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Abstract
Premise: There are relatively few studies of flower color at landscape scales that can
address the relative importance of competing mechanisms (e.g., biotic: pollinators;
abiotic: ultraviolet radiation, drought stress) at landscape scales.
Methods: We developed an R shiny pipeline to sample color from images that were
automatically downloaded using query results from a search using iNaturalist or the
Global Biodiversity Information Facility (GBIF). The pipeline was used to sample ca.
4800 North American wallflower (Erysimum, Brassicaceae) images from iNaturalist.
We tested whether flower color was distributed non‐randomly across the landscape
and whether spatial patterns were correlated with climate. We also used images
including ColorCheckers to compare analyses of raw images to color‐calibrated
images.
Results: Flower color was strongly non‐randomly distributed spatially, but did not
correlate strongly with climate, with most of the variation explained instead by spatial
autocorrelation. However, finer‐scale patterns including local correlations between
elevation and color were observed. Analyses using color‐calibrated and raw images
revealed similar results.
Discussion: This pipeline provides users the ability to rapidly capture color data from
iNaturalist images and can be a useful tool in detecting spatial or temporal changes in
color using citizen science data.
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Flower color is among the most striking outcomes of
angiosperm diversification, and the relationship between
flower color and pollinators has been appreciated since the
earliest days of formal biological inquiry. However, over the
past few decades, relationships between flower color and
other factors have been noted, suggesting that the role of
flower color may extend far beyond pollinator interactions.
For example, infraspecific flower color polymorphisms have
been shown to be related to water stress (Warren and
Mackenzie, 2001; Arista et al., 2013), irradiance (Winkel‐
Shirley, 2002; Koski and Ashman, 2015), and defense
against pathogens or herbivores (Strauss andWhittall, 2006).
Furthermore, it has long been understood that in some cases
flower color may be a neutral trait, with drift explaining
observed patterns of flower color polymorphism within
populations (Epling and Dobzhansky, 1942). While

pollinator attraction remains at the forefront of our
understanding of flower color, especially in the context of
within‐species variation and the putative role of flower color
in diversification (reviewed by Schiestl and Johnson, 2013;
van der Kooi et al., 2019), it is clear that much work remains
to be done in understanding the full array of patterns and
processes in the ecology and evolution of flower color.

Although traditional studies of flower color variation
have often been modest in spatial scale, recent
biogeographic‐scale studies have delivered important in-
sights into the drivers of flower color within variable
species. A strong latitudinal gradient, for example, was
documented by Arista et al. (2013) in which orange and
blue morphs of Lysimachia arvensis (L.) U. Manns &
Anderb. were shown to inhabit overlapping but different
latitudinal zones across Europe. Similarly, Koski and
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Ashman (2015) demonstrated a global latitudinal gradient
in flower pigmentation associated with ultraviolet (UV)
irradiance in Argentina anserina (L.) Rydb. Warren and
Mackenzie (2001) likewise uncovered striking differences in
the distribution of white and purple morphs of several
species across the British Isles that correspond to differences
in water availability. Koski and Galloway (2020) demon-
strated a stronger relationship in eastern North American
Campanula americana L. of petal reflectance with local
temperature than with post‐glacial recolonization or
pollinator communities. In each of these cases, analyses
across large geographic areas revealed important spatial
patterns in flower color that appeared to be driven by
abiotic factors rather than pollinator preference.

Increasingly, large‐scale biogeographical questions are being
addressed by citizen scientist data sets that vastly increase the
quantity and geographic scope of observations that can be
leveraged to identify patterns and test hypotheses at broad
scales. For decades, spatial and temporal analyses of avian
diversity have been possible using data from the citizen science
portal eBird (Wood et al., 2011). Similarly, studies of urban
ecology (Weckel et al., 2010), invasion biology (Bois et al., 2011;
Werenkraut et al., 2020; Tran et al., 2022), and phenology
(Barve et al., 2020) have employed citizen science data to
address questions that were intractable prior to the development
of iNaturalist (https://www.inaturalist.org/) and other citizen
science platforms. Similar to museum collections, citizen science
observations are generally strongly biased spatially and
taxonomically, and should therefore be used with caution.
However, for some biogeographic questions the data possess
tremendous potential for both generating and answering broad‐
scale questions.

