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Astrocyte-specific overexpression 
of Nrf2 protects against optic 
tract damage and behavioural 
alterations in a mouse model of 
cerebral hypoperfusion
Emma Sigfridsson1, Martina Marangoni1,8, Jeffrey A. Johnson2,3,4,5, Giles E. Hardingham1,6,7, 
Jill H. Fowler1 & Karen Horsburgh1

Mouse models have shown that cerebral hypoperfusion causes white matter disruption and memory 
impairment relevant to the study of vascular cognitive impairment and dementia. The associated 
mechanisms include inflammation and oxidative stress are proposed to drive disruption of myelinated 
axons within hypoperfused white matter. The aim of this study was to determine if increased 
endogenous anti-oxidant and anti-inflammatory signalling in astrocytes was protective in a model 
of mild cerebral hypoperfusion. Transgenically altered mice overexpressing the transcription factor 
Nrf2 (GFAP-Nrf2) and wild type littermates were subjected to bilateral carotid artery stenosis or sham 
surgery. Behavioural alterations were assessed using the radial arm maze and tissue was collected for 
pathology and transcriptome analysis six weeks post-surgery. GFAP-Nrf2 mice showed less pronounced 
behavioural impairments compared to wild types following hypoperfusion, paralleled by reduced optic 
tract white matter disruption and astrogliosis. There was no effect of hypoperfusion on anti-oxidant 
gene alterations albeit the levels were increased in GFAP-Nrf2 mice. Instead, pro-inflammatory gene 
expression was determined to be significantly upregulated in the optic tract of hypoperfused wild 
type mice but differentially affected in GFAP-Nrf2 mice. In particular, complement components (C4 
and C1q) were increased in wild type hypoperfused mice but expressed at levels similar to controls in 
hypoperfused GFAP-Nrf2 mice. This study provides evidence that overexpression of Nrf2 in astrocytes 
exerts beneficial effects through repression of inflammation and supports the potential use of Nrf2-
activators in the amelioration of cerebrovascular-related inflammation and white matter degeneration.

Vascular cognitive impairment (VCI) is a spectrum of mild cognitive impairment to vascular dementia and is 
influenced by risk factors including age, hypertension and atherosclerosis. The most common form of VCI is 
small vessel disease which is predominantly associated with white matter changes that can be detected as hyper-
intense signals on FLAIR or T2-weighted magnetic resonance images1,2. White matter changes correlate with cog-
nitive decline3,4 and are closely related to reduced cerebral perfusion5,6. The extent and presence of white matter 
changes can predict development of dementia in patients with mild cognitive impairment7,8. Thus, understanding 
pathophysiology of white matter changes has important implications in the treatment of dementia.
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Models of cerebral hypoperfusion have been important in providing mechanistic insight into the patho-
physiology of VCI; the best characterised is the bilateral carotid artery stenosis (BCAS) model in mice9,10. We 
and others have demonstrated that cerebral hypoperfusion in mice disrupts myelinated axons within the white 
matter11,12 causing impaired spatial working memory11,13,14. Increased inflammatory cells, particularly microglia, 
often parallel hypoperfusion-induced white matter damage9,15,16. Furthermore, there appears to be a close link 
between damage to white matter, microgliosis and white matter function in response to mild17 and severe cerebral 
hypoperfusion18. Our work demonstrated that the use of a broad spectrum anti-inflammatory drug, minocycline, 
markedly attenuates microgliosis and improves white matter function in a mouse model of cerebral hypoperfu-
sion17, and has also identified activation of pro-inflammatory genes within days in hypoperfused white matter12. 
Inflammation is often accompanied by indices of oxidative stress which is also proposed as a key contributor to 
pathology following cerebral hypoperfusion (reviewed by19,20). Increased levels of the reactive species superoxide, 
the superoxide-producing enzyme NADPH oxidase and oxidative damage to lipids, proteins and nucleic acids is 
found in hypoperfused white matter21–23. Reduced anti-oxidant and detoxifying enzymes and/or dysfunctional 
mitochondria are suggested underlying mechanisms24–26.

Deficiency of the transcription factor nuclear factor erythroid 2-related factor (Nrf2), a master regulator of 
endogenous cytoprotective anti-oxidant and anti-inflammatory gene pathways, is associated with white matter 
damage. Nrf2 knockout mice exhibit myelin pathology characterised by myelin unwinding, lipid peroxidation of 
the myelin sheath, and increased astrocytosis27, as well as reduced functional recovery and remyelination follow-
ing sciatic nerve crush and experimental autoimmune encephalitis (EAE)28,29. In contrast, activation of Nrf2 using 
dimethyl fumarate (DMF) has been shown to prevent myelin damage and astrocyte activation in EAE30, and DMF 
has since been approved for the treatment of relapsing-remitting multiple sclerosis (reviewed by31). Recently we 
have also shown that treatment with DMF, in a severe model of cerebral hypoperfusion, ameliorates white matter 
functional impairment and microgliosis18. Nrf2 expression has been shown to be several fold higher in astrocytes 
compared to neurons32 which have been shown to repress Nrf2 expression developmentally as redox-sensitive 
signalling pathways are important for proper maturation, and instead neurons rely on astrocytic support to pre-
vent oxidative damage33. Oligodendrocytes, also highly metabolically active cells, receive anti-oxidant support 
from astrocytes as well34, which may explain their comparably higher levels of Nrf2 expression. Studies using 
GFAP-Nrf2 mice in models of familial amytrophic lateral sclerosis, Huntington’s and Parkinson’s disease find 
increased production of glutathione and/or glutathione-related genes35–38, similarly seen in models of cerebral 
ischaemia39,40, all of which were associated with favourable outcomes.

Since astrocyte specific overexpression of Nrf2 has been shown to confer white matter protection in a number 
of disease models, we wished to build on this work to interrogate the effects of increased expression of astrocytic 
Nrf2 on white matter vulnerability and behavioural outcomes which are impaired in response to cerebral hypop-
erfusion. The novelty of the present study was to utlise a cell specific and genetic approach to investigate the 
putative protective effects of astrocytic Nrf2, unlike previous studies which have mainly used pharmacological 
approaches to indirectly assess the effects of Nrf2 in hypoperfusion models41,42. We hypothesised that overexpres-
sion of astrocytic Nrf2 would alleviate hypoperfusion induced cognitive impairment by reducing white matter 
disruption and inflammation, through glutathione-related mechanisms.

