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Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes.
Current efforts are focused on identifying the optimal pig islet source and overcoming the
immunological barrier. The optimal age of the pig donors remains controversial since both
adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade
collagenase has significantly improved the quantity and quality of adult islets, but neonatal
islets can be isolated at a much lower cost. Certain culture media and coculture with
mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic
modification in pigs affords a promising strategy to prevent rejection. Deletion of
expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will
certainly be beneficial in pig organ transplantation in humans, but this is not yet proven
in islet transplantation, though the challenge of the ‘4th xenoantigen’ may prove
problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation
pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have
already been applied in phase II clinical trials of islet allotransplantation. Fc region-modified
anti-CD154mAbs successfully prevent the thrombotic complications reported previously.
In this review, we discuss (I) the optimal age of the islet-source pig, (ii) progress in genetic
modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation,
and (iv) the reduction in the instant blood-mediated inflammatory reaction.

Keywords: immunosuppression, islets, nonhuman primate, pig, genetically-engineered, type 1 diabetes, islet
transplantation, xenotransplantation
Abbreviations: CMAH, cytidine monophospho-N-acetylneuraminic acid hydroxylase; Gal, galactose-a1,3-galactose; GTKO,
1,3-galactosyltransferase gene-knockout; IBMIR, instant blood-mediated inflammatory reaction; mAbs, monoclonal
antibodies; Neu5Gc, N-glycolylneuraminic acid; NHP, nonhuman primate; NICC, neonatal islet cell clusters; PD-L1,
programmed cell death ligand 1.
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease
characterized by pancreatic islet cell destruction by CD4+ and
CD8+ T cells and autoantibodies, resulting in insulin deficiency
and hyperglycemia (1). Conventional treatment of T1D includes
exogenous insulin therapy, which reduces, but may not prevent,
the development of the long-term complications of
hyperglycemia. In late-stage T1D patients, especially those with
‘brittle’ diabetes, it is difficult to prevent complications such as
cardiovascular disease, retinopathy, nephropathy, and life-
threatening hypoglycemic episodes (1).

Islet allotransplantation has been identified as an efficient
therapy for T1D, but, faced with the shortage of pancreases from
deceased human donors, pig-to-human islet xenotransplantation
has emerged as a potential alternative (2). Although pig-to-
nonhuman primate (NHP) islet xenotransplantation has
resulted in insulin independence, several problems remain.

The age of the islet-source pig may be important to islet
quality. Adult pigs have a mature islet structure, lower galactose-
a1,3-galactose (Gal) expression on islets, and a higher islet yield
(3). Neonatal pig islets are easier to isolate and at a lower cost (3).
To overcome immunological rejection of pig-to-NHP islet
transplants, genetic modification of the source pig plays an
important role by deleting xenoantigen expression and
introducing human ‘protective’ proteins (4). New alternative
modifications, e.g., expression of programmed cell death ligand
1 (PD-L1), are being explored. A consensus has been reached
that, in regard to the transplantation of pig organs into humans,
the expression of the three known carbohydrate xenoantigens
(Gal, Neu5Gc, Sda) should be deleted (resulting in triple-
knockout [TKO] pigs) (4, 5), but this remains uncertain after
pig islet transplantation. However, there is a limitation in the
TKO pig-to-NHP model because of the problem of the
‘4th xenoantigen’.

The selection of the immunosuppressive regimen plays a
critical role in preventing the adaptive immune response (6).
Although conventional immunosuppressive regimens are
inefficient in preventing the adaptive response to pig cells,
blockade of the CD40/CD154 costimulation pathway is
Frontiers in Immunology | www.frontiersin.org 2
successful, and has resulted in insulin-independence for a
maximum of 965 days) (7). Emerging Fc region-modified anti-
CD154mAbs successfully prevent the thrombotic complications
seen previously (8, 9). Although anti-CD154 agents may be
preferable, anti-CD40mAbs have already been applied in phase
II clinical trials of human kidney allotransplantation (10).