In this study, we developed a pipeline to obtain flower
color data from iNaturalist images to study flower color
variation within the Erysimum capitatum (Douglas ex
Hook.) Greene complex (wallflowers, Brassicaceae). The
complex is native to North America and is considered to
have radiated rapidly since first colonizing from the Old
World less than 2 mya (Moazzeni et al., 2014; Züst
et al., 2020). Estimates for the number of distinct taxa in
the species complex have ranged from 17 to 33 since the
mid 20th century, and the number of species recognized has
ranged from 11 to 25 (Rossbach, 1958; Price, 1987; Al‐
Shehbaz, 2010). Flower color in the species complex ranges
from outliers that are creamy white (isolated to a small
number of distinctive taxa along the Pacific Coast) to lemon
yellow, through orange to bright red and maroon, with a
few outlying populations that are purple (Price, 1987). The
source of color variation in Erysimum L. has not been
studied; however, a similar range of colors (white, yellow,
pink, and bronze morphs) have been studied in the genus
Raphanus L., which is also in the Brassicaceae. In that genus,
different combinations of anthocyanins and carotenoids
produce color morphs, with white flowers expressing
neither pigment group, yellow produced by carotenoids
only, pink produced by anthocyanins only, and bronze
expressing both pigment groups (Narbona et al., 2021).

Flower color variation in Erysimum appears to be
continuous, with the most common colors being in the
yellow to orange range. The flowers are relatively showy and
have no remarkable structural modifications, and the
pollinators include a wide array of bees, butterflies, and
other generalists, with no apparent preferences documented
in association with color differences (Price, 1987). There is
currently no indication that selection by pollinators would
be involved in driving shifts in floral color. To better
understand the extent to which abiotic factors may be
driving floral color differentiation in this complex, we set
out to identify whether shifts in color are associated with
geography or environmental factors.

To accomplish this, we developed an R shiny (Chang
et al., 2020; https://shiny.rstudio.com/) pipeline to rapidly
acquire quantitative color estimates from iNaturalist photo-
graphs. R shiny is a user interface built on the R language that
allows users to harness R's power and flexibility through an
interface with drop‐down menus, buttons, and similar features
without having to interact with command line prompts.
Although similar color extraction procedures can be accom-
plished through ImageJ (Abramoff et al., 2004), the R package
colorZapper (Valcu and Dale, 2023), and other image processing
software, this pipeline was built with features that interface
specifically with the export formats of query results from both
iNaturalist queries and queries of iNaturalist records via the
Global Biodiversity Information Facility (GBIF; https://www.
gbif.org/). Users perform a query in iNaturalist or GBIF (e.g.,
“Erysimum from western North America”) and download the
results of the query as a .csv file. The R shiny app then allows
the user to click through images corresponding to the records in
the query results to obtain color estimates for each image.
Results of the color sampling are automatically saved along with
the metadata (e.g., spatial coordinates, observation date) to
facilitate downstream data visualization, spatial analysis, and
integration with spatial data sets like climate layers, soil maps, or
distributions of pollinators of interest. The tool works equally
well in an offline mode to analyze, for example, herbarium
records or separate folders of images representing color
variation in different populations.

This paper has three primary aims: (A) to demonstrate the
utility of the R shiny pipeline to both add value to existing
iNaturalist collections and to serve as a tool for a broad range
of users to investigate natural history (the tool has been tested
by university undergraduates and is probably appropriate for
high school students), (B) to understand spatial patterns in
color variation in the E. capitatum complex. Our specific
hypotheses related to wallflowers were that (1) flower color is
spatially autocorrelated (i.e., geographic proximity is a good
predictor of similarity in flower color); (2) any deviations from
random spatial patterns are correlated with climate; and (3)
based on anecdotal information, flower color varies predictably
across elevational gradients. Finally, (C) we used a data set of
images including flowers and ColorCheckers to quantify error
from field photos and to determine the extent to which
analyses using uncalibrated field images can capture true shifts
in color.
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METHODS