Results
Cortical cerebral blood flow is significantly reduced following bilateral carotid artery steno-
sis but is not influenced by astrocytic expression of Nrf2.  Cortical cerebral blood flow (CBF) was 
evaluated user laser speckle imaging at baseline (before surgery) and then at 24 hours and 6 weeks after surgery 
to assess the temporal response to carotid artery stenosis and to determine if there was a difference between 
wild type and GFAP-Nrf2 mice (Fig. 1). CBF data for each animal was calculated as a percentage of its baseline 
CBF. Overall, there was a significant effect of time (F(2,64) = 57.02, p < 0.0001) and bilateral carotid artery steno-
sis surgery (F(1,32) = 55.20, p < 0.0001) and a significant interaction between time and surgery (F(2,64) = 32.63, 
p < 0.0001). Post hoc analysis indicated that CBF was significantly reduced in wild type and GFAP-Nrf2 hypop-
erfused mice from their corresponding sham controls at 24 hours (p < 0.001) and 6 weeks (WT; p < 0.001, GFAP-
Nrf2; p = 0.03). No overall effect of genotype was detected (F(1,32) = 0.03, p = 0.86), indicating that overexpression 
of Nrf2 does not affect resting cortical cerebral blood flow in sham or hypoperfused mice (Fig. 1a).

Cerebral hypoperfusion causes a behavioural impairment in wild type mice which is less pro-
nounced in GFAP-Nrf2 mice.  Behaviour was assessed using an 8-arm radial arm maze which has pre-
viously been shown to be sensitive to hypoperfusion-induced disruption of frontocortical circuitry11,13. Sham 
wild type and GFAP-Nrf2 transgenic mice had different baseline performances and different patterns of learning 
over the trial blocks 1–8 (Fig. S1), and thus revisiting errors were analysed separately for these groups to inves-
tigate the effect of hypoperfusion over trial blocks 1–4 and 5–8. There was no significant difference in revis-
iting errors between wild type sham and hypoperfused mice in trials 1–4 (F(1,9) = 1.51, p = 0.25) but in trials 
5–8 wild type hypoperfused mice made significantly more revisiting errors than the sham controls (F(1,9) = 6.56, 
p = 0.03) (Fig. 2a). Post hoc analysis found significant differences between wild type sham and hypoperfused 
animals at block 5, 6 and 7 (p = 0.01, 0.04, 0.04 respectively). In contrast, GFAP-Nrf2 sham animals were not sig-
nificantly different from hypoperfused mice in trials 1–4 (F(1,17) = 0.33, p = 0.57) and in trials 5–8 (F(1,17) = 3.81, 
p = 0.07) (Fig. 2b). There was an overall significant effect of trial for both wild type (F(2.9,25.9) = 3.39, p = 0.04) and 
GFAP-Nrf2 mice (F(4,68.3) = 9.47, p < 0.0001) (Fig. 2a,b), indicative of learning.

To investigate whether there may be genotype differences between the groups, the fold difference of revisit-
ing errors of hypoperfused groups was calculated to respective sham controls and then compared between wild 
type and GFAP-Nrf2 mice. There was an overall genotype effect (F(1,13) = 4.79, p = 0.048) (Fig. 2c), a significant 
effect of trial (F(2.5,32.4) = 8.70, p < 0.0001) and a significant interaction between trial and genotype (F(2.5,32.4) = 3.36, 
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p = 0.04). Post hoc analysis identified significant differences in the fold change of revisiting errors between wild 
type and GFAP-Nrf2 groups at blocks 4, 5 and 6 (p = 0.046, 0.02, 0.03 respectively). Thus overall the data suggest 
a modest protective effect of Nrf2 overexpression on behavioural impairment following cerebral hypoperfusion.

Loss of optic tract white matter integrity caused by cerebral hypoperfusion is less severe in GFAP- 
Nrf2 mice.  Behavioural performance in the radial arm maze is dependent on the integrity of myelinated 
axons within white matter for efficient communication. The corpus callosum, internal capsule and optic tract 
were immunostained for myelin associated glycoprotein (MAG) present at the axon-glial interface. The density 
of MAG+ immunostaining was quantified as percentage area. When the axon-glial interface is disrupted, there is 
an accumulation of MAG + debris indicating a loss of white matter integrity11.

There was no significant loss of white matter integrity as a result of hypoperfusion in the corpus callosum 
(F(1,32) = 2.63, p = 0.12) or the internal capsule (F(1,32) = 0.08, p = 0.78), and no effect of genotype (F(1,32) = 0.82, 
p = 0.37; F(1,32) = 0.17, p = 0.68 respectively) (Fig. 3a,b). However, there was a significant effect of hypoperfusion 
in the optic tract (F(1,31) = 13.57, p = 0.001) albeit no significant effect of genotype (F(1,32) = 0.6, p = 0.44). Post hoc 
analysis of the effect of hypoperfusion revealed a significant loss of white matter integrity in wild type hypoper-
fused mice compared to sham controls (p = 0.004), but the difference between hypoperfused GFAP-Nrf2 mice 
and sham controls narrowly missed accepted levels of statistical significance (p = 0.054) (Fig. 3c).

To investigate whether the magnitude of white matter integrity loss differs between genotypes, the fold differ-
ence of MAG+ debris compared to controls in the optic tract was calculated and compared between wild type 
and GFAP-Nrf2 mice (Fig. 3d). The fold difference was significantly higher in wild type mice (p = 0.03) (Fig. 3d), 
suggesting a modest protective effect of Nrf2 overexpression on white matter integrity following hypoperfusion.

Figure 1.  Resting cortical cerebral blood flow (CBF) is significantly reduced following bilateral carotid artery 
stenosis in wild type and GFAP-Nrf2 mice. (a) Resting CBF was significantly reduced by 30–40% from baseline 
24 hours after bilateral carotid artery stenosis (BCAS) surgery and remained significantly reduced at 6 weeks for 
both groups. Effect of time F(2,64) = 57.02, p < 0.0001, effect of surgery F(1,32) = 55.20, p < 0.0001, no significant 
effect of genotype. (b) Representative images of laser speckle flowmetry at baseline and at 24 hr and 6weeks 
post-surgery. Repeated measures ANOVA with Bonferroni adjustment for post hoc analysis. Mean ± SEM. WT/
GFAP-Nrf2 ***/###p < 0.001, GFAP-Nrf2 #p = 0.03. n = 8–10 per group.