In this review, we consider (i) the optimal age of the islet-
source pig, (ii) the potential of genetic modification of the pig,
(iii) the selection of the immunosuppressive regimen for pig-to-
primate islet xenotransplantation, and (iv) potential steps to
reduce the instant blood-mediated inflammatory reaction
(IBMIR). We also briefly discuss the possible directions for
future research.
DONOR AGE

Based on previous studies of pig-to-NHP islet xenotransplantation,
pigs can be divided into three age groups: adult (>12 weeks),
neonatal (~first 14 days after birth), and fetal. Their characteristics
are summarized in Table 1. As fetal pig islets are not currently
considered ideal sources for xenotransplantation due to defects in
b-cell yield and immunogenicity, we will focus on adult and
neonatal pigs.

Adult Pig Islets
To date, adult pig islets transplanted into NHPs have displayed
the longest survival time (965 days) and have always been
considered the primary source for islet xenotransplantation due
to their superior islet yield, immediate insulin response, lower
Gal expression, and higher b-cell percentage compared with
neonatal pigs (Table 1). Female adult pigs that have produced
>2 litters (retired breeders, usually >2 years old and > 200 kg)
are preferred over young adult pigs because they consistently
provide a higher yield of high-quality islets (3, 11). We add the
ref: Bottino R, 2007 Our previous review summarized the
above advantages (3). Using GMP-grade collagenase
(collagenase AF-1 and liberase MTF C/T), one adult pig
can yield up to 720,000IEQ (12), which is enough for islet
TABLE 1 | Characteristics of islets in pigs of different ages.

Characteristic Fetal Neonatal Adult

Isolation procedure Very simple (no purification) Simple (No purification) Difficult
Culture procedure Resistance to hypoxia and inflammation Resistance to hypoxia and inflammation Difficult (Fragile), but not necessary
Early islet loss from IBMIR Low (inflammation resistance) Low (inflammation resistance) Moderate (susceptible to inflammation)
Proliferation in vivo Good Good Little
In vivo insulin production Delay >2 months Delay > 1 month No delay
In vitro GSIS Poor Good Good
Gal expression High High Low
Islet yield (IEQs/pancrease) ~8, 000 25,000-64,000 200,000-720,000
Islet yield (IEQs/g) NA 5,000-12,500 1,000-16,000
b-Cells % (after culture) ~10% ~25% ~70%
Risk of pathogen transmission Extremely low Low Low
Islet isolation cost NA $0.02/IEQ $0.09/IEQ
Cost Low Low High
Ap
Gal, galactose-a1,3-galactose; GSIS, Glucose-stimulated insulin secretion; IBMIR, the instant blood-mediated inflammatory reaction; NA, not available.
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xenotransplantation in a diabetic patient of approximately 60kg
in weight. However, the limitations of adult pig islets include
difficulty in isolation, higher costs for pig maintenance and islet
isolation, and poor proliferative capacity (3) (Table 1).

Neonatal Islet Cell Clusters (NICC)
There have been only a few reports using NICC for
transplantation into NHPs, with the longest survival being 260
days (13–16). The advantages of NICCs include (I) the need for
only a short period of pig maintenance after birth, thus reducing
the costs, (ii) easier isolation, thus increasing success and
reducing isolation cost ($0.02/IEQ) compared to adult pig
islets ($0.09/IEQ) (17), and (iii) greater proliferative capacity
(3). However, there are some limitations. First, NICCs must be
cultured to reaggregate the islet cluster before transplantation,
although various modified culture media, the addition of growth
factors, and coculture with mesenchymal stromal cells facilitate
NICC islet maturation and function (18–21). Second, there is a
delay in the in vivo response to glucose after transplantation (that
may be >4 weeks in NHPs), and so measuring islet loss is
difficult (3).

The difference in the glucose-stimulated insulin secretion
index between adult pig islets and NICC remains controversial.
Some research has indicated that NICC has a significantly higher
stimulation index (4.7± 0.58) than adult pig islets (1.75 ± 0.60)
(17), but other studies show the opposite (summarized in
Table 2) (12, 17, 21–23). Therefore, the glucose-stimulated
insulin secretion of adult pig islets and NICC may be equivalent.