Color selector pipeline

We developed a pipeline consisting of R shiny apps, and
associated R scripts, to extract color from iNaturalist images
or other folders of images. A manual is provided (https://
github.com/bencarter125/FlowerColor; see Data Availability
Statement) that outlines in detail the operation of each
component of the pipeline. Searches for iNaturalist records
most commonly occur either through the iNaturalist
website (https://www.inaturalist.org/) or by doing a search
on GBIF constrained to only iNaturalist photos, as all
research‐grade iNaturalist records are made available
through GBIF. For GBIF downloads, users have the option
to select from multiple images associated with iNaturalist
records if present (searches through iNaturalist only make
the primary image accessible). Users can then either
download all the images for later processing or run a web
version that downloads and processes a single image at a
time to avoid data storage issues. Both the iNaturalist and
GBIF apps allow the user to then collect as many color
samples from each image as desired by clicking on the
image, with the color data retaining the important metadata
(location, date) so that downstream analyses of color across
landscapes can be performed; additional details are
provided in the manual (see Data Availability Statement).

Data acquisition

All iNaturalist observations of Erysimum from the western
United States up to May 2022 were downloaded from
iNaturalist, including both research‐grade and non‐
research‐grade occurrences. Preliminary analysis indicated
that iNaturalist users can usually accurately identify the
genus Erysimum, but identification of putative species is
more challenging. Indeed, expert opinion of species
circumscriptions varies substantially (Rossbach, 1958;
Price, 1987; Al‐Shehbaz, 2010, 2012) within the North
American Erysimum clade. Because the North American
clade is known to be monophyletic and originated less than
2 mya (Moazzeni et al., 2014; Züst et al., 2020), we chose to
treat the entire group as a complex and eliminated only the
introduced Eurasian species from consideration (e.g.,
E. cheiri (L.) Crantz, E. cheiranthoides L.).

Occurrences were cleaned geographically to exclude any
occurrences associated with anthropogenic landscapes. This was
particularly important in this group because images of
ornamental cultivars of E. capitatum, E. cheiri, and others are
present in both iNaturalist and GBIF. A 2019 land use map of
the United States with a spatial resolution of 30m was obtained
from the National Land Cover Database (https://www.mrlc.
gov), and any records occurring on developed land (cover
classes 21–24) or on planted/cultivated land (cover classes 81
and 82) were excluded from the data set. Following this, the 19
BIOCLIM variables were obtained from theWorldClim 2.0 data

set (Fick and Hijmans, 2017) at the highest available spatial
resolution (30 second), and values were extracted for each of the
iNaturalist occurrences.

Images were then downloaded from iNaturalist and color
was sampled by selecting approximately 15 pixels to represent
the range of color in the inflorescence in each photo using our R
shiny pipeline. Petals that were shaded, overexposed, or
withered were avoided, and images that were entirely shaded
or overexposed or included targeted species that were
misidentified as Erysimum were removed. After cleaning, the
data set included 4886 occurrences (81% of the 6031 down-
loaded occurrences). Color was converted from the red‐green‐
blue (RGB) to hue‐saturation‐value (HSV) color space, and then
the hue value was retained for each of the sampled pixel values
for the image. Preliminary analyses indicated that the hue value
nearly perfectly captured the range of color variation in
Erysimum, which extends primarily from lemon‐yellow through
orange to red. Hereafter, “color” indicates the hue from the
HSV values for images.

Spatial patterns of color

Two approaches were used to determine whether color was
distributed non‐randomly across the landscape. First,
Moran's I was calculated to determine whether color was
spatially autocorrelated across the occurrences, and second,
spatial randomization tests were performed to determine
whether any regions had more yellow or orange occurrences
than expected by chance or whether any regions had more
color heterogeneity or homogeneity (i.e., high or low color
variance) than expected by chance.

