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Abstract: The potential for leakage of liquid electrolytes from magnesium (Mg) batteries represents a
large hurdle to future application. Despite this, there are no efficient sensing technologies to detect the
leakage of liquid electrolytes. Here, we developed a sensor using laccaic acid (L-AIEgen), a naturally
occurring aggregation-induced emission luminogen (AIEgens) isolated from the beetle Laccifer lacca.
L-AIEgen showed good selectivity and sensitivity for Mg2+, a universal component of electrolytes
in Mg batteries. Using L-AIEgen, we then produced a smart film (L-AIE-F) that was able to sense
leakage of electrolytes from Mg batteries. L-AIE-F showed a strong “turn-on” AIE-active fluorescence
at the leakage point of electrolyte from model Mg batteries. To the best of our knowledge, this is the
first time that AIE technology has been used to sense the leakage of electrolytes.

Keywords: laccaic acid; aggregation-induced emission; smart film; detect of Mg2+

1. Introduction

Magnesium (Mg) metal is an attractive anode material for rechargeable batteries,
because it has a low reduction potential (−2.37 V vs. normal hydrogen electrode), a higher
volumetric capacity than lithium and, unlike lithium, does not form dendrites during
plating-stripping cycles [1–5]. Although lithium-ion batteries (LIBs) are widely used in
portable electronic devices and electric vehicles due to the fact of their high energy density
and long service life, the rapid consumption of LIBs is not sustainable due to the limited
mineral resources of inorganic electrodes [6,7]. These issues limit the penetration of LIB
technology into the large-scale energy storage market [8]. Since Mg is also inexpensive,
highly abundant and environmentally benign, the Mg-metal rechargeable battery has long
been viewed as a safe and low-cost alternative to the popular lithium-ion battery [9–12].
One of main drawbacks with Mg-metal batteries is the possible leakage of electrolytes,
which are typically Grignard reagent, organoborate, borohydride, magnesium aluminate
chloride complex, or Mg(TFSI)2-based solutions [13]. The leakage of these liquid electrolytes
can cause many problems such as the corrosion of the metal casing of the battery [14],
heavy metal ions in the electrolyte can cause environmental pollution [15], and fire and
explosions can occur due to the leakage of flammable electrolytes [16]. Although there is
thus an urgent need to develop a sensitive method for detecting leakage of electrolytes
from Mg batteries, little attention has been paid to this problem. Fluorescence technologies
are a good option for sensing, since they can provide fast, sensitive, and accurate analyses
of guest species [17–24]. Fluorescent probes show a “turn-on” or “turn-off” fluorescence
response to characteristic signal compounds in the analyzed guests [25–35]. The Mg2+ ion
is one of the most abundant divalent ions, and they play a vital role in many chemical,
biological, and environmental processes. In recent years, a variety of fluorescent probe have
been developed by different research groups for Mg2+ detection. Suzuki et al. reported
two new Mg2+ fluorescence imaging probes, KMG-20-AM and KMG-27-AM, both of
which have a β-hydroxycarboxylate group and an aromatic amino group combined with a
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conjugated π-electron system, which will bring great changes in the fluorescence spectrum
after forming a Mg2+ complex [36]. Ceroni and coworkers synthesized a hexathiobenzene
molecule carrying six terpyridine units, and after adding of Mg2+ ions to the molecule
in THF solution, metal-bridged crosslinking supramolecular polymer aggregates were
formed, resulting in the observable turn-on phosphorescence [37]. Tang et al. report an
efficient and convenient procedure for detecting Mg2+ with an AIE-active fluorescence
probe in acetonitrile; this receptor showed a sensitive response to the addition of Mg2+ with
enhanced fluorescence aggregation [38]. Among these probes, those based on aggregation-
induced emission luminogen (AIEgens) are particularly attractive. AIE-active fluorescence
was first reported by Tang’s group in 2001 [39]. Unlike traditional fluorescent chromophores,
AIEgens become more emissive when aggregated [40–44]. Since AIEgen-based probes
remain highly emissive in the aggregated or solid state, and they are readily portable and
can conveniently be used as solids to sense guests, without the need for dissolution or
other sophisticated pretreatments [45]. Motivated by these properties, here, we developed
a novel naturally occurring AIEgen, laccaic acid (L-AIEgen), which can be extracted from
the beetle Laccifer lacca. Compared with synthetic AIEgens, naturally occurring AIEgens
are biocompatible, easily prepared and cheap [46–48]. The L-AIEgen showed a sensitive
“turn-on” fluorescence to Mg2+. As a result, L-AIEgen was mixed with polyvinyl alcohol
(PVA) to prepare composite films (L-AIE-F) for sensing leakage of electrolytes from Mg
batteries (Figure 1). L-AIE-F showed a sensitive “turn-on” fluorescence when exposed to
leakage of electrolytes (LX-144, 0.4 M (MgPhCl)2-AlCl3) from model Mg batteries and the
detection limit was low at ~3.26 mmol.

