
Vol:.(1234567890)

Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635
https://doi.org/10.1007/s12539-018-0313-4

1 3

ORIGINAL RESEARCH ARTICLE

CNN‑MGP: Convolutional Neural Networks for Metagenomics Gene
Prediction

Amani Al‑Ajlan1 · Achraf El Allali1

Received: 23 February 2018 / Revised: 22 November 2018 / Accepted: 7 December 2018 / Published online: 27 December 2018
© The Author(s) 2018

Abstract
Accurate gene prediction in metagenomics fragments is a computationally challenging task due to the short-read length,
incomplete, and fragmented nature of the data. Most gene-prediction programs are based on extracting a large number of
features and then applying statistical approaches or supervised classification approaches to predict genes. In our study, we
introduce a convolutional neural network for metagenomics gene prediction (CNN-MGP) program that predicts genes in
metagenomics fragments directly from raw DNA sequences, without the need for manual feature extraction and feature
selection stages. CNN-MGP is able to learn the characteristics of coding and non-coding regions and distinguish coding and
non-coding open reading frames (ORFs). We train 10 CNN models on 10 mutually exclusive datasets based on pre-defined
GC content ranges. We extract ORFs from each fragment; then, the ORFs are encoded numerically and inputted into an appro-
priate CNN model based on the fragment-GC content. The output from the CNN is the probability that an ORF will encode
a gene. Finally, a greedy algorithm is used to select the final gene list. Overall, CNN-MGP is effective and achieves a 91%
accuracy on testing dataset. CNN-MGP shows the ability of deep learning to predict genes in metagenomics fragments, and
it achieves an accuracy higher than or comparable to state-of-the-art gene-prediction programs that use pre-defined features.

Keywords Gene prediction · Metagenomics · ORF · Convolutional neural network · Deep learning

1 Introduction

Metagenomics is the analysis of genomes contained in envi-
ronmental samples, such as soil, seawater, and human gut
samples [1–3]. Metagenomics analysis uses modern tech-
niques to study microbial organisms directly in their natural
environments, without the need for the isolation and lab cul-
tivation of individual species [4]. Metagenomics has many
useful applications in medicine, engineering, agriculture,
and ecology [5, 6]. Gene prediction is an important step in
the metagenomics pipeline. Gene prediction is the process of
finding the location of coding regions in genomics sequences
[7, 8]. Early studies identified genes through experiments
on living cells and organisms [9], a reliable but expensive

task, and current studies use computational approaches to
predict genes due to the efficiency of such methods. Com-
putational approaches in gene prediction can be classified
as similarity-based and content-based approaches [8, 10].
Similarity-based approaches search for similarities between
candidate and existing known genes in public sequence
databases. Thus, similarity-based approaches are compu-
tationally expensive and miss novel genes. Content-based
approaches are a new generation of gene-prediction pro-
grams that overcome these limitations. These approaches
use various features of sequences, such as codon usage, GC
content, and sequence length. They then apply supervised
learning or statistical approaches to determine whether a
read contains any genes. Metagenomics gene prediction
is a challenging task due to short read-length, incomplete,
and fragmented nature of the data [7, 11]. Machine learn-
ing-based gene prediction programs for metagenomics
fragments show promising results [12, 13]. For example,
Orphelia [14, 15]and Metagenomics Gene Caller (MGC)
[16] use neural networks to predict genes in metagenomics
reads, while MetaGUN [17] uses support vector machine
(SVM). These gene prediction programs involve feature

 * Amani Al-Ajlan
 aalajlan@ksu.edu.sa

 Achraf El Allali
 eachraf@gmail.com

1 Computer Science Department, College of Computer
and Information Sciences, King Saud University, Riyadh,
Saudi Arabia

http://orcid.org/0000-0002-6807-1425
http://crossmark.crossref.org/dialog/?doi=10.1007/s12539-018-0313-4&domain=pdf

629Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

extraction and feature selection steps. For example, Orphelia
uses a two-stage machine learning approach. First, Orphelia
extracts some features from each open reading frame (ORF):
monocodon usage, dicodon usage, and translation initia-
tion sites (TISs). Then, linear discriminants are used as a
dimensionality reduction technique to reduce feature space.
Moreover, ORF length and GC content are combined with
other features; then, neural networks are used to compute
the probability that an ORF encodes a gene. MGC uses the
same two-stage machine learning approach, but it creates
several training models based on several GC-content ranges
to improve the gene prediction task. MGC adds two addi-
tional features, monoamino-acid and diamino-acid usage,
which improve gene prediction accuracy.

