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Abstract: Prothrombin-related thrombophilia is a genetic disorder produced by a substitution of a
single DNA base pair, replacing guanine with adenine, and is detected mainly by polymerase chain
reaction (PCR). A suitable alternative that could detect the single point mutation without requiring
sample amplification is the surface plasmon resonance (SPR) technique. SPR biosensors are of great
interest: they offer a platform to monitor biomolecular interactions, are highly selective, and enable
rapid analysis in real time. Oligonucleotide-based SPR biosensors can be used to differentiate
complementary sequences from partially complementary or noncomplementary strands. In this work,
a glass chip covered with an ultrathin (50 nm) gold film was modified with oligonucleotide strands
complementary to the mutated or normal (nonmutated) DNA responsible for prothrombin-related
thrombophilia, forming two detection platforms called mutated thrombophilia (MT) biosensor and
normal thrombophilia (NT) biosensor. The results show that the hybridization response is obtained
in 30 min, label free and with high reproducibility. The sensitivity obtained in both systems was
approximately 4 ∆µRIU/nM. The dissociation constant and limits of detection calculated were 12.2 nM
and 20 pM (3 fmol), respectively, for the MT biosensor, and 8.5 nM and 30 pM (4.5 fmol) for the
NT biosensor. The two biosensors selectively recognize their complementary strand (mutated or
normal) in buffer solution. In addition, each platform can be reused up to 24 times when the
surface is regenerated with HCl. This work contributes to the design of the first SPR biosensor for
the detection of prothrombin-related thrombophilia based on oligonucleotides with single point
mutations, label-free and without the need to apply an amplification method.
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1. Introduction

Thrombophilia corresponds to an abnormality in coagulation or in the fibrinolytic system that
increases the risk of coagulation leading to a thrombotic event. Deep thrombosis has an incidence of
0.1% (1 in 1000 people), and its frequency increases with advancing age [1]. Thrombophilia can be due
to genetic or acquired factors, and the second most frequent factor corresponds to the mutation of the
prothrombin gene G202210A, called prothrombin-related thrombophilia (PRT). This mutation is found
in 5% to 10% of patients presenting with venous thrombosis and in approximately 15% of patients
being investigated for thrombophilia [2]. Although controversial, it has also been associated with an
increased risk of pregnancy loss, preeclampsia, intrauterine growth restriction, and placental abruption,
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among other complications [3,4]. PRT is produced by a substitution of a single base pair, replacing
guanine with adenine, at the position of nucleotide 20,210 on chromosome 11p-q12, increasing the
level of prothrombin (precursor of thrombin) and consequently the risk of venous thrombosis or
pulmonary embolism [5,6]. Considering that PRT produces high levels of circulating prothrombin in
the plasma, there is no phenotypic detection test, and detection is performed by genotyping by PCR
(polymerase chain reaction) [7] or other assays [8–10]. A suitable alternative that does not require
sample amplification and that has the potential to detect the mutation in a single base pair is the surface
plasmon resonance (SPR) technique.

SPR is an optical technique based on the formation of an evanescent wave at the interface between
a dielectric medium, typically either liquid or air, on a free-electron-rich metal, such as Au or Ag,
and is highly sensitive to small changes in refractive index, measuring changes in the refractive index
associated with recognition between the analyte and the immobilized receptor. SPR has stood out
as a tool for the analysis of biomolecular interactions and is currently used in various areas, such as
chemistry, biology, medicine, pharmacology, and environmental research [11–16]. Works related to the
detection of prothrombin by SPR have been reported when prothrombin is part of the coagulation
cascade [17]. SPR has also been used for the real-time detection of blood coagulation and platelet
adhesion [18,19] and to investigate the coagulation of blood plasma in real time as a function of the
concentrations of thromboplastin and heparin [20]. However, no studies have been performed on
detecting thrombophilia detection by detecting the mutation of the prothrombin gene.