Figure 2.  Cerebral hypoperfusion causes an impairment in behavioural performance in wild type mice which is 
less pronounced in GFAP-Nrf2 mice. Spatial behaviour was assessed by the radial arm maze as revisiting errors 
over consecutive trials. (a) Wild type (WT) hypoperfused animals committed significantly more revisiting 
errors than WT shams during blocks 5–8 (F(1,9) = 6.56, p = 0.03). (b) GFAP-Nrf2 hypoperfused animals did not 
make significantly more revisiting errors than the GFAP-Nrf2 shams during blocks 5–8 (F(1,17) = 3.81, p = 0.07) 
(c) Revisiting error fold difference compared to respective sham controls was used to investigate genotype 
effect and analysis revealed a significantly higher fold difference in wild type mice (F(1,13) = 4.79, p = 0.048). 
Mean ± SEM. Repeated measures ANOVA with Bonferroni adjustment for post hoc analysis. *p < 0.05. 
n = 5–10 per group.
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Cerebral hypoperfusion induces micro- and astrogliosis in the optic tract, and astrogliosis is 
ameliorated by Nrf2-overexpression.  Previously it has been shown that inflammation is a key driver 
of white matter disruption in cerebral hypoperfusion17. To assess the microglial/macrophage inflammatory 
response, Iba1 immunostaining was used and microglia/macrophages were quantified as Iba1+ percentage area 
in the main white matter tracts; corpus callosum, internal capsule and optic tract. Glial fibrillary acidic protein 
(GFAP) immunostaining was utilised to assess the astroglial inflammatory response; quantified as GFAP+ per-
centage area in the corpus callosum, internal capsule and optic tract.

Cerebral hypoperfusion had a significant effect on Iba1 expression in the optic tract (F(1,32) = 14.74, p = 0.001) 
(Fig. 4c), but not in the corpus callosum or the internal capsule (F(1,32) = 2.41, p = 0.13, F(1,32) = 2.75, p = 0.11 
respectively) (Fig. 4a,b). Post hoc analysis revealed significantly greater Iba1+ percentage area in both wild type 
and GFAP-Nrf2 hypoperfused groups compared to their controls (p = 0.007, p = 0.02, respectively). There was no 
effect of genotype in any region (CC-F(1,32) = 3.12, p = 0.09; IC-F(1,32) = 2.23, p = 0.14; OT-F(1,32) = 0.18, p = 0.68).

GFAP + astrocytes were significantly affected by hypoperfusion in the optic tract (F(1,32) = 38.87, p < 0.0001) 
(Fig. 5c) but, similar to Iba1 expression and white matter integrity, not in the corpus callosum or the internal 
capsule (F(1,32) = 1.43, p = 0.24, F(1,32) = 2.01, p = 0.17 respectively) (Fig. 5a,b). There was also no effect of genotype 
in these regions (F(1,32) = 1.95, p = 0.17, F(1,32) = 3.34, p = 0.08 respectively). However, there was an effect of geno-
type in the optic tract (F(1,32) = 7.45, p = 0.01) and a significant interaction between hypoperfusion and genotype 
(F(1,32) = 7.05, p = 0.01). Post hoc tests identified significantly higher GFAP+ percentage are in hypoperfused 
wild type (p < 0.001) and GFAP-Nrf2 groups (p = 0.01) but also a significant reduction in the GFAP-Nrf2 hypop-
erfused group compared to the hypoperfused wild types (p = 0.001) (Fig. 5c). This data indicates that astrocytic 
Nrf2-overexpression reduces astrogliosis induced by cerebral hypoperfusion in the optic tract.

Anti-oxidant-related genes Slc7a11 and Gclm are increased by Nrf2-overexpression.  Relative 
gene expression of Nrf2, Scl7a11 (xCT; encoding the glutamate/cystine antiporter) and Gclm, (glutamate-cysteine 
ligase enzyme subunit), two Nrf2-regulated genes involved in glutathione synthesis were measured in a whole 
brain slice corresponding to the level of pathological assessment using qPCR and compared across groups.

There was a significant 3.5-fold increase in Nrf2 mRNA expression in GFAP-Nrf2 animals compared to wild 
type (F(1,32) = 298, p < 0.0001), with no effect of hypoperfusion (F(1,32) = 0.16, p = 0.69) (Fig. 6a). In addition, 
these changes were accompanied by a ~2-fold increase in Slc7a11 and Gclm in GFAP-Nrf2 mice (F(1,32) = 74.05, 
p < 0.0001, F(1,32) = 737.5, p < 0.0001 respectively), again, with no effect of hypoperfusion (F(1,32) = 0.26, p = 0.61, 
F(1,32) = 0.08, p = 0.79). These results may indicate a greater anti-oxidant capacity of GFAP-Nrf2 animals compared 
to wild types. Since there was no effect of hypoperfusion on the expression levels of these genes we considered 
whether subtle alterations in gene expression in predominantly white matter may be masked by measurements 
of gene expression in total brain homogenates. We therefore next investigated gene expression in white matter 
enriched samples.

Figure 3.  Loss of white matter integrity in response to hypoperfusion. (a) There was no significant loss of 
white matter integrity between groups in the corpus callosum, (b) nor in the internal capsule (c) but there was a 
significant effect of cerebral hypoperfusion in the optic tract (F(1,31) = 13.57, p = 0.001). (d) Fold change of white 
matter integrity loss compared to respective sham controls in the optic tract showed significantly more loss in 
wild type animals (p = 0.03). Dashed line indicates average sham level. (e) Representative images of MAG+ 
staining in the optic tract. Scale bar 100 µm. Mean ± SEM. (a–c) Two-way ANOVA with Bonferroni adjustment 
for post hoc analysis. (d) Unpaired one-tailed t-test. *p < 0.05, ** p < 0.01. n = 8–10 per group.
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Figure 4.  Increased microglia/macrophages in response to hypoperfusion. (a) % Area of Iba1+ staining in 
the corpus callosum and (b) internal capsule was unchanged following cerebral hypoperfusion. (c) % Area of 
Iba1+ staining in the optic tract was significantly altered by cerebral hypoperfusion (F(1,32) = 14.74, p = 0.001), 
with no effect of genotype. (d) Representative images of Iba1+ staining in the optic tract. Scale bar 100 µm. 
Mean ± SEM. Two-way ANOVA with Bonferroni adjustment for post hoc analysis. *p < 0.05, ** p < 0.01. 
n = 8–10 per group.