Classical machine learning workflow starts with data
cleaning, feature extraction, model learning, and model
evaluation. Moreover, classical machine learning algorithms
cannot directly process raw data [18]. Representative fea-
tures are extracted from the raw data, then, feature vectors
are supplied into a classifier to obtain an appropriate class.
Selection of the significant features that represent the data
requires domain knowledge; this step is critical, difficult,
and time-consuming, and it can affect the performance of
prediction [19, 20]. Computationally, DNA sequences do
not have explicit features, and current representations are
highly dimensional [21]. In addition, most feature selection
methods do not scale well in the case of high dimensional-
ity [19, 22].

Recent approaches in machine learning use deep learning
techniques to automatically extract significant features from
raw data, such as image intensities or DNA sequences [19,
20, 23, 24]. Deep learning is used widely and successfully
in image recognition, speech recognition, natural language
processing, computer vision, bioinformatics, and compu-
tational biology [18–20]. In the last few years, there has
been a growing interest in deep learning approaches due to
the availability of large data, computational resources and
accurate prediction [21, 23]. In bioinformatics, deep learning
approaches are used in functional genomics, image analysis,
and medical diagnostics research [21, 23, 25]. Convolutional
neural networks (CNNs) are one of the most popular deep
neural networks architectures. CNNs automatically detect
significant features and eliminate the need for manual fea-
ture extraction. Considerable attention has been paid to
the application of CNN-based approaches to bioinformat-
ics problems. Collobert et al. [26] first used CNNs for a
sequence analysis of generic text. However, few research
studies have used CNN-based approaches for biological
sequences [25]. These research studies use CNNs trained
directly from raw DNA sequences without the use of a fea-
ture extraction step [19]. For example, DeepBind [27] uses
CNNs to predict the specificities of DNA and RNA-binding
sites by discovering new sequence motifs. Gangi et al. [20]

use CNNs and recurrent neural networks (RNNs) to identify
nucleosomes positioning in sequences. DeepSEA [28] uses
CNNs to predict the chromatin effects of sequence altera-
tions with single nucleotide sensitivity. DanQ [29] uses the
CNN and RNN frameworks to predict non-coding function
directly from sequences. Basset [30] uses CNNs to identify
the functional activities of DNA sequences, such as accessi-
bility and protein binding. Meanwhile, CNNProm [24] uses
CNNs for prokaryotic and eukaryotic promoter prediction.
CNNProm achieves higher accuracy than other promoter
prediction programs.

In this paper, we explore the possibility of using a CNN-
based approach in gene prediction using metagenomics frag-
ments. The main advantages of using CNNs are simplicity
and efficiency, CNNs achieve promising results in various
applications.

2 Material and Methods

2.1 Dataset

We use two datasets, one for training, and the other for test-
ing CNN-MGP. The datasets were used by Orphelia [14]
and MGC [16]. The training data included seven million
ORFs extracted from 700 bp fragments. These fragments
were excised from 131 fully-sequenced prokaryotic genomes
(bacterial and archaeal) [14] and their gene annotations
obtained from GenBank [31]. We divided the training data
into 10 mutually exclusive parts based on pre-defined GC
ranges. Previous research has shown that building multiple
models based on GC content is better than building a single
model [16], because fragments with similar GC content have
closer features such as codon usage [16]. The testing data
included fragments of 700 bp in length from three archaeal
and eight bacterial genomes. Table 1 presents the genomes
used in the testing, with their GenBank accession number
and GC content. The 700 bp fragments were randomly
excised to create a 1-fold genome coverage from each train-
ing genome and a 5-fold coverage for each genome in the
testing dataset.

2.2 The Proposed Method

Our proposed method has three main phases including data
pre-processing, training, classification and post-processing.
First, we numerically encode the ORFs before inputting
them into the CNN models. Then, 10 CNN models are built
for the classification phase. Finally, the CNN classifiers are
used to approximate the gene probability for the candidate
ORFs, and a greedy algorithm is used to select the final
gene set.

630 Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

2.2.1 Data Pre‑processing

We use character-level one-hot encoding to represent the
ORFs similar to previous research [21, 24, 32]. One-hot
encoding is used to transform categorical data such as nucle-
otides into a numerical form. Each nucleotide is represented
as a one-hot vector that has all zero entries except one in a
specific position. For example, A is encoded as (1,0,0,0), T
as (0,0,0,1), C as (0,1,0,0), and G as (0,0,1,0). Each ORF,
with length L, is represented as L× 4 matrix (705 is the maxi-
mum ORF length in our problem). Figure 1 shows the one-
hot encoding for a DNA sequence.

