01 7.80

Tsai’s method
Mean 619.50 574.75 486.91 457.13

Variance 81.01 39.53 31.36 21.92

600 mm

Perpendicularity method
Mean 598.95 531.67 420.71 407.47

Variance 59.78 19.41 30.75 65.54

Zhang’s method
Mean 589.41 602.05 279.16 566.64

Variance 92.99 114.77 340.10 253.39

Tsai’s method
Mean 553.86 571.69 460.18 421.66

Variance 45.59 44.89 24.19 43.01

800 mm

Perpendicularity method
Mean 569.35 525.75 428.50 408.09

Variance 45.45 13.87 10.96 9.24

Zhang’s method
Mean 562.97 632.77 347.25 480.63

Variance 191.15 174.17 255.17 95.86

Tsai’s method
Mean 576.96 585.59 463.31 465.06

Variance 11.66 36.94 28.37 30.72

Table 3.   The means and the variances of the initial and optimal values of u0, v0 in the experiments.

Distance Solution method u0 v0 α β γ

400 mm

Perpendicularity method
Initial value 520.37 409.12 1070.42 1164.73 157.82

Optimal solution 511.18 309.72 1117.33 1107.13 16.39

Zhang’s method
Initial value 532.24 421.73 803.64 −​805.16 −​1.27

Optimal solution 530.73 412.04 831.21 833.22 2.33

Tsai’s method
Initial value 539.95 436.15 733.6 793.86 2.35

Optimal solution 526.11 410.61 804.98 802.71 3.21

500 mm

Perpendicularity method
Initial value 544.84 406.84 1107.30 1116.11 111.14

Optimal solution 535.02 397.06 1114.70 1104.21 16.47

Zhang’s method
Initial value 545.48 410.03 797.01 −​798.81 −​1.08

Optimal solution 546.41 402.09 829.13 831.23 3.35

Tsai’s method
Initial value 543.01 448.54 544.28 542.74 6.59

Optimal solution 545.32 425.94 552.60 550.19 3.96

600 mm

Perpendicularity method
Initial value 542.98 406.94 1136.12 1104.04 94.35

Optimal solution 520.78 390.72 1126.67 1110.53 16.85

Zhang’s method
Initial value 555.69 136.55 800.08 −​801.67 −​1.21

Optimal solution 524.00 412.73 831.14 833.05 3.38

Tsai’s method
Initial value 541.06 415.21 877.73 876.95 3.89

Optimal solution 537.32 406.93 703.10 704.11 4.20

800 mm

Perpendicularity method
Initial value 530.57 426.79 1075.77 1110.98 103.68

Optimal solution 516.43 401.25 1101.35 1096.41 17.27

Zhang’s method
Initial value 519.57 76.79 799.98 −​801.58 −​1.09

Optimal solution 526.65 425.35 831.84 833.73 3.18

Tsai’s method
Initial value 565.74 430.32 935.26 934.37 10.36

Optimal solution 545.32 419.67 880.26 879.48 9.89

Table 4.   Results of the perpendicularity method, Zhang’s method and Tsai’s method in the experiments.
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in the Cartesian coordinate system. Thus, Hough transform extracts the line in the image by solving the optimal 
values of the radial coordinate ρ and the angular coordinate θ in the parameter space and transferring them to the 
Cartesian coordinate system.

The calibration method includes two procedures, initial solution and optimal solution. The initial solutions 
of the homography matrix Ha and camera parameters are solved at first by the similar way to the point-based 
calibration method37. The line transform from the 2D world coordinate system to the image coordinate system 
is represented as43

′ =a aH (7)i ia

where ai =​ [ai, bi, ci]T, ′ai  =​ [ ′ai , ′bi , ′ci ]T, Ha =​ [h1 h2 h3]T, hjT is the jth-row of Ha, Ha is a 3 ×​ 3 transfer matrix of the 
camera.

As the cross product of two same vectors, ′ai  and Haai, is a zero vector 0, a 2D projective line ′ai  in the image 
coordinate system and 2D line ai in the world coordinate system satisfy

′ × =a a 0H (8)i ia

Equation (8) is rewritten as
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The singular value decomposition of the matrix G is expressed by44

= ΛG B C (10)1 1 1
T

where B1 and C1 are orthogonal matrices, Λ​1 is a diagonal matrix composed of the descending singular values.
From the right orthogonal matrix C1, we have44

= ⁎h c (11)1

where ⁎c1 is the vector related to the smallest singular value in Λ​1. Ha is obtained by arranging vector h.
The transform matrix Ha stands for the projection between 2D world lines and 2D image lines, however, the 

camera parameters have been calculated by the point-based transform matrix Hm. Therefore, the transform from 
the line-based matrix Ha to the point-based matrix Hm should be performed on Ha. Although the relationship 
between Ha and Hm are given by ref. 43, we investigate the relationship by the following another way.