Figure 5.  Astrogliosis in response to hypoperfusion was less severe in GFAP-Nrf2 animals. (a) % Area 
of GFAP+ staining in the corpus callosum and (b) internal capsule was unchanged following cerebral 
hypoperfusion. (c) % Area of GFAP+ staining in the optic tract was significantly increased by cerebral 
hypoperfusion (F(1,32) = 38.87, p < 0.0001), with a significant effect of genotype (F(1,32) = 7.45, p = 0.01). (d) 
Representative images of GFAP+ staining in the optic tract. Scale bar 100 µm. Mean ± SEM. Two-way ANOVA 
with Bonferroni adjustment for post hoc analysis. *p < 0.05, **p < 0.01, ***p < 0.001. n = 8–10 per group.



www.nature.com/scientificreports/

6SCIENTIFIC Reports |  (2018) 8:12552  | DOI:10.1038/s41598-018-30675-4

Cerebral hypoperfusion induces pro-inflammatory gene expression in the optic tract and 
Nrf2-overexpression reduces the expression of complement component 4.  Alterations in gene 
expression were investigated in optic tract enriched samples since we had previously determined glial alterations 
in this region. Nrf2 expression in the optic tract was similar to that of the whole brain sample with an increase in 
GFAP-Nrf2 animals compared to wild type (F(1,32) = 116.4, p < 0.0001), and no further effect of hypoperfusion 
(F(1,32) = 0.47, p = 0.5) (Fig. 7a). To further investigate the involvement of the glutathione anti-oxidant system 
we measured Gclm expression in the optic tract enriched samples, but similarly found an effect of genotype 
only (F(1,31) = 49.83, p < 0.0001) and no effect of hypoperfusion (F(1,31) = 0.22, p = 0.65) (Fig. 7b). Collectively 
our results suggest that anti-oxidant gene alterations cannot explain the white matter protection conferred in 
hypoperfused GFAP-Nrf2 mice at this time. As an alternative, we explored the inflammatory milieu beyond the 
cellular responses as an alternative mechanism whereby Nrf2 may confer protection following hypoperfusion. We 
measured gene expression of complement component 4 and 1q (C4, C1q); initiatiors of the complement system 
which play an important role in the innate immune response43. In addition, we measured gene expression of two 
chemokines; Ccl3 (Mip-1α) and Ccl2 (Mcp-1), which have previously been shown to be upregulated at the protein 
level following severe hypoperfusion18.

Hypoperfusion significantly increased the expression of C4, C1q, and Ccl3 expression (F(1,32) = 8.07, p = 0.008, 
F(1,32) = 7.92, p = 0.008, F(1,29) = 8.68, p = 0.006; respectively) (Fig. 7c–e), whereas Ccl2 expression was reduced 
by hypoperfusion (F(1,31) = 6.09, p = 0.02). C4 expression was also significantly different in GFAP-Nrf2 ani-
mals (F(1,32) = 5.66, p = 0.02) and post hoc analysis found significant upregulation in wild type hypoperfused 
(p = 0.005) but not GFAP-Nrf2 hypoperfused animals (p = 0.39), and further that C4 expression was signifi-
cantly lower in GFAP-Nrf2 compared to wild type hypoperfused animals (p = 0.007). C1q expression followed 
a similar pattern, however there was no overall genotype effect (F(1,32) = 0.05, p = 0.83). Post hoc tests found 
a significant increase of C1q in hypoperfused wild types compared to shams (p = 0.02), but found no signif-
icant difference between GFAP-Nrf2 groups (p = 0.13). No effect of genotype was detected on Ccl3 and Ccl2 
expression (F(1,29) = 0.12, p = 0.73, F(1,31) = 1.62, p = 0.21; respectively), and post hoc analysis identified signifi-
cant differences between GFAP-Nrf2 groups (p = 0.03, p = 0.01; respectively) but not between wild type groups 
(p = 0.07, p = 0.35; respectively). Together the data indicates that cerebral hypoperfusion increases the expression 
of pro-inflammatory genes and that Nrf2-overexpression in astrocytes may protect white matter integrity and 
behavioural performance by selectively suppressing aspects of this inflammatory response.

Discussion
The present study demonstrates that astrocytic overexpression of Nrf2 exerts beneficial effects in a mouse model 
of chronic cerebral hypoperfusion and alleviates loss of white matter integrity and astrogliosis in the optic tract, 
in parallel with improved functional impairment. These protective effects appear to be mediated via repression of 
specific inflammatory genes.

In agreement with previous studies, we show that bilateral carotid artery stenosis (BCAS) induces mild, 
sustained cerebral hypoperfusion in wild type and Nrf2-overexpressing mice15. The extent of CBF reduction 
(~30–40% at 24 hours) and gradual amelioration over 6 weeks is comparable to previously published studies9,44,45.  
Notably, we found no difference in the extent of CBF reduction between wild type and GFAP-Nrf2 mice at 24 hours 
and 6 weeks post-BCAS. We may have expected differences between the groups as the absence of Nrf2 has pre-
viously been shown to have vascular related effects acting to impair angiogenic capacity in vitro46–48 and inhibit 
the upregulation of vascular endothelial growth factor (VEGF) in an in vivo model of venous hypertension49.  
We find increased VEGF expression and other angiogenic genes at 3 days following hypoperfusion12, and pro-
moting vascular remodelling is currently explored in models of hypoperfusion to establish its potential in the 
treatment of vascular dementia, as discussed in50. The current study found that astrocytic Nrf2-overexpression 
does not alter CBF responses following BCAS surgery, which therefore allowed us to investigate the effects of Nrf2 
without confounding flow-related differences.