2.2.2 Training

A convolutional neural network (CNN) is a special type of
neural networks that works with data having a grid topol-
ogy [33]. CNNs were developed by LeCun et al. [34] in
1998 to recognize handwritten characters from bank checks.
Recently, CNNs have been applied to several applications
such as image recognition, video recognition, natural

language processing, and computational biology. CNNs are
composed of several layers of convolutional, non-linear,
pooling, and fully connected layers. The convolutional layer
is the most important building block of a CNN. It processes
input data using a matrix of weights called a filter, which
is a matrix of parameters that are changed by a learning
algorithm [33]. Filters, of window size n, slide over the
input data, and a dot product is calculated between the input
data and filter parameters to produce a feature map. The
first convolutional layer is able to capture sequence patterns,
and deeper convolutional layers can capture patterns that
are more complex [35, 36]. After the convolutional layer,
a non-linear activation function, the rectified linear unit
(ReLU), is applied to the output. Then, the pooling layer is
used to reduce the computational cost, memory usage, and
number of parameters and to control over-fitting. The max-
pooling layer is the most common type of pooling layers. It
computes the maximum output from a small window [33],
then, a fully connected layer is used to obtain the probability
of prediction.

We use one-dimensional CNNs, because DNA sequences
are one-dimensional arrays of nucleotides. We use holdout
validation to partition data into training and validation sets.
In total, 70% of the training dataset is used for training and
30% for validation. The training dataset is used to train mod-
els with different hyper-parameters, and the validation set
is used to test these models. Hyper-parameters are selected
based on the performance of the validation dataset of GC
range one. The selection of the number of layers, the number
of filters, and filter window size is data- and application-
dependent [19, 32]. We follow the testing-based approach
used by Zeng et al. [32] and train different models with dif-
ferent configurations to get the most suitable configurations
for our problem. First, we use 16 as the number of filters, and
we test different filter window sizes: 5, 10, 21, 24, and 30.
We find the window size of 21 produce the highest accuracy
of 97.71%. Then, we test different number of filters of 16,
32, 64, 128, and 200. The 200 filters produce the highest
accuracy of 97.92%. Then, we test two layers with number
of filters 64 and 200, which produce the highest accuracy
of 98%. Table 2 shows cross-validation of our model with
different filter window sizes and number of filters. We select
a batch size of 256, which is suitable for most applications.
Finally, the model with the best performance, as shown in
Fig. 2, is selected to build the final CNN models from the
entire training dataset.

We compute the accuracy of CNN-MGP models for each
GC range using cross-validation. We use hold-out valida-
tion, a type of cross-validation method. The training dataset
is divided into two datasets: 70% for training and 30% for
validation. Both the training and validation datasets have the
same class proportion as the entire dataset. CNN-MGP is
trained using a training dataset and is evaluated on validation

Table 1 Testing data

The first three genomes are archaea and the remaining are bacterial
genomes

Genomes GenBank
accession no.

GC content (%)

Archaeoglobus fulgidus NC_000917 48.6
Methanocaldococcus jannaschii NC_000909 31.4
Natronomonas pharaonis NC_007426 63.4
Buchnera aphidicola NC_002528 26.3
Corynebacterium jeikeium NC_007164 61.4
Chlorobaculum tepidum NC_002932 56.5
Helicobacter pylori NC_000921 38.9
Prochlorococcus marinus NC_007577 31.2
Wolbachia endosymbiont NC_006833 34.2
Burkholderia pseudomallei NC_006350 67.7
Pseudomonas aeruginosa NC_002516 66.6

A T G T A C T G A

1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

One-hot
encoding

Fig. 1 One-hot Encoding for DNA sequence. Each nucleotide is rep-
resented as a one-hot vector: A = 1000, T = 0001, C = 0100, and G
= 0010

631Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

dataset. Table 3 presents the accuracy of CNN-MGP models,
which is between 98 and 99.1%. CNN models with a higher
GC range achieve a higher accuracy than those with a lower
GC range.

Each model consists of six layers. The first layer is a con-
volutional layer with 64 filters and a filter window size of 21.
The second layer is a max-pooling layer with a pool size of
2. The third layer is a convolutional layer with 200 filters and
a filter window size of 21. The fourth layer is a max-pooling
layer with a pool size of 2. Then, we use a dropout layer that
drops out portions of its output to improve the performance
of CNNs and to reduce over-fitting [37]. We set the dropout
rate to 50%. Then, the output is flattened to a 1D vector
before supplying to a fully connected layer. The fifth layer
is a fully connected neural network with 128 neurons. Then,
we use a dropout layer. Finally, we use a softmax output
layer to estimate the gene probability.

The CNN models are implemented using the Keras pack-
age [38], a minimalist Python library for deep learning. It
runs on top of TensorFlow [39] and executes on GPUs. We
used the Amazon Elastic Compute Cloud (Amazon EC2) to
perform our experiments [40].