In summary, a consensus on the optimal age for pig islet
xenotransplantation has not been reached. Adult pig islets
should be the primary option as better results have been
achieved following transplantation into NHPs, but NICCs are
regarded as a promising alternative islet source with several
significant superiorities.
GENE MODIFICATION

The development of CRISPR/Cas9, an efficient genome editing
technique, provides the capacity to produce pigs with multiple
genetic modifications for xenotransplantation (Table 3) (24–41).
We will here mainly focus on gene modification targets for
carbohydrate xenoantigens and cellular immune response-
related genes.
Frontiers in Immunology | www.frontiersin.org 3
Carbohydrate Xenoantigen Genes
A consensus has been reached that the three known
carbohydrate xenoantigen genes (Gal, Neu5Gc, Sda) should be
knocked-out for pig-to-human organ transplantation (Table 4),
but this is not ideal for pig-to-NHP organ transplantation
because of the problems associated with the ‘4th xenoantigen’
(discussed in 42–46). It is well-known that pig organ grafts from
CMAHKO pigs are associated with increased NHP IgM and IgG
binding and serum complement-mediated cytotoxicity, resulting
in acute xenograft rejection (42–46).

To our knowledge, the transplantation of TKO pig islets into
NHPs has not been reported, and it remains unknown whether
the ‘4th xenoantigen’ is exposed in TKO pig islets as it is in
vascular endothelial cells. Whether TKO islets would provide an
advantage in this regard remains uncertain.

Of relevance to this point, there were no statistically
significant differences in human IgM and IgG binding to
isolated islet cells from GTKO/hCD46 and GTKO/hCD46/
NeuGcKO pigs (47). Knockout of CMAH may therefore
possibly have a different effect in islets than in solid organs. In
one report, GTKO/CMAHKO pigs developed pathological
features that are similar to those seen in anemia, possibly
associated with variations in glycosylation on the red blood cell
membranes of these pigs (48). Obukhova et al. have reviewed
CMAH comprehensively (49).

If neonatal pigs are the source of islets (i.e., NICCs), in which
expression of Gal is considerable, the deletion of expression of
Gal (and possibly of Neu5Gc and Sda) will be advantageous.

Differences in N- and O-glycan profiles between human and
porcine islets might prove to be the next gene modification sites.
Novel xenoantigens include complex-type N-glycans with
terminal neuraminic acid residues and high-mannose-type N-
glycans with core fucosylation (50). Carbohydrate antigen
microarrays in pigs and cynomolgus monkeys have revealed
natural non-aGal antigens (e.g., Tn antigen, T antigen, GM2
glycolipid) and novel carbohydrate structures (e.g., Galb1-
4GlcNAcb1-3Galb1 and N-linked glycans with Mana1-6
(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb) that are responsible
for the IgM and IgG anti-carbohydrate antibody responses (51,
52). These findings suggest future gene modification sites to
eliminate anti-carbohydrate antibody responses in pig-to-
primate islet xenotransplantation.

For future studies of the 4th xenoantigen(s), several sources
might be helpful, e.g., the database of Glycomics (http://www.
TABLE 2 | In vitro stimulation index of neonatal and adult pig islets.

Reference Neonatal Adult Digestion Enzyme

Vanderschelden et al. (17) 4.7 + 0.58 1.75 + 0.60 Sigma Type V Collagenase
Liberase HISmith et al. (22) 1.8 ± 0.3 8.5 ± 1.2

Emamaullee et al. (23) 1.78 ± 0.14 NA Collagenase
Hassouna et al. (21) 1.7 ± 0.2 NA Collagenase
Kwak et al. (12) NA 2.07 ± 0.02 Collagenase P
Kwak et al. (12) NA 4.73 ± 0.23 Collagenase AF-1*
Kwak et al. (12) NA 3.87 ± 0.12 Liberase MTF C/T*
April 2022 | V
*GMP grade; NA, not available.
olume 13 | Article 854883

http://www.functionalglycomics.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mou et al. Progress of Pig Islets Xenotransplantation
functionalglycomics.org/). The National Center for Functional
Glycomics (NCFG) (https://ncfg.hms.harvard.edu/) offers a CFG
mammalian-type glycan microarray, with 600 glycans present,
that might be helpful in studying xenoantigens in the future.

Cellular Immune Response-Related Genes
Progress in gene modification aimed at protecting xenografts
from the adaptive immune response has been made recently. For
example, knock-in of CTLA4-Ig or the high-affinity variant
LEA29Y (36, 53), knockout or knockdown swine leukocyte
antigen (SLA) class I and class II (37, 54), and in vitro tests on
SLA class I and class II-silenced cells have reported significantly
reduced xenogeneic T cell and natural killer cell responses, and
antibody-mediated cell-dependent responses to islet cell clusters
(55). However, CTLA4-Ig or LEA29Y transgenic pigs face the
problems of hypoimmunity (36, 56).