Consistent with previous studies, we show that hypoperfusion induces impairments in spatial behaviour as 
measured by the radial arm maze in wild type mice following bilateral carotid artery stenosis11,13. Wild type 
and GFAP-Nrf2 sham mice were able to learn the task with increasing trial duration but the hypoperfused mice 

Figure 6.  Nrf2, Slc7a11 and Gclm relative gene expression is higher in GFAP-Nrf2 animals with no effect of 
hypoperfusion. (a) Nrf2, (b) Slc7a11 and (c) Gclm expression was significantly higher in GFAP-Nrf2 animals 
(F(1,32) = 298, p < 0.0001, F(1,32) = 74.05, p < 0.0001, F(1,32) = 737.5, p < 0.0001; respectively), but this was not 
altered by hypoperfusion. Gene expression was normalised to Gapdh and expressed relative to WT sham 
controls. Dashed line indicates average WT sham level. Mean ± SEM. Two-way ANOVA. n = 8–10 per group.
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in both cohorts were impaired compared to their controls. It was noted that the baseline learning pattern was 
different in the wild type and GFAP-Nrf2 mice. To the best of our knowledge no previously published studies 
using this transgenic mouse line have investigated cognitive changes, and we found no reports of altered cog-
nition at baseline in models of Nrf2-overexpression/activation. One explanation may be a disruption in redox 
balance. Reactive oxygen species (ROS), albeit detrimental in excess, are cell signalling molecules51 important 
for synaptic plasticity52,53, and it is possible that Nrf2-overexpression affects spatial behaviour by excessive ROS 
depletion. Despite this different baseline learning pattern, GFAP-Nrf2 sham mice successfully learned the task 

Figure 7.  Cerebral hypoperfusion induces pro-inflammatory gene expression in the optic tract and Nrf2-
overexpression reduces the expression of complement component 4. (a) Nrf2 and (b) Gclm expression in the 
optic tract was significantly higher in GFAP-Nrf2 animals (F(1,32) = 116.4, p < 0.0001, F(1,31) = 49.83, p < 0.0001 
respectively), but was not altered by hypoperfusion. (c) C4 expression in the optic tract was significantly 
increased by hypoperfusion (F(1,32) = 8.07, p = 0.008) with a significant effect of genotype (F(1,32) = 5.66, 
p = 0.02). (d) Hypoperfusion significantly increased C1q and (e) Ccl3 expression in the optic tract (F(1,32) = 7.92, 
p = 0.008, F(1,29) = 8.68, p = 0.006; respectively), but reduced the expression of Ccl2 (F(1,31) = 6.09, p = 0.02). 
There was no effect of genotype on the expression of C1q, Ccl3 or Ccl2. Gene expression was normalised to 
Gapdh or 18S and expressed relative to WT sham controls. Dashed line indicates average WT sham level. 
Mean ± SEM. Two-way ANOVA with Bonferroni adjustment for post hoc analysis. *p < 0.05, **p < 0.01, 
n = 8–10 per group.
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and the extent of impairment in spatial working memory in GFAP-Nrf2 hypoperfused mice was significantly less 
pronounced as compared to wild type mice. Thus the data supports our hypothesis that increased expression of 
Nrf2 may protect against hypoperfusion induced functional impairment.

Since the functional impairment was less pronounced in GFAP-Nrf2 mice this suggested that there may be 
less extensive pathological alterations. Previous studies, including ours, indicated that white matter is particularly 
vulnerable to cerebral hypoperfusion9–11,54. There is progressive axon-glial disruption,12,15, myelin disruption10,11,14 
and reduced corpus callosal volume following cerebral hypoperfusion55. The current study agrees with previous 
findings of hypoperfusion-induced loss of white matter integrity, however only in the optic tract where the extent 
of pathology is more severe than previously reported. The main difference between this study and former is the 
background strain on which the animals were bred; FVB/C57Bl/6J F1 compared to pure C57Bl/6J. There is a pos-
sibility that the optic tract in FVB/C57Bl/6J F1 mice is more vulnerable to hypoperfusion than C57Bl/6J mice due 
to genetic differences. It is also reported that the cerebral vasculature of different strains is differently organised 
and may therefore present with different spatial distribution and severity of hypoperfusion56. The heightened 
vulnerability of the optic tract may also account for the impaired behaviour in the radial arm maze in the hypop-
erfused mice. Pure FVB/N mice are known to be visually impaired from an early age due to a mutation causing 
retinal degeneration57. However, it is unlikely that the mice were visually impaired since our FVB/C57 first gener-
ation cross successfully learned the visual-dependent radial arm maze task and we observed no altered behaviour 
indicating visual impairment in any of the mice. However, we cannot discount that disruption of the optic tract 
in hypoperfused mice resulted in impaired visual acuity and impaired performance on the radial arm maze task.

Protection against white matter damage using Nrf2-activating compound DMF has been reported in a mouse 
model of experimental autoimmune encephalitis (EAE)30 and severe hypoperfusion18, both of which present with 
substantial white matter disruption. The subtle pathology observed in this study, compared to above and previ-
ously published 1 month hypoperfusion studies10–12,15, may have limited the ability to investigate the modulation 
of pathology with Nrf2-overexpression completely. Nonetheless, despite these confounds, there was an effect of 
GFAP-Nrf2 overexpression on the extent of white matter pathology in the optic tract and notably these mice also 
exhibited improved behavioural abilities. Thus the data indicate that astrocyte specific Nrf2-overexpression may 
alleviate behavioural impairments by preventing loss of white matter integrity in the optic tract.

We have shown previously in the hypoperfusion model that microgliosis precedes significant increases in reac-
tive astrocytes, and associations between microgliosis and impaired white matter function suggests that microglia 
are important contributors to the disease process17,18. Other groups have shown associations between astrogliosis 
and impaired white matter integrity58 and spatial working memory following cerebral hypoperfusion59, suggest-
edly through activation of the pro-inflammatory transcription factor NF-κB58 and reduced astroglial glutamate 
uptake59. In the current study, both micro- and astrogliosis were increased, however only in the optic tract of 
hypoperfused mice. The regional discrepancy between this study and previous may be attributed to the back-
ground strain, which as previously mentioned, may respond to hypoperfusion differently due to do variances in 
cerebrovascular arrangement56. Overexpression of Nrf2 reduced the extent of astrogliosis, but did not have an 
effect on microgliosis after hypoperfusion. This was somewhat unexpected as GFAP-Nrf2 mice have previously 
been shown to reduce both astro- and microgliosis in models of Parkinson’s Disease37,38, and Nrf2-deficiency 
induced robust microgliosis in a model of EAE29. There is conflicting evidence of the effect of Nrf2 on gliosis in 
other models, for example in the transgenic Alzheimer’s disease mouse model APP/PS1. One study found that 
only astrogliosis was reduced by Nrf260, and another found that both astro- and microgliosis were affected61, 
however both were associated with improved cognition. The differences may be accounted for by different means 
of Nrf2-activation; lentiviral-Nrf2 hippocampal injection60, oral administration of the Nrf2-activating compound 
methysticin61 or transgenic overexpression of Nrf2 in astrocytes37,38. Our contrasting results from previous studies 
in GFAP-Nrf2 mice may be explained by the different experimental models, and perhaps particularly by the com-
parably more subtle pathology. Importantly this study demonstrates that increased Nrf2 expression in astrocytes 
alone can have downstream beneficial effects on optic tract white matter integrity and behaviour. Together, these 
result further support the therapeutic potential of activating the Nrf2-pathway in cerebrovascular and neurode-
generative disease. A plethora of pharmacological compounds capable of activating the Nrf2-pathway are cur-
rently under investigation (reviewed in62,63).