2.2.3 Classification and Post‑Processing

To predict genes for a given metagenomics fragment, we
extract all complete and incomplete ORFs from each frag-
ment. A complete ORF is an ORF that starts with a start
codon (ATG, CTG, GTG or TTG) followed by a number of
codons and ends with a stop codon (TAG, TAA, or TGA).
Incomplete ORF does not have start or stop codons or both.
The ORFs are then numerically encoded using one-hot
encoding approach. Then, we select an appropriate CNN
model to score each ORF based on the GC content of the

fragment. The output from the CNN is the probability that
an ORF encodes a gene. ORFs with a probability greater
than 0.5 are considered as candidate genes. Some of the

1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

One-hot
encoding

PoolingConvolutionConvolution Pooling

Output
layer

sreyaLgniloopdnanoitulovnoCFROtupnI Fully connected
layer

Gene
probability

A TG T A C T G A

Fig. 2 CNN-MGP Architecture. First, an ORF is encoded numeri-
cally using one-hot encoding; then, a matrix of numbers is inputted
into an appropriate CNN-MGP model based on its fragment GC con-
tent. The CNN-MGP model consists of six layers. The first layer is a
convolutional layer with 64 filters and a filter window size of 21. The
second layer is a max-pooling layer with a pool size of 2. The third

layer is a convolutional layer with 200 filters and a filter window size
of 21, and the fourth layer is a max-pooling layer with a pool size of
2. Then, the output is flattened to a 1D vector before being inputted
into a fully connected layer with 128 neurons. Then, the output layer
produces a final gene probability

Table 2 The accuracy of the first CNN model with different configu-
rations by varying the number of convolutional layers, the number of
filters, and filter window size

No. of convolu-
tional layers

No. of filters Filter window
size

Accuracy

1 16 5 97.57
1 16 10 97.68
1 16 21 97.71
1 16 24 97.70
1 16 30 97.65
1 32 21 97.81
1 64 21 97.87
1 128 21 97.89
1 200 21 97.92
2 (64,200) 21 98.00

Table 3 CNN cross-validation
performance for different GC
ranges

GC range CNN accuracy

0–36.57 98.0
36.57–41.57 98.4
41.57–46 98.5
46–50.14 98.3
50.14–54.28 98.3
54.28–58.14 98.0
58.14–61.85 98.3
61.85–65 98.8
65–68.28 99.0
68.28–100 99.1

632 Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

candidate genes may overlap and only one can be the candi-
date gene. Genes in prokaryotes can maximally overlap by
45 bp [41]. Therefore, a greedy algorithm [14, 16] is used
as a post-processing step to eliminate any overlapping genes
and generate a final list of candidate genes. The candidate
gene with the highest probability is more likely to be the
correct gene, and we remove all candidate ORFs that overlap
with it by more than 60 bp.

3 Results and Discussion

3.1 Performance Measures

To measure the gene prediction performance, a compari-
son is made between the algorithm’s predictions and the
true gene annotation in the fragments derived from Gen-
Bank [31]. When the ORF overlaps with at least 60 bp of an
annotated gene in the same reading frame it is considered a
true positive (TP). On the other hand, if the predicted ORF
is incorrectly identified as a gene, it is considered a false
positive (FP). Moreover, a false negative (FN) is counted
when an overlooked gene is incorrectly identified as a non-
coding ORF. We measure the prediction performance based
on the sensitivity, specificity, and harmonic mean. Sensi-
tivity is used to measure the probability of detection, as it
measures the percentage of genes that are correctly detected.
Meanwhile, specificity is used to measure the reliability of
the prediction, as it measures the percentage of predicted
genes that are annotated. For comparison with the Orphelia
and the MGC gene prediction programs, we use the positive
likelihood score as a measure of specificity. The sensitivity,
specificity, and harmonic mean are computed using the fol-
lowing equations:

3.2 Results

We evaluate CNN-MGP models on an external dataset.
The testing dataset contains fragments of 700 bp in length
from three archaeal and eight bacterial genomes, as shown
in Table 1. We compare CNN-MGP prediction with true
gene annotation from GenBank [31]. Moreover, we repeat

(1)Sensitivity =

TPgene

TPgene + FNgene

(2)Specificity =

TPgene

TPgene + FPgene

(3)Harmonic Mean =
2 × Sens × Spec

Sens + Spec
.

the testing 10 times per genome. We compute the mean and
standard deviation for the sensitivity, specificity and har-
monic mean of 10 random replications per genome, as pre-
sented in Table 4. CNN-MGP achieves an average specificity
of 94.87%, an average sensitivity of 88.27%, and an average
harmonic mean of 91.36%. The average standard deviation
of the harmonic mean is 0.14%.