Immune checkpoint blockade is a promising approach to
control pathogenic immune responses. Immunomodulation with
PD-L1 improves islet allotransplantation outcomes (57–63), and
may facilitate successful xenotransplantation. PD-L1 is a ligand
that reduces the proliferation and activation of T cells, B cells,
and monocytes through interaction with PD-L1 receptors on
these cells, and prevents cell-mediated lysis from CD8+ T cells by
reducing their proliferation and cytokine secretion (40).
Programmed cell death protein 1 blockade has successfully
achieved clinical objectives in the treatment of cancer (64–66).
In xenotransplantation, pigs transgenic for PD-L1 have been
successfully generated, and cells from these pigs prevent human
T cell cytotoxicity and B cell activation in vitro (57, 58), with
Frontiers in Immunology | www.frontiersin.org 4
similar results in a pig-to-rat xenotransplantation model (67). In
contrast, islet PD-L1 deficiency has been associated with
increased allograft rejection and increased inflammatory cell
infiltration (68). Testing of the transplantation of pig islets
expressing PD-L1 in NHPs should be a future research direction.

In summary, whether the 4th xenoantigen is exposed in islets
after CMAHKO remains uncertain, and more research on the
cellular response (that will be the next obstacle to explore) is
required (69).
IMMUNOSUPPRESSIVE REGIMEN

The main objective of the immunosuppressive regimen is to inhibit
T cell activation and prevent subsequent T cell-dependent dendritic
cell activation and activation of B cells and macrophages.
Immunosuppressive regimens based on conventional (FDA-
approved) therapy have proved inadequate, although islet graft
survival of 222 days has been reported (70). In contrast, blockade of
the CD40/CD154 costimulation pathway has resulted in maximal
islet graft survival of 965 days (Table 5) (7, 13, 70–76). The major
mechanistic effects, advantages, and side-effects of the key
immunosuppressive agents of relevance to xenotransplantation
have been reviewed by Bikhet and his colleagues (77). Samy et al.
have reviewed the role of costimulation pathway blockade in
xenotransplantation (78). Here we will focus on novel
immunosuppressive regimens based on blockade of the CD40/
CD154 costimulation pathway.
TABLE 4 | Known carbohydrate xenoantigens expressed on pig cells.

Carbohydrate (Abbreviation) Responsible enzyme Gene-knockout pig

1.Galactose-a1,3-galactose (Gal) a1,3-galactosyltransferase GTKO
2.N-glycolylneuraminic acid (Neu5Gc) CMAH CMAH-KO
3.Sda b-1,4N-acetylgalactosaminyltransferase. b4GalNT2-KO
April 2022 | Volum
CMAH, Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH).
TABLE 3 | Selected gene modifications in pigs of relevance to pig-to-NHP islet xenotransplantation.

Purpose Modified genes Ref

Deletion of carbohydrate xeno-antigens a1,3-galactosyltransferase gene knockout (GTKO) (24, 25)
Cytidine monophospho-N-acetylneuraminic acid hydroxylase gene knockout (CMAHKO) (26)
b-1,4-N-acetylgalactosaminyltransferase-2 gene knockout (b4GalNT2) (27)

Prevention of inflammation Human hemagglutinin-tagged-human hemeoxygenase-1 gene knock-in (HO-1) (28)
Soluble human tumor necrosis factor receptor I IgG1-Fc gene knock-in (shTNFRI-Fc) (28)

Prevention of complement-mediated injury CD46 gene knock-in (29)
CD55 gene knock-in (30)
CD59 gene knock-in (31)

Prevention of coagulation dysfunction Human thrombomodulin gene knock-in (hTBM) (32)
Human endothelial protein C receptor gene knock-in (EPCR) (33)
Human tissue factor pathway inhibitor-2 knock-in (hTFPI) (34)
CD39 gene knock-in (35)

Protection against cellular immune response Cytotoxic T-lymphocyte antigen-4 immunoglobulin (CTLA4-Ig) or LEA29Y transgene (CTLA4-Ig mutation) (36)
MHC class II transactivator knockdown (CIITA-DN) (37)
b2-microglobulin knock-out (B2MKO) (38)
CD47 gene knock-in (39)
Programmed cell death ligand 1 gene knock-in (PD-L1) (40)
e 13 | Article
 854883
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Immunosuppressive Regimens Based on
Anti-CD40mAbs
Anti-CD40mAbs are a chimeric form of Fab combined with
IgG Fc fragments to prevent the stimulation of B and T cells
through blockade of the CD40/CD154 pathway, which also
participates in regulating thrombosis, tissue inflammation, and
hematopoiesis (79). Unlike anti-CD154mAbs, no significant
thrombogenic complications have been observed in anti-
CD40mAb studies (10). Islet graft survivals are summarized
in Table 5.