Detection using SPR seeks to improve sensitivity and selectivity compared to other techniques
already reported, without false positives, and with reusable biosensors [21]. Additionally, if properly
designed, SPR-based biosensors are highly selective, providing an analysis in brief stages,
without extensive sample preparation protocols, label-free and in real time [22]. Labeling-based
methods are often used to look for interactions between a target molecule and a bioreceptor, such as
DNA probes, attached on a sensor surface. The target molecule is labeled before the interaction or
in the step after the recognition event on the surface [23,24], as labeling is a noneconomical process
that requires considerable time and can interrupt binding interactions, mainly with proteins [25].
Notably, the multiple types of interactions of nucleic acid chains have been used for the construction
of SPR biosensors [13,26–28], among others [29–31]. Oligonucleotides generate highly specific
bonds with proteins, other strands, or ions, through hydrogen bonds, base-stacking, and van der
Waals or electrostatic interactions, depending on the sequence that makes up the structure [32–36].
Thus, through oligonucleotide hybridization, it is possible to differentiate complementary sequences
from those with changes of one or more nitrogenous bases in their structure using SPR [13,37,38].
In addition, hybridization can be achieved and improved by adjusting variables such as concentration,
temperature, buffer composition, and ionic strength, which in turn allows specificity against partially
complementary or noncomplementary strands. In this sense, controlling the ionic strength of the buffer
has a great influence on hybridization without leading to an excessive change in the refractive index,
unlike hybridization suppressors [37].

In this work, a glass chip covered with an ultrathin (50 nm) gold film was modified with
oligonucleotide strands and used as an SPR biosensor. This study aimed to build a specific biosensor
for the detection of mutated genes responsible for PRT. Thus, using the corresponding complementary
strand, we were able to detect both types of genes: mutated and normal. The constructed biosensors
were selective, producing a clearly distinct response for the hybridization of complementary and
noncomplementary strands in buffer solutions. Real-time, label-free detection was achieved with a
simple protocol to prepare the biosensor.
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2. Materials and Methods

2.1. Instrumentation

Biosensing surface construction and hybridization assays were performed using an SPR instrument,
the Reichert Dual channel SPR 7500DC model (USA), with the autosampler system included. The data
acquisition was performed using Integrated SPR Autolink from Reichert Technologies. All data were
processed using the TraceDrawer 1.6.1 and OriginPro 8.0 software.

2.2. Materials and Reagents

For the construction of the biosensors, the following reagents and solvents were used: a glass
chip covered with an ultrathin (50 nm) gold film and immersion oil (refraction index 1.5150) provided
by Reichert Technologies (USA), 4-mercaptobenzoic acid (4MBA, 99%, 154.19 g/mol), ethanol p.a.
(99.8%), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, ≥98%, 191.70 g/mol),
N-hydroxysuccinimide (NHS, 98%, 115.09 g/mol), and ethanolamine (≥98%, 61.08 g/mol), provided by
Merck Group (Germany), and nitrogen gas provided by Linde Group (Chile).

For the running solutions, the following materials were used: ultrapure water (18 MWcm−1)
obtained from a Milli-Q water system (Synergy UV equipment), sodium chloride (NaCl, 58.44 g/mol),
tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl, molecular biology grade, 157.6 g/mol),
ethylenediaminetetraacetic acid (EDTA, disodium salt dihydrate, molecular biology grade, 372.2 g/mol),
and polyoxyethylene (20) sorbitan monolaurate solution (Tween® 20 for synthesis), and sodium
hydroxide (NaOH, 40.00 g/mol) provided by Merck Group (Germany). All solutions were filtered and
degassed before use.

The oligonucleotides, aminated mutated thrombophilia (MT-A), complementary mutated
thrombophilia (MT-C), aminated normal thrombophilia (NT-A), and complementary normal
thrombophilia (NT-C), were provided by Integrated DNA Technologies (USA). The oligonucleotide
samples were dissolved in Tris-EDTA buffer before use. Table 1 shows the nomenclature and sequences
of the oligonucleotides used. Table 2 shows the molar mass of each oligonucleotide, in addition to the
number of bases, GC (Guanine-Cytosine) content, melting temperature, and strongest folding.

Table 1. Sequences of oligonucleotides used.

Oligonucleotide Type Code Sequence

Mutated Probe MT-A 5’-/NH2(CH2)6/CAT TGA GGC TTG CTG AG-3’
Mutated Target MT-C 5’-CTC AGC AAG CCT CAA TG-3’
Normal Probe NT-A 5’-/NH2(CH2)6/CAT TGA GGC TCG CTG AG-3’
Normal Target NT-C 5’-CTC AGC GAG CCT CAA TG-3’

Table 2. Data on the oligonucleotides used.