To probe mechanisms by which Nrf2 overexpression may mediate protective effects, the levels of two 
glutathione-related genes; Slc7a11 (xCT) and Gclm were measured. The glutathione system forms an important 
part of cellular anti-oxidant capacity64 and has been shown previously to be upregulated by ischaemic precon-
ditioning in an Nrf2-dependent manner40, as well as in GFAP-Nrf2 mice in several models of neurodegenera-
tive disease35–37. We found an increase in both Slc7a11 and Gclm in GFAP-Nrf2 compared to wild type mice, 
however contrary to expectations there were no further increases in these genes with hypoperfusion. Given that 
hypoperfusion induces oxidative damage23,65, we expected increased anti-oxidant gene expression also in wild 
type hypoperfused animals indicative of Nrf2-pathway activation. Instead, anti-oxidant enzymes were determined 
to be increased only in GFAP-Nrf2 animals; in line with a study in a transgenic model of Parkinsons disease37. 
Our results suggest that hypoperfusion in wild type mice is insufficient to induce Nrf2 expression and activation 
directly, although the constitutively higher glutathione-related gene expression in the GFAP-Nrf2 animals may 
indicate a higher capacity of glutathione synthesis which may provide some protection to white matter follow-
ing hypoperfusion. However, we are unable to conclude this without direct measures of glutathione. A model of 
Alexander disease found glutathione-independent protective effects of GFAP-Nrf2 expression66, and a proteomic 
study of Nrf2-overexpressing astrocytes found important roles of detoxifying and anti-inflammatory enzymes cat-
alase, peroxiredoxin-6 and prostaglandin reductase 167 which could alternatively be implicated following hypop-
erfusion as opposed to increased glutathione synthesis. The inability to detect anti-oxidant gene expression may be 
explained by the lack of sensitivity of transcriptome measures in total brain homogenates but since we determined 
similar effects in optic-tract enriched samples, where prominent axon-glial alterations were detected, a lack of 
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gene alterations is unlikely due to sampling. An alternate explanation is that the protective effect seen in the study 
is mediated by modulation of the inflammatory environment rather than by anti-oxidant mechanisms. We inves-
tigated this by further qPCR analysis of optic tract-enriched samples of a panel of pro-inflammatory genes; C4 
and C1q; complement component 4 and 1q, and Ccl3 (MIP-1α) and Ccl2 (MCP-1); chemokine (C-C motif) ligand 
3 and 2. The complement system is an important part of the innate immune system, aiding early responses to 
infection or injury. It contributes to the adaptive immune system by interacting with antigen/antibody complexes 
eliciting a cascade of proteolytic events which ultimately boost phagocytosis and inflammation by the recruit-
ment of more inflammatory cells43. Ccl3/Ccl2 encode pro-inflammatory chemokines involved in the recruitment 
of microglia and astrocytes as well as peripheral monocyts and macrophages68,69. Increased expression of comple-
ment components as well as pro-inflammatory chemokines has long been recognised as an indication of chronic 
inflammation for example in Alzheimer’s disease70–72. Our previous work found increased expression of C4 and a 
putative receptor for C1q, in white matter at 72 hours post-hypoperfusion12 and in whole brain at 4 weeks follow-
ing mild hypoperfusion in wild type mice (unpublished obeservations) using microarray analysis, and increased 
protein levels of Ccl3 and Ccl2 following severe hypoperfusion18. Consistent with previous work, an increase in 
C4, C1q and Ccl3 expression following hypoperfusion was determined in wild type mice, indicative of ongoing 
inflammation. In Nrf2 overexpressing mice the extent of this increase in complement related genes was dampened. 
C1q as the initiating molecule in the classical complement pathway provides the downstream product for which 
C4 is a substrate73. Complement activation has been suggested to potentiate chronic inflammation and neurode-
generation74,75, and has been demonstrated to trigger neuroinflammation following traumatic brain injury76. Since 
direct inhibition of complement has been neuroprotective in mouse models of Alzheimer’s disease77 and cerebral 
ischaemia78,79, reduced complement activation may be a mechanism whereby Nrf2-overexpression is protective 
following hypoperfusion. A recently proposed hypothesis of neuroinflammation is that activated microglia release 
pro-inflammatory mediators (including complement C1q and C3) inducing astrocyte reactivity which in turn is 
detrimental to surrounding cells and tissues74. Our results in astrocyte-specific Nrf2-overexpressing animals find 
reduced astrogliosis but similar coverage of microglia as wild types, reflected also by comparable levels of expres-
sion of the chemokine Ccl3. If microglia are responsible for inducing astrogliosis, reduced astrogliosis in this study 
may result from less pro-inflammatory signalling from microglia in Nrf2-overexpressing animals. Recent evidence 
has demonstrated that Nrf2 not only induces the expression of cytoprotective genes, but is also able to suppress 
expression of pro-inflammatory genes directly80. Since the Nrf2-overexpression is selectively in astrocytes, another 
possibility is that these may also be more resistant to microglia-driven pro-inflammatory signalling as a result of 
increased Nrf2-signalling. In contrast to our previous work where Ccl2 protein was increased at 1 week after severe 
hypoperfusion,18, Ccl2 expression was determined to be downregulated with mild hypoperfusion at 6 weeks. The 
discrepancy may be due to differences in anatomical areas sampled which may display altered pro-inflammatory 
responses and/or the differing extent of hypoperfusion. Overall, the differential change in inflammatory gene 
expression likely reflects the spatial and temporal heterogeneity of inflammatory responses to hypoperfusion.