To date, some anti-CD40mAbs have completed phase
II clinical trials of allotransplantation (but not in islet
transplantation). These included bleselumab (ASKP1240),
iscalimab (CFZ533), and BI 655064 (10, 80, 81). Among them,
ASKP1240 demonstrated good results with a favorable benefit-risk
ratio and no thromboembolic events in a phase II clinical kidney
transplantation trial (10). Treatment with 2C10R4 was associated
with the longest pig islet graft survival in NHPs to date (maximum
insulin-independence 950 days, maximum graft survival 965 days)
(7). However, anti-CD40mAbs may be associated with adverse
effects, e.g., a temporary increase in liver enzymes (ASKP1240) (82,
83), significant depletion of peripheral blood B cells (Chi220) (13),
and inhibition of T regulatory cell (Treg) expansion (2C10R4) (84).

Immunosuppressive Regimens Based on
Anti-CD154 Agents
Anti-CD154 agents also provide efficient CD40/CD154 pathway
blockade (85), but were original ly associated with
thromboembolic complications (BG9588, hu5c8, IDEC-131,
ABI793) (86–88), although the situation with IDEC-131
remains controversial (89). They were demonstrated to be
preferable to anti-C40mAbs in pig islet transplantation in
Frontiers in Immunology | www.frontiersin.org 5
NHPs (Table 5) (72, 75). Modifications to the Fc region on
CD154 agents, the binding site for the Fc receptor (FcgRIIA) on
platelets (85), appear to have eliminated thromboembolic events
(e.g., CDP7657 and BMS-986004 in rhesus macaques, and
MEDI4920 in cynomolgus monkeys) (77). To date, CDP7657,
BMS-986004, and MEDI4920 have completed phase I or II
clinical trials (not in islet transplantation) without obvious
complications (8, 9, 90–92).

Overall, although anti-CD40mAbs have proved successful in
pig-to-NHP islet xenotransplantation, the new anti-CD154
agents may prove preferable for clinical trials (Table 6) (9, 10,
75, 80–83, 90, 92–102). Of importance, ongoing studies at the
Massachusetts General Hospital indicate that monotherapy with
an anti-CD154mAb (with no additional immunosuppressive
therapy) prevents rejection of heterotopic heart and life-
supporting kidney allografts in monkeys (Robin Pierson and
Tatsuo Kawai, personal communications). This regimen, or a
modification of it, has not yet been tested in xenograft models

Bikhet et al. published an immunosuppressive regimen that
has proved moderately successful in pig solid organ
transplantation in NHPs (77), but such a regimen may be too
intensive to warrant use in patients with islet xenografts.
THE INSTANT BLOOD-MEDIATED
INFLAMMATORY REACTION (IBMIR)

After infusion of islets into the portal vein (the preferred site at
present), a substantial percentage of islets are lost in the immediate
post-transplant period through an inflammatory response termed
IBMIR. The loss is significantly greater if the islets are xeno-islets,
e.g., pig islets into NHPs and pig islets to human blood in vitro
TABLE 5 | Immunosuppressive protocols associated with prolonged periods of insulin-independence and islet graft survival.

Major agent Islet-source pig Immunomodulatory regimen Maximum Insulin
independence

Maximum
graft survival

Ref

Anti-CD154 WT (adult) Anti-ICAM-1 mAbs (MD-3), anti-CD154 mAbs (5C8), Sirolimus, TNF-a-neutralizing
mAb (adalimumab), Anakinra, Ganciclovir, Clopidogrel, Heparin

520d 520d
(71)

WT (adult) ATG, anti-CD154 mAbs (5C8), Sirolimus, CVF, TNF-a-neutralizing mAb
(adalimumab)

603d 603d
(72)

hCD46 (adult) ATG, Anti-CD154 mAbs (ABI7953), MMF, Dextran sulfate, Prostacyclin,
Methylprednisolone, Aspirin, Ganciclovir, Famotidine, Heparin