Figure 1. Schematic illustrations of the (a) preparation of L-AIE-F and (b) fluorescence sensing of
electrolyte leakage from Mg batteries.

2. Results and Discussion

The fluorescence of L-AIEgen in aqueous solution was very weak, but it intensified
upon the addition of ethanol (Figure 2a and Table 1). When the fraction of ethanol reached
99%, the fluorescence intensity increased approximately six-fold, indicating AIE-active
fluorescence of L-AIEgen. The absorption spectra of L-AIEgen were studied, and a red shift
in the absorption peak was observed when ethanol was added, indicating the formation of
J-aggregates (Figure S1) [48]. The addition of MgCl2 to an aqueous solution of L-AIEgen
also enhanced the AIE fluorescence in a concentration-dependent manner (Figure 2b) and
increased the fluorescence lifetime from 2.5 to 4.1 ns (Figure 2c). A wide variety of other
cations were used to assess the selectivity of L-AIEgen, and none of these appreciably
enhanced fluorescence (Figure S2). With the addition of Mg2+ ions into the L-AIEgen
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solution, coordination between Mg2+ and L-AIEgen occurred, resulting in fluorescence
enhancement and a UV-vis absorption red shift (Figure S3). It might be attributed to the
magnesium, which is preferred for forming a six-coordinated octahedral geometry by
using N and O as ligands [49], the coordination of lone pairs of electrons on the N or O
donor atoms to the Mg2+ sites, thereby stabilizing the excited state relative to the ground
state, leading to longer wavelength absorption [50]. Encouraged by this high selectivity for
Mg2+, we next evaluated the ability of L-AIEgen to sense LX-144, a typical Mg2+-containing
electrolyte used in Mg batteries. The addition of LX-144 to a solution of L-AIEgen increased
the fluorescence intensity in a concentration-dependent manner (Figure 2d). We compared
the increase in the fluorescence intensity of L-AIEgen when the concentration of LX-144 and
Mg2+ were the same, and we found that the fluorescence intensity of the LX-144 was not as
good as Mg2+. This may be because the Mg in LX-144 exists in the form of (MgPhCl)2-AlCl3
complex, and its contact reaction with L-AIEgen was not as good as Mg2+, resulting in
the fluorescence intensity of LX-144 being not as good as Mg2+ (Figure S4). In short, the
spectra of L-AIEgen in the presence of increasing concentrations of LX-144 were similar to
those in the presence of increasing concentrations of MgCl2, suggesting that fluorescence
enhancement of L-AIEgen can be attributed to its reaction with Mg2+. All of these results
demonstrate that L-AIEgen is, as expected, sensitive to LX-144, and that the sensitivity can
be attributed to its reaction with Mg2+.

Figure 2. (a) Changes in the fluorescence of L-AIEgen in aqueous solution upon the addition of
ethanol, with an excitation wavelength = 500 nm; (b) changes in the fluorescence of L-AIEgen
(10 ppm) in ethanol solution upon the addition of MgCl2, with an excitation wavelength = 520 nm;
(c) fluorescence lifetime of L-AIEgen in ethanol solution (10 ppm) in the presence and absence of
Mg2+ (10 ppm), with an excitation wavelength = 520 nm; (d) changes in the fluorescence of L-AIEgen
(10 ppm) in ethanol solution upon the addition of different volumes of LX-144 (0.4 m). PL Intensity
(a.u.) = photoluminescence intensity (arbitrary units), with an excitation wavelength = 520 nm.
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Table 1. Preparation of laccaic acid solutions with different ethanol fraction.