Oligonucleotide
Code

Molecular
Weight DNA Bases GC Content Tm (50 mM

NaCl)
Strongest

Folding Tm

MT-A 5340.4 g/mol 17 52.9% 50.8 ◦C 23.2 ◦C
MT-C 5139.4 g/mol 17 52.9% 50.8 ◦C −16.4 ◦C
NT-A 5405.6 g/mol 17 58.8% 53.2 ◦C 24.2 ◦C
NT-C 5155.4 g/mol 17 58.8% 53.2 ◦C 10.6 ◦C

2.3. Preparation of the Biosensing Surface

Two biosensors were constructed. In the first biosensor, called the MT biosensor, MT-A strands
were immobilized to recognize MT-C strands in order to enable the detection of PRT. In the second,
called the NT biosensor, NT-A strands were immobilized to recognize NT-C strands in order to detect
the normal conditions for the coagulation process.
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The MT and NT biosensors were constructed using the same protocols and conditions.
First, the gold chip surface was modified with a self-assembled monolayer of 4MBA via drop
coating outside the instrument: 150 µL of the solution (1.0 mM in ethanol) was placed in a closed petri
dish for 30 min at room temperature. Then, the gold chip was washed with ethanol and dried using
a stream of nitrogen gas. The 4MBA/gold chip was placed on a drop of immersion oil (7 µL) in the
SPR instrument.

The SPR setup has two channels: the working and reference channels. In both channels,
the carboxyl groups were activated with an EDC/NHS reaction. Aqueous solutions of EDC (0.4 M)
and NHS (0.1 M) were prepared and mixed (in equal volumes) immediately before the experiments.
Then, 500 µL of the EDC/NHS mixture (final concentration of 0.2 M/0.05 M) was injected twice
at a 20 µL/min flow rate for 1500 s and the working channel was modified with the respective
amino-oligonucleotides (MT-A or NT-A) using 250 µL (1.4 µM in Tris-EDTA) at a 5 µL/min flow rate
for 3000 s, while the reference channel remained closed. Finally, 750 µL of ethanolamine (0.1 M to pH
8.0) was used three times at a 5 µL/min flow rate for 9000 s to block the free sites in both channels
(more details are provided in the Supplementary Materials, Sections 1 and 2). Figure 1 shows a scheme
of the constructed biosensors.
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Figure 1. Schematic representation of the biosensor constructed, showing the working channel
(left side), composed of a monolayer of 4-mercaptobenzoic acid, aminated thrombophilia strands,
and ethanolamine, and the reference channel (right side), composed of 4-mercaptobenzoic acid and
ethanolamine, and the interactions with complementary thrombophilia strands.

2.4. Hybridization Assays

Complementary strands (MT-C or NT-C) were injected at different concentrations for 30 min at a
flow rate of 5.0 µL/min (150 µL of each sample) using Tris-EDTA buffer as the run solution. The buffer
was prepared with a mixture of Tris (10 mM), EDTA-HCl (1.0 mM), NaCl (0.3 M), and Tween® 20
(0.25% v/v). After each hybridization assay, the biosensor surface was regenerated using HCl (10 mM)
for 10 min at a flow rate of 20 µL/min (more details are provided in the Supplementary Materials,
Sections 3 and 4).

2.5. Data Processing Obtained by SPR

The association curves were corrected by double reference, discounting the response obtained
from the reference channel and of an injected buffer solution.

The binding sites (Equation (1)) were obtained using the response of MT-A or NT-A in the
immobilization stage, the surface density (Equation (2)), and its molecular weight. Complementary
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strand hybridization response graphs on each biosensor were fitted to a Langmuir isotherm model with
one binding site (Equation (3)), obtaining KD and the maximum response, while Ka corresponds to the
inverse of KD (Equation (4)). A linear adjustment was performed for the graphs of responses versus
complementary strand concentration in each biosensor (Equation (5)). Sensitivity was obtained from the
slope of the curve. In addition, the theoretical maximum response and ligand activity were calculated
using Equations (6) and (7), respectively (more details are provided in the Supplementary Materials).

The limits of detection (LOD) and quantification (LOQ) were calculated experimentally for samples
with final volumes of 150 µL, using as references the noise signal and the response generated by the
buffer injection as a running solution.