365d 365d
(73)

GTKO, hCD46,
hCD39, hTFPI (adult)

ATG, Anti-CD154 mAbs (h5c8), MMF, Dextran sulfate, Prostacyclin,
Methylprednisolone, Aspirin, Ganciclovir, Famotidine, Heparin

365d 365d
(73)

hCD46 (adult) ATG, Anti-CD154 mAb (ABI7953), Dextran sulfate, Methylprednisolone, Aspirin,
Prostacyclin

396d 396d
(74)

Anti-CD40 WT (neonatal) Anti-CD40 mAbs (Chi220), aIL-2R (Basiliximab), Belatacept, Sirolimus 203d >203d
(13)

WT (adult) Anti-CD40 mAbs (2C10R4), Sirolimus, ATG, CVF, Tacrolimus, Adalimumab,
Methylprednisolone

266d 320d
(75)

Anti-CD154
plus Anti-CD40

WT (adult) ATG, CVF, anti-CD154 mAbs (5C8), Anti-CD40 mAbs (2C10R4), Sirolimus, TNF-a-
neutralizing mAb (adalimumab), Treg

965d 965d (7)

Conventional WT (adult) ATG, Rituximab, Belimumab, Sirolimus, Tacrolimus, Tofacitinib, Adalimumab,
Anakinra, CVF, IVIg

130d 201d
(76)

WT (adult) ATG, Belimumab, Sirolimus, Tacrolimus, Abatacept, Tofacitinib, Adalimumab,
Anakinra, Tocilizumab, IVIg, Aspirin

90d 222d
(70)
April 2022 | Volume
 13 | Article 854
aIL-2R, IL-2 receptor-specific antibody; ATG, anti-thymocyte globulin; CVF, cobra venom factor; GTKO, 1,3-galactosyltransferase gene-knockout; hTFPI, knock-in human tissue factor
pathway inhibitor-2; ICAM-1, intercellular cell adhesion molecule-1; IVIg, intravenous immunoglobulin; mAbs, monoclonal antibodies; MMF, mycophenolate mofetil; Treg, regulatory T cell;
WT, wild type.
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(103–107). Coagulation, platelet aggregation, complement
activation, and neutrophil and monocyte infiltration play roles
in this reaction (108). Several approaches to reduce the loss of
islets have been explored, e.g., anticoagulation, complement
depletion (109), and modified islet culture medium (110), but
none has been entirely successful yet. The transplantation of islets
Frontiers in Immunology | www.frontiersin.org 6
from pigs with one or multiple genetic modifications may help
protect the islets from early injury and loss (14, 74, 111–115).
Moreover, alternative transplantation sites in intrapleural space
greatly reduced IBMIR (116).

It is beneficial to add heparin or dextran sulfate to the peri-
transplant regimen for their anticoagulant and complement-
TABLE 6 | Agents that block the CD40/CD154 costimulation pathway that are currently in clinical trials and preclinical studies, an update of Bikhet 2021 (58).

Drug and company Clinical trials Results

Anti-CD40
Bleselumab Phase Ia/Ib:
(ASKP124/4D11) NCT01279538 (60, 72) Well-tolerated in healthy humans and in kidney transplant recipients
Astellas Phase II:

NCT01780844 (9) well tolerated in kidney transplant recipients
NCT01585233 (78) well tolerated in moderate-to-severe plaque psoriasis patients
NCT02921789 Kidney transplantation (without results)

Iscalimab Phase I:
(CFZ533) NCT02089087 (73) well tolerated in Rheumatoid Arthritis
Novartis Phase I/II:

NCT02217410 (74, 75) well tolerated in kidney transplant recipients
Phase II:
NCT02291029 (76) Has therapeutic potential in primary Sjogren’s syndrome patients
NCT02713256 (58) Has therapeutic potential in Graves’ disease patients
NCT02565576 Has therapeutic potential in Severe Myasthenia Gravis
NCT03663335 Kidney transplantation (without results)
NCT03781414 Liver transplantation (without results)
NCT03610516 Lupus nephritis (without results)
NCT03905525 Sjogren’s syndrome (without results)
NCT04129528 Type 1 Diabetes (without results)
NCT03656562 SLE (without results)

BI 655064 Phase I:
Boehringer Ingelheim NCT01751776 (77) Well-tolerated in healthy humans