Ethanol Fraction (%) Solution A (mL) Water (mL) Ethanol (mL)

0 0.1 9.9 0
20 0.1 7.9 2
40 0.1 5.9 4
50 0.1 4.9 5
60 0.1 3.9 6
70 0.1 2.9 7
80 0.1 1.9 8
90 0.1 0.9 9
99 0.1 0 9.9

L-AIE-F was prepared by mixing L-AIEgen and PVA in aqueous solution, and its basic
physical performance as a film was investigated. The SEM images (Figure S5) showed that
laccaic acid was evenly distributed in the PVA matrix. Both laccaic acid and PVA molecules
are rich in hydroxyl groups, which results in their high polarity and good compatibility.
The appearance of L-AIE-F is shown in Figure S6. L-AIE-F can maintain a stable state in the
ambient state, and it is still very stable after being placed in the air for 80 h. Its fluorescence
spectrum is shown in Figure S7. Migration experiments using THF, and monitored with
UV-Vis spectroscopy, showed that no L-AIEgen had leached into the THF, even after
contact for 80 h (Figures 3a and S8). Meanwhile, we also performed migration experiments
using other solvents (i.e., water, ethanol, and ethyl ether) and monitored them using UV-
Vis spectroscopy. After 80 h of exposure, no L-AIEgen was leached into these solvents
(Figure S9), indicating that L-AIE-F was not only stable in THF, but also in water, ethanol,
and ethyl ether. L-AIEgen was thus stably fixed in the PVA matrix, likely because of the
hydrogen bonds between the hydroxyl groups of PVA and the phenolic groups of L-AIEgen.
The mechanical performance of L-AIE-F was investigated next. The tensile strength and
elongation at break were 44 MPa and 256%, respectively (Figures 3b and S10). The tensile
strength and elongation of PVA were 42 MPa and 269%, respectively (Figures 3b and S10),
showing that incorporation of L-AIEgen did not appreciably alter the mechanical strength
of the PVA matrix, and the increase in the tensile strength of L-AIE-F (42 MPa to 44 MPa)
indicated that there may be hydrogen bonds between the hydroxyl groups of PVA and
the phenolic groups of L-AIEgen, which enhanced the interaction between PVA and L-
AIEgen [51,52]. L-AIE-F was thus stable and had good mechanical performance. At the
same time, we also measured the transmittance of L-AIE-F (Figure S11). After adding
0.1% wt laccaic acid to PVA, L-AIE-F still had a good transmittance, and the transmittance
was still greater than 70% in the visible region (400–800 nm). The fluorescence of L-AIE-
F was then measured in the presence of electrolyte containing Mg2+. L-AIE-F showed
a concentration-dependent enhancement of fluorescence upon the addition of LX-144
(Figure 3c). Upon addition of Mg2+, the maximum fluorescence emission of L-AIE-F was at
~645 nm, representing a bathochromic shift compared with the fluorescence of L-AIEgen
and LX-144 in solution (Figure 3d). The red shift in fluorescence might be attributable to the
molecular J-type aggregation of L-AIEgen in the PVA matrix. Therefore, the UV absorption
spectra of L-AIEgen and L-AIE-F were measured, and it was found that when L-AIEgen was
in the PVA solute, the absorption peak showed an obvious red shift (Figure S12), from 488
to 523 nm, indicating the possible formation of J-aggregates [53]. Preliminary experiments
were next carried out to investigate the sensitivity of the fluorescence emission of L-AIE-F
to LX-144. The fluorescence emission of L-AIE-F showed marked enhancement upon the
addition of LX-144 (Figure 3c,d). The relationship fitted the linear equation: y = 0.9x + 25
(R = 0.99), where the fluorescence is 645 nm measured at a given Mg2+ concentration
(0–60 mm), and x is the concentration of Mg2+ added (Figure S13). The detection limit
(3 s/K, s = standard deviation of the blank signal, K = 0.9) was ~3.26 mmol These results
unambiguously confirmed that L-AIE-F was sensitive to LX-144, an electrolyte commonly
used in Mg batteries.
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Figure 3. (a) In situ measurement of the absorbance of THF (10 mL) in the presence of L-AIE-F
(2 × 2 cm) for different periods of time; (b) tensile strength of L-AIE-F and PVA; (c) images of L-AIE-F
under bright field (upper left), UV field (upper right), UV field in the presence of 0.05 M LX-144
(lower left), and UV field in the presence of 0.4 M LX-144 (lower right); (d) fluorescence emission of L-
AIE-F in the presence of different concentrations of LX-144, with an excitation wavelength = 365 nm.