In conclusion, these results indicate that Nrf2 overexpression in astrocytes dampens aspects of 
hypoperfusion-induced inflammation in the optic tract, possibly by Nrf2-driven suppression of pro-inflammatory 
genes or by increased anti-inflammatory gene expression, ultimately reducing optic tract astrogliosis and loss of 
white matter integrity paralleled by improved functional outcome. This adds support to the use of Nrf2-activators 
as potential treatment for cerebrovascular-related inflammation and white-matter degeneration.

Methods
Animals.  GFAP-Nrf2.2 mice were imported from Prof. JA Johnson, University of Wisconsin, and were on an 
FVB background. These mice were developed as previously described in35 and Nrf2-overexpression in astrocytes 
was driven by a GFAP promoter. GFAP-Nrf2 mice were then crossed with wild type C57Bl/6J in-house. The first 
generation crosses including transgenic GFAP-Nrf2 and wild type littermates aged 4–5 months were utilised for 
the study (GFAP-Nrf2, FVB/C57Bl/6J F1). All mice used for the studies were on the same genetic background. 
Animals were initially group housed on a 12-hour light/dark cycle with ad libitum access to food and water, and 
assigned experimental groups by genotype then randomly assigned surgery; wild type sham (n = 8), wild type 
hypoperfused (n = 10), GFAP-Nrf2 sham (n = 10), GFAP-Nrf2 hypoperfused (n = 12). All mice were male. All 
experiments were conducted in accordance with the Animal (Scientific Procedures) Act 1986 and local ethical 
approval at the University of Edinburgh, and were performed under personal and project licences granted by 
the Home Office according to ARRIVE guidelines. Four animals tolerated surgery poorly and had to be culled. 
Final numbers were hence as follows; wild type sham (n = 8), wild type hypoperfused (n = 8), GFAP-Nrf2 sham 
(n = 10), GFAP-Nrf2 hypoperfused (n = 10). Experimenters were blind to genotype and surgery status of the mice 
throughout data collection and analysis.

Bilateral carotid artery stenosis.  Animals underwent bilateral carotid artery stenosis (BCAS) surgery 
as developed by9 under isoflurane anaesthesia using 0.18 mm internal diameter microcoils placed around both 
common carotid arteries. Sham surgery includes the entire procedure except for placement of the microcoils. All 
surgical procedures were conducted using aseptic techniques.

Laser speckle imaging.  Baseline measurements of cortical cerebral perfusion were acquired prior to, 
24 hours and 6 weeks post-BCAS surgery using a Moor FLPI2 laser speckle contrast imager (Moor Instruments, 
UK). The animal was anaesthetised using isoflurane and its’ head held in position using a stereotactic frame. Body 
temperature was regulated using a heated pad and the skull was exposed by a midline incision and reflection of 
the skin of the head. Water-based gel was evenly spread on the exposed skull and a 2-min perfusion recording was 
acquired. The skull was then sutured and local anaesthetic applied to reduce any pain or discomfort to the animal 
which was then recovered in a heat regulated box.
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8-arm radial arm maze to assess behavioural alterations.  Animals were singly housed and food 
restricted (maintained at 85% of initial body weight) one week prior to, and throughout the radial arm maze test, 
to promote motivation (12-hour light/dark cycle, ad libitum access to water). Following the last trial animals were 
again provided food ad libitum. The radial arm maze test was commenced one month after hypoperfusion.

The radial arm maze comprises a central platform (20 cm in diameter) surrounded by 8 arms (47 cm long by 
7 cm wide with 20 cm Plexiglas walls). Each arm has a 2-cm deep plastic well for placement of a sugar pellet and 
all arms can be isolated from the central platform by Plexiglas doors (remotely controlled using Any-Maze soft-
ware, Stoelting, UK). Large visual cues were placed on each of the four walls surrounding the maze, and a camera 
mounted on the ceiling was used for data acquisition (Any-Maze software, Stoelting, UK).

Pre-training consisted of one 5 min trial of free exploration with sugar pellets scattered at random, and one 
where each animal was allowed to walk down each arm from the central platform to retrieve sugar pellets from 
the plastic cups.

The training was carried out for 16 consecutive days (1 trial/day). Each arm was baited with a sugar pellet 
and the animal was placed in the central platform at the start of the trial. The animal was confined to the central 
platform for 5 seconds between each arm choice and the trial finished when the animal had retrieved all 8 pellets 
or when 25 minutes had elapsed. The number of revisiting errors (visits into unbaited arms) during each trial were 
recorded and analysed as a measure of behaviour.

Animals that explored less than 75% of the maze during 2 of the first 4 trials were excluded from analysis due 
to lack of motivation resulting in skewed learning profile. That resulted in the final numbers for the behavioural 
analysis; wild type sham (n = 5), wild type hypoperfused (n = 6) GFAP-Nrf2 sham (n = 10), GFAP-Nrf2 hypop-
erfused (n = 10).

Tissue processing.  Following the behavioural testing, animals were sacrificed under deep anaesthesia by 
transcardiac perfusion and hemi brains were snap frozen in liquid nitrogen or post-fixed in 4% paraformaldehyde 
for 24 hours and further processed for paraffin embedding. 6 µm thick coronal tissue sections were collected at 
−1.70 mm posterior of bregma according to81 using a rotary microtome (Leica Biosystems, Germany). The corre-
sponding level of the frozen hemi brain was used for RNA extraction and qPCR analysis. In some experiments the 
optic tract was identified and isolated to produce preparations enriched in optic tract for qPCR analysis.

Immunohistochemistry.  Standard laboratory procedures were utilised for immunostaining. Sections were 
deparaffinised and endogenous peroxidase quenched in 3% H2O2 in methanol and antigen retrieval was carried 
out when required (Iba1 and GFAP) in 10 mM citric acid buffer (pH 6.0) at 95 °C for 10 min. Sections were 
blocked with 10% normal serum and 0.5% bovine albumin serum before overnight primary antibody incubation 
at 4 °C. Biotinylated secondary antibodies were incubated for 1 hour at room temperature and then further ampli-
fied; 1 hour at room temperature in Vector ABC Elite Kit (Vector Labs, UK), before visualisation of peroxidase 
activity using 3,3′ diaminobenzidine tetrahydrochloride (DAB, Vector Labs, UK). Primary antibodies and con-
centration used were as follows; Iba1 rabbit polyclonal Menarini, cat no. MP-290, 1:1000; GFAP rat monoclonal 
Life Technologies, cat no. 13-0300, 1:1000; MAG mouse monoclonal Abcam, cat no. ab89780, 1:15,000. Images 
were acquired using an Olympus BX51 microscope (x20, Olympus, UK) and analysed using ImageJ software 
(v1.46, NIH, Bethesda, MD, USA). The density of MAG+, Iba1+ and GFAP+ immunostaining was quantified 
as percentage area. The background was subtracted and a global manual threshold applied. All stains were eval-
uated in the corpus callosum, the internal capsule and the optic tract which were manually delineated by the 
experimenter.