We compare CNN-MGP with three state-of-the-art gene
prediction programs—Orphelia [14], MGC [16], and Prodi-
gal [42]—using the same test dataset. The results from the
comparison are presented in Table 4. CNN-MGP achieves
specificity similar to Prodigal, but Prodigal outperforms
CNN-MGP in terms of sensitivity and harmonic mean.
Prodigal, CNN-MGP, and MGC all outperform Orphelia.
CNN-MGP outperforms Orphelia by an average harmonic
mean of 10%; its overall performance is similar to that of
MGC, with both methods achieving an average harmonic
mean of 91% for some genomes, CNN-MGP performs bet-
ter, while MGC performs better for others.

3.3 Discussion

The aim of our study is to explore the feasibility of using
deep learning in metagenomics gene prediction. The results
provide important insights into using deep learning for
gene prediction, particularly that it is accurate and sim-
ple to implement. Feature extraction and feature selection
are important steps in most gene prediction programs, as
extracting few or irrelevant features reduces the prediction
performance [43]. However, extracting a large number of
features is computationally expensive and may cause over-
fitting. For example, Orphelia and MGC extract thousands
of features, such as codon usages, TIS scores, GC content,
and ORF lengths. Then, linear discriminants are used to
reduce feature space. Further, neural networks are used to
predict genes in metagenomics fragments. CNN-MGP is a
CNN-based metagenomics gene prediction program that
starts with raw ORFs and then applies pre-processing of
one-hot encoding to produce a matrix of numbers that will
be inputted into CNNs, as presented in Fig. 2. CNN-MGP
learns features from the raw data itself and produces the
probability that an ORF encodes a gene. CNN-MGP requires
fewer steps than MGC and Orphelia. The main advantage of
CNNs is their ability to learn features automatically from the
raw data itself without the need to define and compute fea-
tures that require expert knowledge [19, 44]. CNNs perform
two main tasks: feature extraction and classification. The
convolutional and pooling layers extract significant features
automatically, and then a fully connected layer is used to
generate the probability of prediction.

Use of CNNs has some limitations. First, training CNNs
is computationally expensive, but using efficient computing
environments, such as GPUs, can overcome this limitation;

633Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

most deep-learning frameworks, such as Caffe2, PyTorch,
and TensorFlow, support GPU execution to accelerate train-
ing. Second, CNNs are prone to overfitting due to large num-
bers of hyper-parameters that must be tuned, like number of
layers, number of filters, filter window size, and type of acti-
vation function. There are various solutions to overfitting,
including early stopping and dropout; moreover, designing a
CNN model architecture and selecting optimal hyper-param-
eters are crucial steps in improving prediction performance.
We test various CNN configurations by changing the number
of filters, the filter window size, and the number of layers to
obtain the final model. We found that adding more filters and
more layers increases the performance of our model, but it
also increases the time complexity. Moreover, we found that
in a convolutional layer, a large filter window is better than
a small window to capture the characteristics of coding and
non-coding regions. These results are consistent with previ-
ous CNN-based approach studies for biological sequences
that suggested a large filter window to predict promoter and
DNA binding sites. For example, CNNProm [24] uses a filter
window size of 21 and DeepBind [27] uses a filter window
size of 24.

Furthermore, a relationship between GC content and pre-
diction accuracy can be observed in Table 3. CNN models
with a higher GC range achieve a higher accuracy than those
with a low GC range. For example, CNN models built from
sequences with GC content greater than 65% achieved higher
accuracy than those built from other GC ranges. This finding
further supports our hypothesis that fragments with similar
GC content have closer features and thus different classifica-
tion models should be built for different GC contents.

4 Conclusion

Recently, considerable attention has been paid to the appli-
cation of deep learning to various bioinformatics problems.
The purpose of the current study is to use CNNs to predict
genes in metagenomics fragments and to investigate the
effect of CNNs on gene prediction. CNNs have been used
successfully in various bioinformatics problems, such as
DNA binding site and promoter predictions.