Two 2D points x1 and x2 are projected to the image points ′x1 and ′x2 by the point-based transform matrix Hm 
as follows43

′ =x xH (12)1 m 1

′ =x xH (13)2 m 2

The 2D line l determined by the 2D points x1 and x2 is carried out as

= ×l x x (14)1 2

The projective line l′​ determined by the image points ′x1 and ′x2 is

′ ′ ′= ×l x x (15)1 2

From equations (12), (13) and (15), the projective line l′​ is

′ = ×l x xH H (16)m 1 m 2

The right of equation (14) is transferred to

× = ×⁎x x x xH H H ( ) (17)m 1 m 2 m 1 2

where ⁎Hm is the adjoint matrix of Hm.
From equations (14), (16) and (17), we have

′ = ⁎l lH (18)m

For a non-singular projective matrix Hm, it is well known that
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= −⁎H H (19)m m
T

Stacking equations (7), (18) and (19), we obtain

= −H H (20)m a
T

where =
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A projective matrix Hm is decomposed to37

= r r tH A[ ] (21)m 1 2

where Hm =​ [h1 h2 h3], hi is the ith column of Hm, 
α γ
β=
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0
 is the intrinsic parameter matrix of the camera, 

(r1 r2 t) is the extrinsic parameters that relates the position and posture of the camera in the world coordinate 
system.

The intrinsic parameters of the camera can be solved by37

=x 0Q (22)
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, qij =​ [hi1hj1, hi1hj2 +​ hi2hj1, hi2hj2, hi3hj1 +​ hi1hj3, hi3hj2 +​ hi2hj3, hi3hj3]T, x =​ [x1, x2, x3, x4,  

x5, x6].
The singular value decomposition of the matrix Q that is derived from several homography matrices Hm is 

expressed by44

= ΛQ B C (23)2 2 2
T

where B2 and C2 are orthogonal matrices, Λ​2 is a diagonal matrix with the descending singular values. From the 
orthogonal matrix C2, we have44

= ⁎x c (24)2

According to equation (24), the intrinsic parameters can be determined by37
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where α, β are the scale factors of the image, γ is the skew parameter of the image axes, λ is a scalar, (u0, v0) is the 
principal point with pixel dimensions.

The extrinsic parameters r1, r2 and t are obtained from equations (21) and (25) and given by37
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The intrinsic parameters in the matrix A are considered as the initial solutions of the camera. The image infor-
mation is affected by noises, illuminations, capture distance and other factors. For this reason, an objective func-
tion is constructed to solve the optimal solutions of the camera parameters. The perpendicularity of lines is not 
preserved under the perspective imaging. However, the property is invariable to the reconstructed lines in the 
world coordinate system. The parameterized lines in the world coordinate system are reconstructed by the lines 
in the image coordinate system and camera parameters. Then, the objective function is established by the sum of 
the dot products among the perpendicular reconstructed lines. Finally, the camera parameters are achieved by 
minimizing the objective function.

According to equations (7) and (21), the relationship between the coordinates of the lines in the world coordi-
nate system and the coordinates of the lines in the image coordinate system can be represented as43

′=a H a (27)i i im
T
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′=b H b (28)i i im
T

where ′ai , ′bi  are the coordinates of the image lines in the ith image, H im
T  is the transpose of the point-based homog-

raphy matrix of the ith image, ai, bi are the reconstructed lines in the world coordinate system.
The sum of the dot products among the perpendicular reconstructed lines should be theoretically zero, then

∑∑ ⋅ =
= =

a b( ) 0
(29)i

p

j

q

i i
1 1

where ai and bi indicate a vertical line and a horizontal line in the world coordinate system, respectively.
From equation (21), Hmi is written by the product of the intrinsic matrix and the extrinsic matrix as

= r r tH A[ ] (30)i i i im 1 2

Stacking equations (27)-(30), the objective function considering the perpendicularity of the reconstructed 
lines is given by

∑∑α β γ ′ ′= ⋅ 

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= =
( )f u v r r t A a r r t A b( , , , , ) [ ]
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The optimal elements of the intrinsic parameters of the camera are obtained by minimizing the objective function 
and given by

α β γ α β γ=u v f u v( , , , , ) argmin ( , , , , ) (32)0 0 0 0

where arg means the arguments correspond to the minimized function f(u0, v0, α, β, γ,).
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