Binding site =
Sur f ace density
Mwaminated strand

·10, 000
(
mol ·cm−2

)
(1)

Sur f ace density =
Raminated strand

1, 000, 000

(
g ·m−2

)
(2)

y =
Rmax·x
KD + x

(3)

Ka =
1

KD
(M−1) (4)

y = Intercept + Slope·x (5)
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strand

·R aminated
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·Valencystrand

Mw aminated
strand

(RU) (6)
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Rmax

SPR response aminated
strand

·

Mw aminated
strand

Mw complementary
strand

·100 (7)

3. Results and Discussion

3.1. SPR Biosensor Construction

To improve the response of the MT and NT biosensors, the concentrations of the immobilized
species on the surface of the gold chips, the flow rate, and the components in the run solution were
evaluated (see details in Section 1, in the Supplementary Materials). A direct immobilization of the
strands, by sorption or with thiol groups bound directly in its structure, can cause a structural change
and blocking of the binding sites. In addition, a weak interaction with the surface generates an unstable
and nonreproducible detection of the hybridization process. The recommended general strategy is
to immobilize the probe by covalent bonds and a spacer molecule, which can be achieved using a
self-assembled monolayer and EDC/NHS reaction [39].

The construction of each biosensor began by forming a self-assembled monolayer of 4MBA on the
gold surface of the chip outside the equipment via drop coating, as has been previously reported [40,41].
Thus, the COOH groups of 4MBA remained exposed on the surface of the chip. Then, the chip was
placed in the SPR equipment for the following modification steps.

Figure 2 shows the activation, immobilization, and blocking process, for the MT and NT biosensors.
Activation of the COOH groups of 4MBA was performed using the EDC/NHS reaction, injected into
both channels (working and reference), and the number of modified sites increased after a second
injection, with an average change of 757 ± 20 RU (n = 10).
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Figure 2. Sensorgrams of the construction process of the mutated thrombophilia (MT) biosensor (A) and
normal thrombophilia (NT) biosensor (B). Sequentially, the observed responses correspond to (1) the
activation stage using EDC/NHS; (2) the immobilization stage of the aminated thrombophilia strands
(animated mutated thrombophilia (MT-A) and animated normal thrombophilia (NT-A), respectively);
and finally (3) the blocking stage using ethanolamine.

Subsequently, the reference channel was closed and a 1.4 µM solution of the amino-oligonucleotide
(MT-A or NT-A) was injected into the working channel. The average change was 137 RU ± 10 (n = 10)
for the MT biosensor, with a binding site area of 2.56 × 10−12

± 1.87 × 10−13 mol/cm2. For the NT
biosensor, the average change was 122 RU ± 11 (n = 10) with a binding site area of 2.26 × 10−12

± 2.03
× 10−13 mol/cm2 (more details of calculations and values obtained in Section 2, in the Supplementary
Materials). This demonstrates an efficient and nonsaturated immobilization of oligonucleotides on each
surface, which could produce a higher degree of hybridization of its complementary strands [26,37,42].

Finally, ethanolamine was injected into both channels to block the still activated sites of the modified
chip, and the injection was performed three times continuously to minimize nonspecific interactions.

3.2. Hybridization and Regeneration Processes

For the hybridization process, a running solution of Tris-EDTA buffer with Tween® 20 at pH 7.5
was used. Additionally, NaCl was incorporated in the running solution to obtain conditions commonly
used for the detection of oligonucleotides in SPR biosensors [26,43]. The increase in the ionic strength
to 0.3 M was demonstrated to allow an increase in the hybridization response between complementary
strands due to the shielding of negative charges of phosphate groups of the oligonucleotides. These
conditions favor mainly hydrogen bonding interactions between the nucleic acids of the complementary
bases [44,45].

Figure 3 shows the response of the hybridization process obtained using a 40 nM solution of
complementary strands on (A) MT and (B) NT biosensors. The stages of association (1), equilibrium (2),
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dissociation (3), and regeneration (4) of each biosensor are highlighted and clearly identified.
The association corresponds to the recognition stage and interaction, which increase with the injection
time, reaching a state of equilibrium in which the association and dissociation of the strands occur at
the same speed. The dissociation stage corresponds to the period in which only the buffer solution
was injected, removing strands that were weakly retained by each biosensor and reaching a new base
state. In our case, both association curves are exponential but differ in the rate of association and
dissociation. In general, the MT-C injection shows an association curve that reaches equilibrium at
300 s, whereas the NT-C association takes 1200 s.
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the respective biosensors, highlighting the different stages during the hybridization process of
complementary strands. (1) Association, (2) equilibrium, (3) dissociation, and (4) regeneration.