We introduce CNN-MGP, a metagenomics gene pre-
diction program based on a CNN approach. CNN-MGP
does not require domain knowledge such as gene features,
because CNNs are able to extract significant characteristics
directly from raw data. ORFs are encoded numerically and
supplied into an appropriate CNN-MGP model. The model
produces the probability that an ORF will encode a gene. We
test different CNN configurations by varying the number of
filters, the filter window size, and the number of layers to
produce an accurate model. The best hyper-parameters are
selected for the final models. A comparison of CNN-MGP Ta

bl
e

4
 C

om
pa

ris
on

 o
f C

N
N

-M
G

P,
 O

rp
he

lia
, M

G
C

, a
nd

 P
ro

di
ga

l o
n

te
sti

ng
 d

at
a

Pe
rfo

rm
an

ce
 is

 m
ea

su
re

d
ac

co
rd

in
g

to
 th

e
av

er
ag

e
sp

ec
ifi

ci
ty

, s
en

si
tiv

ity
, a

nd
 h

ar
m

on
ic

 m
ea

n
of

 1
0

re
pl

ic
at

io
ns

 p
er

 g
en

om
e

G
en

om
es

C
N

N
-M

G
P

O
rp

he
lia

M
G

C
Pr

od
ig

al

Sp
Sn

H
M

Sp
Sn

H
M

Sp
Sn

H
.M

Sp
Sn

H
M

A.
 fu

lg
id

us
94

.9
5±

0
.2
1

86
.1

5±
0
.1
9

90
.3

3±
0
.1
6

88
.5

7±
0
.2
1

80
.5

8±
0
.1
7

84
.3

8±
0
.1
6

95
.0

4±
0
.1
4

84
.1

3±
0
.2
3

89
.3

1±
0
.1
5

95
.7

9±
0
.1
5

96
.1

3±
0
.0
8

95
.9

6±
0
.1
0

M
. j

an
na

sc
hi

i
96

.1
3±

0
.1
5

93
.6

0±
0
.1
7

94
.8

5
±
0
.1
6

95
.2

0±
0
.1
7

90
.4

6±
0
.1
6

92
.7

7±
0
.1
4

97
.1

9±
0
.1
2

92
.6

3±
0
.1
9

94
.8

5±
0
.1
3

95
.1

4±
0
.1
4

95
.1

5±
0
.1
5

95
.1

5±
0
.1
2

N
. p

ha
ra

on
is

96
.1

7±
0
.1
2

82
.9

9
±
0
.2
8

89
.0

9±
0
.1
8

75
.9

9±
0
.3
4

68
.7

4±
0
.3
4

72
.1

7±
0
.3
3

95
.2

8±
0
.1
2

85
.7

9±
0
.2
0

90
.2

9
±
0
.1
4

97
.4

8±
0
.1
0

95
.7

7±
0
.1
8

96
.6

2±
0
.1
2

B.
 a

ph
id

ic
ol

a
97

.0
3±

0
.2
0

92
.6

7±
0
.4
1

94
.8

0
±
0
.2
6

95
.5

4±
0
.2
8

89
.4

0±
0
.3
3

92
.3

7±
0
.2
2

98
.0

1±
0
.1
9

91
.1

1±
0
.3
7

94
.4

3±
0
.2
3

96
.6

5±
0
.2
7

96
.9

7±
0
.2
6

96
.8

1±
0
.2
5

C
. j

ei
ke

iu
m

95
.7

2±
0
.1
1

87
.3

7±
0
.1
5

91
.3

5
±
0
.0
9

79
.5

2±
0
.2
2

74
.2

3±
0
.2
3

76
.7

9±
0
.2
2

96
.1

3±
0
.1
1

87
.7

0±
0
.2
3

91
.7

2
±
0
.1
7

95
.3

1±
0
.1
9

94
.9

9±
0
.1
0

95
.1

5±
0
.1
0

C
. t

ep
id

um
94

.4
6±

0
.1
4

81
.0

9
±
0
.2
8

87
.2

4±
0
.1
0

77
.5

1±
0
.2
2

66
.9

5±
0
.2
3

71
.8

5±
0
.2
1

93
.4

2±
0
.1
4

79
.0

8±
0
.2
4

85
.6

5±
0
.1
8

94
.3

5±
0
.1
4

88
.1

5±
0
.1
9

91
.1

4±
0
.1
1

H
. p

yl
or

i
96

.2
4±

0
.1
5

91
.2

2
±
0
.1
3

93
.6

6±
0
.1
1

94
.1

7±
0
.2
0

88
.9

9±
0
.2
2

91
.5
±
0
.2
0

97
.7

7±
0
.1
4

89
.7

0±
0
.2
2

93
.5

6±
0
.1
7

95
.2

9±
0
.1
4

93
.0

7±
0
.1
4

94
.1

6±
0
.1
2

P.
 m

ar
in

us
98

.1
5±

0
.0
7

89
.1

2±
0
.1
3

93
.4

2±
0
.0
7

94
.4

1±
0
.2
0

84
.9

8±
0
.2
4

89
.4

5±
0
.2
0

97
.7

1±
0
.1
1

87
.9

2±
0
.2
0

92
.5

5±
0
.1
2

97
.5

2±
0
.1
7

91
.9

6±
0
.2
0

94
.6

6±
0
.1
5

W
. e

nd
os

ym
bi

on
t

82
.7

1±
0
.3
8

90
.9

0±
0
.2
7

86
.6

1±
0
.2
7

86
.2

4±
0
.2
0

83
.7

9±
0
.2
0

84
.9

9±
0
.2
0

88
.2

5±
0
.2
0

87
.8

5±
0
.2
0

88
.0

5±
0
.2
0

81
.5

2±
0
.4
1

92
.2

7±
0
.2
5

86
.5

6±
0
.3
1

B.
 p

se
ud

om
al

le
i

95
.3

1
±
0
.0
6

86
.9

9±
0
.1
2

90
.9

6±
0
.0
8

69
.5

4±
0
.3
1

64
.7

9±
0
.2
2

67
.0

8±
0
.2
6

94
.7

9±
0
.1
3

87
.8

4±
0
.2
5

91
.1

8±
0
.1
8

94
.2

8±
0
.0
9

96
.4

7±
0
.0
9

95
.3

7±