Phase II:
NCT01751776 (59) Safety in rheumatoid arthritis patients with inadequate response to methotrexate
NCT03385564 Lupus nephritis (without results)
NCT02770170 (78) Lupus nephritis (did not meet its primary CRR endpoint)

KPL-404 Phase I:
Kiniksa NCT04497662 (79) Well-tolerated in healthy humans
2C10R4 Preclinical study (55, 80, 81) Prolonged graft survival in pig-to-NHP cardiac and islet xenotransplantation, NHP islet allotransplantation
NIH NHP Resource Center
Anti-CD154
Dapirolizumab Phase I:
(CDP7657) NCT01093911 (69) Well tolerated in healthy humans and in patients with SLE
UCB AND BIOGEN NCT01764594 (8) Safety and efficacy in SLE patients

NCT04571424 Healthy human (without results)
Phase II:
NCT02804763 (71) Well tolerated in healthy human and SLE. Has therapeutic potential in SLE
Phase III:
NCT04294667 SLE (without results)
NCT04976322 SLE (without results)

Letolizumab Phase I/II:
(BMS-986004) NCT02273960 Safety in Immune thrombocytopenic purpura (ITP)
BMS Phase I/II:

NCT03605927 Graft-versus-host disease (GVHD) (without results)
VIB4920 Phase I:
(MEDI4920) NCT02780388 Well tolerated in patients with rheumatoid arthritis
VielaBio NCT02151110 Well tolerated in healthy adults

Phase II:
NCT04046549 Kidney transplantation (without results)
NCT04129164 Sjogren’s syndrome (without results)
NCT04163991 Rheumatoid arthritis (without results)
NCT04174677 Kidney Transplantation (without results)
GVHD, graft-vs-host disease; ITP. immune thrombocytopenic purpura; mAb, monoclobal antibody; PEG, polyethylene glycol; SLE, systemic lupus erythematosus; TCP,
thrombocytopenic purpura; NA, not available.
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modulating properties that reduce islet loss from IBMIR (109,
117–120). Low molecular dextran sulfate at low doses
demonstrated good results in the prevention of IBMIR in
phase II clinical islet allotransplantation study (NCT00789308)
(119). Nanoparticle-based techniques improve the therapeutic
efficacy of heparin. For example, polymeric nanocoating islets with
heparin-polyethylene glycol (PEG) or chondroitin sulfate-PEG in
an NHP islet allotransplant model was associated with
significantly longer islet survival with reduced loss to IBMIR
compared with PEG and naked islets (121, 122). Conjugated
nanoparticles (heparin-immobilized superparamagnetic iron
oxide) conjugated onto the surface of the islets attenuated
IBMIR in a rat-to-mouse islet xenotransplantation model (123).
Islet-surface modifications with streptavidin-CD47 protein, a
chimeric construct expressing CD47 on the extracellular
domain, efficiently prevent islet loss from IBMIR (124).

Cibinetide (Araim Pharmaceuticals Inc., Tarrytown, NY,
USA) (a non-hematopoietic erythropoietin analogue) also
showed islet-protective effects by reducing IBMIR-induced
platelet consumption (125). Based on these studies, agents that
reduce IBMIR, combined with the transplantation of islets from
genetically-engineered pigs (e.g., pigs not expressing the known
carbohydrate xenoantigens, but expressing human complement-
and coagulation-regulatory proteins), and an optimal
immunosuppressive regimen may increase graft survival and
the therapeutic efficacy of islet xenotransplantation.
COMMENT

Key factors in successfully developing pig islet xenotransplantation
include determination of the optimal age of the islet-source pig
Frontiers in Immunology | www.frontiersin.org 7
(adult or neonatal), the optimal genetic modifications that should
be made to the pig, and the optimal immunosuppressive regimen
that should be administered to the recipient. Whether the ‘4th’
xenoantigen is problematic in the pig-to-NHP islet transplantation
model needs to be clarified. More attention needs to be directed to
genetic modifications that might reduce the instant blood-
mediated inflammatory reaction and/or the adaptive immune
response to pig islets. The advantages and disadvantages of
immunosuppressive regimens based on anti-CD40 and anti-
CD154 agents require clarification. Since the first case of
successful pig-to-human kidney and heart transplantation had
been reported recently (126, 127), we anticipate that pig islet
xenotransplantation will become clinically successful when these
remaining questions have been resolved.
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