For the complete regeneration of the surface of each biosensor, a solution of HCl was added,
according to that reported by Altintas et al., to dehybridize complementary strands of oligonucleotides,
although in our case, the concentration was 10 times lower [43]. Each sensorgram returns to the
baseline in an average of 600 s after this time probe, i.e., the immobilized amino-oligonucleotide is
ready to start a new hybridization process through a new injection of complementary strands using
the same biosensor. This process was repeated up to 24 times, and 95% of the initial response was
maintained (see assays in Section 3, in the Supplementary Materials).

3.3. Analytical Performance of MT and NT Biosensors

Multiple injections of different concentrations of complementary strands were made into the MT
and NT biosensors to study the variations in the refractive index. Each response in the association stage
was obtained by applying a double correction, the response generated by nonspecific interactions in
the reference channels, which had no immobilized amino-oligonucleotides (blank 1), and the response
generated by the interaction of the buffer solution with the biosensors (blank 2). Therefore, the final
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variation obtained in each curve (n = 4) corresponds to a relationship between the interactions of the
injected strands MT-C or NT-C and their respective immobilized strands of MT-A or NT-A (see Section 4,
in the Supplementary Materials).

Figure 4 shows the response graphs of the MT biosensor. Figure 4A corresponds to the association
curves obtained at different concentrations of MT-C from 0.5 to 100 nM at 25 ◦C and pH 7.5. Figure 4B
corresponds to the plot of concentration versus response (n = 4), with increasing concentrations of
MT-C; the response increases gradually and consistently to a Langmuir adsorption isotherm with
one binding site [46,47]. A linear range was determined between 1.0 and 10 nM, with a correlation
coefficient R2 of 0.99 (Figure 4C). The sensitivity of the system determined from the slope of the
calibration curve was 4.0 ∆µRIU/nM (±0.1) (see calculations and values obtained in Table S3, in the
Supplementary Materials).
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Figure 5 shows the response graphs of the NT biosensor. The association curves obtained at 25 ◦C
and pH 7.5 ranged from 1.0 to 100 nM (Figure 5A). The concentration versus response obtained was
graphed (n = 4) (Figure 5B) and is also consistent with a Langmuir adsorption isotherm with one
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The mathematical adjustments described in Section 2.5 were applied only to study the hybridization
between complementary strands, that is, the MT biosensor with MT-C and the NT biosensor with NT-C.
The dissociation constant (KD) obtained was 12.2 nM (±1.8) for the MT biosensor and 8.5 nM (±1.2) for
the NT biosensor. The data show that both biosensors have similar affinities for their complementary
strands, and their values are consistent with those reported in the literature [47,48]. Additionally,
the binding capacity between complementary oligonucleotides can be evaluated through the ligand
activity. The activity of the MT biosensor was 84% (±6) and that of the NT biosensor was 80% (±4),
which is explained by the maximum responses observed during the respective hybridization processes,
which are slightly less than the theoretical maximum responses calculated. These results were expected,
considering that factors such as the loads and disposition of the strands, in addition to the time and
speed of binding, among other factors, prevent the immobilized oligonucleotides from being 100%
active. It is necessary to highlight that the maximum response and the activity of each biosensor do not
vary significantly between tests, confirming that the surface can be reused up to 24 times as previously
discussed (see calculations and values obtained in Table S5, in the Supplementary Materials).

For the detection of MT-C in the MT biosensor, the LOD was 20 pM (3.0 fmol) and the LOQ was
70 pM (10.5 fmol). For the detection of NT-C in the NT biosensor, the LOD was 30 pM (4.5 fmol)
and the LOQ was 110 pM (16.5 fmol). The LOD and LOQ reported in this investigation are of the
same orders of magnitude or lower than those in studies of the detection of other analytes using SPR
technology through the hybridization of oligonucleotides of complementary sequences of similar size
and that have not incorporated nanomaterials to improve the response obtained [11,43,49]. In the
specific field of PRT detection, there is no method equivalent to the one proposed in this investigation.
PCR-based methods, which apply protocols to amplify the concentration of the analyte, were excluded.
Cooper and Rezender argue that assays that are not based on PCR have the disadvantage of requiring
relatively high concentrations, >10 ng/µL, of the sequence in the sample [50]. In our case, the developed
biosensors detected concentrations lower than 10 ng/µL of the mutated strand in PRT disease.