0
.0
8

P.
 a

er
ug

in
os

a
96

.7
3±

0
.0
8

88
.8

6±
0
.1
3

92
.6

3±
0
.0
9

71
.2

1±
0
.2
0

68
.4

0±
0
.1
8

69
.7

8±
0
.1
9

96
.1

6±
0
.0
9

91
.7

0±
0
.1
1

93
.8

8±
0
.0
8

96
.4

7±
0
.0
5

97
.8

8±
0
.0
6

97
.1

7±
0
.0
5

A
ve

ra
ge

94
.8

7
88

.2
7

91
.3

6
84

.3
5

78
.3

0
81

.1
9

95
.4

3
87

.7
6

91
.4

0
94

.5
3

94
.4

4
94

.4
3

A
ve

ra
ge

 S
D

0.
15

0.
21

0.
14

0.
25

0.
24

0.
22

0.
15

0.
22

0.
16

0.
17

0.
15

0.
14

634 Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

with recent state-of-the-art gene prediction programs Orphe-
lia, MGC, and Prodigal shows that CNN-MGP produces
promising results. Our approach supports the recent use of
CNNs to biological sequence analysis. Traditional classifica-
tion approaches are not effective when trying to find genes in
erroneous sequences. The reason behind this is the fact that
models are built using features that rely on the correct read-
ing frame such as codon bias. Therefore, any frame-shift in
the input read will result in a different distribution that does
not match the trained models. The question is whether CNN-
based models will be able to overcome this issue and enable
us to identify the correct features when sequence errors are
introduced.

Acknowledgements This research project is supported by a grant from
the “King AbdulAziz City for Science and Technology” (KACST),
Saudi Arabia (Grant No. 1-17-02-001-0025).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from
sampling to data analysis. Microb Inf Exp 2(1):3

 2. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagen-
omics. PLoS Comput Biol 6(2):e1000667

 3. Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G (2013) High
throughput sequencing methods and analysis for microbiome
research. J Microbiol Methods 95(3):401–414

 4. Chen K, Pachter L (2005) Bioinformatics for whole-genome shot-
gun sequencing of microbial communities. PLoS Compu Biol
1(2):e24

 5. Bashir Y, Pradeep Singh S, Kumar Konwar B (2014) Metagenom-
ics: an application based perspective. Chin J Biol 2014:146030

 6. Handelsman J (2004) Metagenomics: application of genom-
ics to uncultured microorganisms. Microbiol Mol Biol Rev
68(4):669–685

 7. Sharpton TJ (2014) An introduction to the analysis of shotgun
metagenomic data. Front Plant Sci 5:209

 8. Wang Z, Chen Y, Li Y (2004) A brief review of computa-
tional gene prediction methods. Genom Proteom Bioinform
2(4):216–221

 9. Angelova M, Kalajdziski S, Kocarev L (2010) Computational
methods for gene finding in prokaryotes. ICT Innovations, pp
11–20

 10. Mathé C, Sagot MF, Schiex T, Rouzé P (2002) Current methods
of gene prediction, their strengths and weaknesses. Nucleic Acids
Res 30(19):4103–4117

 11. Rangwala H, Charuvaka A, Rasheed Z (2014) Machine learning
approaches for metagenomics. In: Joint European conference on
machine learning and knowledge discovery in databases, Springer,
pp 512–515

 12. Soueidan H, Nikolski M (2016) Machine learning for metagenom-
ics: methods and tools. https ://doi.org/10.1515/metge n-2016-0001

 13. Goés F, Alves R, Corrêa L, Chaparro C, Thom L (2014) A com-
parison of classification methods for gene prediction in metagen-
omics. In: the international workshop on new frontiers in mining
complex patterns (NFmcp). The European conference on machine
learning and principles and practice of knowledge discovery in
databases (ECML-PKDD), Nancy, France