RNA extraction, reverse transcription-PCR and quantitative (q)-PCR.  RNA was extracted using 
the QIAGEN RNeasy Lipid Tissue Mini Kit according to manufacturer’s instruction. Briefly, <100 mg fresh fro-
zen tissue was homogenised in 1 ml QIAzol® lysis reagent using the Qiagen automated tissue lyser system and 
metal beads. The homogenate was transferred to fresh RNase/DNase free tubes and incubated for a couple of 
minutes at room temperature with 200 µl chloroform. The upper aqueous phase was collected following 15 min 
centrifugation at 4 °C (12,000 × g), and RNA was subsequently purified in mini spin columns and washed with 
a series of buffers before it was eluted in RNase free water. RNase-free DNase I (Thermo Scientific) was used to 
remove genomic DNA according to manufacturer’s instruction. cDNA was synthesised from 0.1–1 µg RNA using 
the Roche Transcriptor First Strand cDNA Synthesis Kit, according to manufacturer’s instruction. Briefly, RNA 
was added to reverse transcriptase (RT) reaction mix and cycled through 10 min 25 °C; 30 min 55 °C; 5 min 85 °C. 
NoRT control was run alongside and cDNA was diluted to the equivalent of 3 ng initial RNA per 15 µl qPCR 
reaction. The CFX96 Real-Time PCR Machine (Bio Rad) was used with the DyNAmo ColorFlash SYBR Green 
qPCR kit according to manufacturer’s instructions (Thermo Scientific). cDNA template was mixed with SYBR 
green master mix, water and forward and reverse primer (200 nM each final concentration). Samples were run 
in duplicates alongside no template and no RT negative controls. Primers were validated to confirm efficiency 
prior to use and sequences used are as follows: Gapdh-F: 5′-GGGTGTGAACCACGAGAAAT-3′, Gapdh-R:  
5′-CCTTCCACAATGCCAAAGTT-3′, 18S-F: 5′-CCCAGTAAGTGCGGGTCAT-3′, 18S-R: 5′-CCGAGGG 
CCTCACTAAACC-3′, Nrf2-F: 5′-CAGCTCAAGGGCACAGTGC-3′, Nrf2-R: 5′-GTGGCCCAAGTCTT 
GCTCC-3′, Slc7a11-F: 5′-ATACTCCAGAACACGGGCAG-3′ , Slc7a11-R: 5′-AGTTCCACCCAGA 
CTCGAAC-3′, Gclm-F: 5′-GCACAGCGAGGAGCTTC-3′, Gclm-R: 5′-GAGCATGCCATGTCAACTG-3′, C4-F:  
5′-ACAACAAGGGAGACCCCCAG-3′, C4-R: 5′-GCTCAGAGAGCCAGAGTCCTA-3′, C1q-F: 5′-CAAGGACTG 
AAGGGCGTGAA-3′, C1q-R: 5′-CAAGCGTCATTGGGTTCTGC-3′, Ccl3-F: 5′-GCCAGGTGTCATT 
TTCCTGACT-3′, Ccl3-R: 5′-TCAGGCATTCAGTTCCAGGTC-3′, Ccl2-F: 5′-TCCCAAAGAAGCTGTAGT 
TTTTGTC-3′, Ccl2-R: 5′-CCCATTCCTTCTTGGGGTCA-3′.
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The qPCR cycling programme was 10 min at 95 °C; 40 cycles of 30 s at 95 °C, 30 s at 65 °C (/30 s at 62.5 °C for 
C1q and Ccl2 experiment/40 s at 60 °C for Gclm experiment, 62.5 °C) with detection of fluorescence, 30 s at 72 °C; 
1 cycle (for dissociation curve) of 1 min at 95 °C and 30 s at 55 °C with a ramp up to 30 s at 95 °C with continuous 
detection of fluorescence The C4 experiment was run at 7 min at 95 °C initially and then 40 cycles of 10 s at 95 °C, 
30 s at 65 °C (/30 s at 60 °C for Ccl3 experiment) with detection of fluorescence followed by the dissociation curve. 
Data was normalised to Gapdh or 18S expression as reference and expressed as fold change of wild type sham 
expression.

Due to minute volumes of optic tract enriched RNA samples, more variation was present in these qPCR 
experiements. Criteria were therefore defined to exclude samples from qPCR analysis if housekeeper gene was 
detected >3Ct away from the mean or if gene of interest expression was 1.5 interquartile ranges less than the 
first quartile, or 1.5 interquartile ranges more than the third quartile for each group mean. The Ccl3 experiment 
therefore had three samples exluded, and Gclm and Ccl2 experiments one sample each excluded from analysis. 
Final numbers for these experiments were hence as follows; Ccl3 -wild type sham (n = 7), wild type hypoperfused 
(n = 7) GFAP-Nrf2 sham (n = 10), GFAP-Nrf2 hypoperfused (n = 9), Gclm - wild type sham (n = 7), wild type 
hypoperfused (n = 8) GFAP-Nrf2 sham (n = 10), GFAP-Nrf2 hypoperfused (n = 10) and Ccl2 - wild type sham 
(n = 8), wild type hypoperfused (n = 7) GFAP-Nrf2 sham (n = 10), GFAP-Nrf2 hypoperfused (n = 10). All other 
qPCR experiments included all samples.

Statistical analysis.  Statistical analysis was performed using SPSS (v22, IBM Corp.) or Graphpad Prism (v5, 
GraphPad Software Inc, La Jolla, USA). Data are presented as mean ± SEM. Normally distributed data was ana-
lysed by analysis of variance (ANOVA). Repeated measure ANOVA was used to analyse cerebral blood flow and 
revisiting errors over time/trials and 2-way ANOVA was performed to test for hypoperfusion/genotype effects of 
immunohistochemistry and qPCR data. Bonferroni adjustment was used for post hoc analysis. Significance was 
determined at p < 0.05.

Data availability.  The data sets generated during the current study are available from the corresponding 
authors upon reasonable request.
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