3.4. Interchip Reproducibility Study

Three MT and NT biosensors were constructed to demonstrate the reproducibility of the detection
of complementary strands. For this purpose, MT-C or NT-C strands at a 10 nM concentration were
injected into each biosensor five times, and the average responses were obtained at equilibrium,
which ranged from 240 to 780 s and 900 to 1800 s, respectively. Figure 6 shows the sensorgrams of
MT (A) and NT (B) biosensors, which are reproducible in their association profiles and maximum
responses obtained.
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3.5. Selectivity Assays of Complementary versus Noncomplementary Strands

To evaluate the specificity of hybridization of MT and NT biosensors, assays were carried out with
the complementary strands and the noncomplementary counterpart, i.e., MT-C and NT-C, with both
biosensors. Figure 7 shows the graphs of responses obtained for both biosensors at concentrations of
10, 40, and 100 nM MT-C and NT-C.
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The complementarity between the amino-oligonucleotide (MT-A and NT-A) immobilized in
each biosensor with its respective complementary strands (MT-C and NT-C) is given by interactions
between their nucleobases, which are held together mainly by hydrogen bonding. This bonding is
highly efficient between adenine and thymine and between guanine and cytosine. The mutation
present in the thrombophilia strands corresponds to a change in nucleobases from guanine to adenine.
The GC content varies from 58.8% for NT-C to 52.9% for MT-C. These differences cause a decrease in
interactions and even changes in secondary structure, which was also revealed experimentally with
the calculated KD. Therefore, the change in one base pair hinders hybridization between normal and
mutated thrombophilia strands because they are not exactly complementary.

In the MT biosensor, with MT-A strands immobilized, injections of the same concentration of
both sequences (MT-C and NT-C) showed a clear difference between SPR responses. The responses in
association with MT-C at the three concentrations studied were 118 ± 4, 79 ±1 and 52 ± 2 ∆µRIU, while
all NT-C injections were found at the noise level (Figure 7A). This demonstrates that the hybridization
of the mutated strand MT-A is highly selective for MT-C, while NT-C hybridization is null.

For the NT biosensor with NT-A immobilized, larger numbers of interactions with both strands are
expected due to the higher percentage of GC content. In the assays at 10, 40, and 100 nM, the injections
of NT-C showed consistently higher responses than MT-C injections (Figure 7B). Specifically, at a
concentration of 100 nM, the interaction between MT-C and the NT biosensor showed a response of
10 ± 2 ∆µRIU, which is 10 times lower than the NT-C response (100 ± 3 ∆µRIU). Even at the highest
concentration studied, the NT biosensor allows selective detection between complementary (NT-C)
and noncomplementary (MT-C) strands.

4. Conclusions

The results of this study show that the MT biosensor generated can be used to detect the mutated
gene of PRT (one pair base of difference with the normal one) with high selectivity. Analogously, the NT
biosensor is highly selective for the detection of NT-C strands against MT-C strands, and can be used
as a control. The responses were obtained in real time in a process that takes 30 min for label-free
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strand detection and without requiring an amplification method. In addition, both biosensors are
reusable for the injection of new samples when the surface is regenerated with HCl.

To our knowledge, this is the first work that focuses on the detection of prothrombin-related
thrombophilia by analyzing the mutated and non-mutated section of DNA and that does not require
amplification of the sample. In this sense, it is a significant advance in the detection of single point
mutations using a simple SPR protocol, with high selectivity and with limits of detection and sensitivity
in the same range as those reported by other methods. New studies must be carried out to determine
selectivity between mutated and non-mutated strands in biologically relevant media and real samples.

The incorporation of graphene-derived materials on the sensing surface can improve the sensitivity
and the detection limits, allowing them to reach concentrations between fM to aM. This would avoid the
extraction of cellular DNA and the exhaustive treatments of the sample such as accumulation or labeling,
since the analysis could be carried out on ultra-low concentration samples such as circulating cell-free
DNA extracted from saliva or urine, whose method of obtaining is rapid and minimally invasive.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6240/s1,
Figure S1: Sensorgram of injections of the MT-C strands (40 nM) into the working channel of the MT biosensor,
Figure S2: Sensorgram of injections of the TN-C strands (40 nM) into the working channel of the NT biosensor,
Table S1: Responses, surface density and binding sites calculated for the immobilization of MT-A and NT-A
on MT and NT biosensors, respectively, Table S2: Responses obtained for the hybridization process between
complementary strands at different concentrations, Table S3: Equations and values of the mathematical adjustments
applied in the response versus concentration graph of MT-C injected into the MT biosensor, Table S4: Equations
and values of the mathematical adjustments applied in the response versus concentration graph of NT-C injected
into the NT biosensor, Table S5: Maximum responses, constants and ligand activity obtained for the MT and
NT biosensors.
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