 14. Hoff KJ, Tech M, Lingner T, Daniel R, Morgenstern B, Meinicke
P (2008) Gene prediction in metagenomic fragments: a large scale
machine learning approach. BMC Bioinform 9(1):217

 15. Hoff KJ, Lingner T, Meinicke P, Tech M (2009) Orphelia: predict-
ing genes in metagenomic sequencing reads. Nucleic Acids Res
37(suppl 2):W101–W105

 16. El Allali A, Rose JR (2013) Mgc: a metagenomic gene caller.
BMC Bioinform 14(Suppl 9):S6

 17. Liu Y, Guo J, Hu G, Zhu H (2013) Gene prediction in metagen-
omic fragments based on the SVM algorithm. BMC Bioinform
14(5):S12

 18. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436

 19. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep
learning for computational biology. Mol Syst Biol 12(7):878

 20. Di Gangi MA, Gaglio S, La Bua C, Bosco GL, Rizzo R (2017)
A deep learning network for exploiting positional information in
nucleosome related sequences. In: International conference on
bioinformatics and biomedical engineering, Springer, pp 524–533

 21. Bosco GL, Di Gangi MA (2016) Deep learning architectures for
DNA sequence classification. In: International workshop on fuzzy
logic and applications, Springer, pp 162–171

 22. Asir D, Appavu S, Jebamalar E (2016) Literature review on fea-
ture selection methods for high-dimensional data. Int J Comput
Appl 136(1):9–17

 23. Jones W, Alasoo K, Fishman D, Parts L (2017) Computational
biology: deep learning. Emerg Topics in Life Sci 1(3):257–274

 24. Umarov RK, Solovyev VV (2017) Recognition of prokaryotic and
eukaryotic promoters using convolutional deep learning neural
networks. PLoS One 12(2):e0171410

 25. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics.
Brief Bioinform 18(5):851–869

 26. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K,
Kuksa P (2011) Natural language processing (almost) from
scratch. J Mach Learn Res 12:2493–2537

 27. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting
the sequence specificities of DNA-and RNA-binding proteins by
deep learning. Nat Biotechnol 33(8):831–838

 28. Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding
variants with deep learning-based sequence model. Nat Methods
12(10):931–934

 29. Quang D, Xie X (2016) Danq: a hybrid convolutional and recur-
rent deep neural network for quantifying the function of dna
sequences. Nucleic Acids Res 44(11):e107–e107

 30. Kelley DR, Snoek J, Rinn JL (2016) Basset: learning the regula-
tory code of the accessible genome with deep convolutional neural
networks. Genome Res 26(7):990–999

 31. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lip-
man DJ, Ostell J, Sayers EW (2013) Genbank. Nucleic Acids Res
41(D1):D36–D42

 32. Zeng H, Edwards MD, Liu G, Gifford DK (2016) Convolutional
neural network architectures for predicting dna-protein binding.
Bioinformatics 32(12):i121–i127

 33. Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep
learning, vol 1. MIT press, Cambridge

 34. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

 35. Schmidhuber J (2015) Deep learning in neural networks: an over-
view. Neural Netw 61:85–117

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1515/metgen-2016-0001

635Interdisciplinary Sciences: Computational Life Sciences (2019) 11:628–635

1 3

 36. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

 37. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

 38. Chollet F, et al (2015) Keras: Deep learning library for theano and
tensorflow. https ://keras .io/

 39. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M (2016) Tensorflow: a system for
large-scale machine learning. OSDI 16:265–283

 40. Cloud AEC (2011) Amazon Web Services AWS. http://aws.amazo
n.com

 41. Warren AS, Setubal JC (2009) The genome reverse compiler: an
explorative annotation tool. BMC Bioinform 10(1):35

 42. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser
LJ (2010) Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinform 11(1):119

 43. Arel I, Rose DC, Karnowski TP (2010) Deep machine learning-a
new frontier in artificial intelligence research [research frontier].
IEEE Comput Intell Mag 5(4):13–18

 44. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald
R, Muharemagic E (2015) Deep learning applications and chal-
lenges in big data analytics. J Big Data 2(1):1

https://keras.io/
http://aws.amazon.com
http://aws.amazon.com

	CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
	Abstract
	1 Introduction
	2 Material and Methods
	2.1 Dataset
	2.2 The Proposed Method
	2.2.1 Data Pre-processing
	2.2.2 Training
	2.2.3 Classification and Post-Processing

	3 Results and Discussion
	3.1 Performance Measures
	3.2 Results
	3.3 Discussion

	4 Conclusion
	Acknowledgements
	References