Encouraged by the electrolyte-triggered enhancement of AIE, we next tested whether
L-AIE-F could be used for fluorescence sensing of electrolyte leakage. To mimic Mg
batteries, LX-144 electrolyte was placed in coin cell shells, with and without sealing rings,
(Figure 4a,d), and the shells were then coated with L-AIE-F (Figure 4b,e). The fluorescence
of L-AIE-F did not change noticeably when it was coated on the outside of coin cell shells
with sealing rings (Figure 4c), but a strong enhancement in the fluorescence was observed
when it was coated on the outside of shells without sealing rings (Figure 4f). These results
unequivocally confirm that L-AIE-F could be used to sense leakage of electrolytes from
Mg2+ batteries.
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Figure 4. (a) Schematic illustration of well-sealed Mg battery model; images of the Mg battery model
coated with L-AIE-F (b) in bright field and (c) upon UV irradiation (365 nm), scale bar = 0.5 cm;
(d) schematic illustration of a leaking Mg battery model; images of a leaking Mg battery model coated
with L-AIE-F (e) in bright field and (f) upon UV irradiation (365 nm), scale bar = 0.5 cm.

3. Materials and Methods
3.1. Materials

Laccaic acid was obtained from the Research Institute of Resources Insects, Chinese
Academy of Forestry, Beijing, China. Poly (vinyl alcohol) (PVA, average degree of poly-
merization = 1750 ± 50) was purchased from Sigma-Aldrich, Shanghai, China. All other
reagents and solvents were purchased from Merck Life Science Co., Ltd., Shanghai, China,
or Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China. LX-144 electrolyte
(0.4 M (MgPhCl)2-AlCl3 in THF) was purchased from Alibaba, Hangzhou, China.

3.2. Characterization

UV-Vis absorption spectra of L-AIEgen were recorded over the range 200–800 nm
using a TU-1901 ultraviolet-visible double-beam spectrophotometer (Persee General Instru-
ment Co., Ltd., Beijing, China). Photoluminescence (PL) was measured using a Fluo-max
4 spectrofluorometer (Horiba Scientific, Piscataway, NJ, USA). Tensile strength and elonga-
tion at break of L-AIE-F were measured using a UTM-2203 electromechanical universal
testing machine (Suns Technology Stock Co., Ltd., Shenzhen, China). All measurements
were performed at room temperature.

3.3. Preparation of L-AIEgen

Solution A: 10 mg laccaic acid was dissolved in 10.0 mL water to form 1 mg/mL
laccaic acid solution.

3.4. Preparation of L-AIE-F

PVA (2.5 g) was dissolved in deionized water (50 mL), the solution was stirred mag-
netically for 2 h at 90 ◦C, and lac dye (2.5 mg) was then added. After stirring for a further
10 min, the mixture was poured onto a glass plate and dried naturally to give L-AIE-F. The
films were dried at 30 ◦C and 50% humidity for 72 h before testing.
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3.5. Sensing Electrolyte Leakage

LX-144 was placed in coin cell shells, with and without a sealing ring, to model intact
and leaking Mg batteries. Then cut the L-AIE-F into a 2 × 2 cm square to completely coated
onto these Mg battery models. After shaking the button battery, the electrolyte LX-144 in
the Mg batteries without the sealing ring will leak. When the L-AIE-F film covering the
outside of the Mg batteries contact with the leaked LX-144, the fluorescence of the film will
increase accordingly. Electrolyte leakage was detected upon 365 nm UV irradiation.

4. Conclusions

In summary, we prepared a composite film (L-AIE-F) based on a naturally occurring
AIEgen (L-AIEgen). In the presence of Mg2+, L-AIE-F showed a sensitive enhancement of
AIE. This property allowed specific in situ detection of electrolyte leakage from a model
Mg battery, demonstrating that L-AIE-F can be used practically for this purpose. Since
L-AIE-F can be easily and cheaply prepared, it can be produced on a large scale and used
commercially. In the future, L-AIE-F might be processed as a smart coating for Mg batteries,
which can sense the leakage of electrolytes in situ. Additionally, following our strategy,
AIEgen-based probes for other cations, such as Li+ and Fe3+ [54–57], might also be prepared
as smart coatings to sense electrolyte leakage from Li or Fe batteries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms231810440/s1.
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