Moran's I was calculated using the R package spdep
(Bivand and Wong, 2018) after transforming to an Albers
equal‐area projection. A neighbor index with distances
<100 km was created and resulted in all but 17 of the 4886
occurrences having at least one neighbor. After removal of
those 17 occurrences, the neighbor index was constructed
again and used to build a set of neighbor distances using
binary weighting. This was then used to calculate Moran's I,
and a permutation test with 999 iterations was used to test
whether Moran's I differed significantly from zero.

Spatial randomization tests were then performed to
identify which areas had more yellow or orange flowers than
expected by chance and which had more homogeneous or
heterogeneous flower color than expected. First, occur-
rences were aggregated to 0.5‐degree grid cells (ca.
50 × 50 km), and then any grid cells with fewer than three
occurrences were omitted, leaving a total of 256 grid cells.
The three‐occurrence threshold was used to balance
retention of cells in order to derive meaningful geographic
signal while also retaining cells with enough occurrences to
calculate a meaningful mean and standard deviation. The
observed mean and standard deviation of color were
calculated for each grid cell. Then, for each of 999 iterations,
occurrences were randomly reassigned to grid cells while
keeping the number of occurrences per grid cell constant.
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For each randomization, the mean and standard deviation
of color were obtained for each grid cell. Significance for a
two‐tailed test with alpha of 0.05 was determined by finding
grid cells for which the observed value was greater than
97.5% or less than 0.5% of the randomly generated values
for each grid cell.

Color patterns with respect to climate

To determine the extent to which any non‐random color
patterns were explained by climate, an ordination was used
to visually identify patterns and a spatial regression was
employed to test for statistical associations of color and
climate. For both analyses, a data set of six of the 19
BIOCLIM variables was used. The six variables used
(temperature seasonality, mean temperature of the wettest
quarter, mean temperature of the driest quarter, mean
temperature of the coldest quarter, precipitation of the
warmest quarter, and precipitation of the coldest quarter)
were obtained by removing one or both of all variable pairs
with correlation coefficients of greater than 0.70. To aid in
the visualization of the ordination, biogeographic groups of
occurrences were obtained by subjecting the climate data set
to k‐means clustering with k = 5, as determined by the total
within‐group sum of squares for k values of 1–10.

A principal component analysis (PCA) was conducted
on the climate data set after scaling the variables. Observed
flower color, biogeographic clusters, and occurrences
associated with significantly orange or significantly yellow
regions were mapped on the ordination axes.

A spatial regression was performed on the six (normal-
ized) climate variables to test whether any climate variables
were significant predictors of flower color after incorporat-
ing spatial autocorrelation. Specifically, a spatial error
version of the spatial autoregressive model (SAR) was
implemented in the R package spatialreg (Bivand et al., 2021)
following Dormann et al. (2007) and Kissling and Carl
(2008), and using the spatial weights index generated for the
Moran's I test (see above).

Because flower color patterns in the Southern Rocky
Mountains were anomalous relative to those in Califor-
nia and Colorado (all of which have a substantial
number of orange flowers), we further explored regional
differences by plotting histograms of flower color,
plotting flower color against elevation, and obtaining
correlation coefficients for flower color and elevation for
these three regions.

Impacts of image color correction

iNaturalist images are inherently variable because there is
no standardization for weather conditions, camera type,
exposure, and other sources of error, with error here being
the difference between true flower color and the color
captured in images. To understand the impacts of this error,

we compiled a data set of images taken with a 24‐panel
color checker (ColorChecker Classic Mini; Calibrite,
Wilmington, Delaware, USA) in the frame. We used these
data to answer two questions: (1) Are certain colors more
variable in field photos than others? and (2) Do analyses of
raw photos (similar to iNaturalist photos) yield similar
results to analyses using color‐corrected versions of the
same photos?

Calibrated images were taken as part of an ongoing
population genetic study of Erysimum and, for the
purposes of this study, can be considered haphazard
with respect to geography and climatic conditions.
Images were taken of a total of 439 flowers representing
38 populations of Erysimum from across its distribution
in western North America from 15 March 2021 through
9 July 2021. For each image, we used the Color-
SelectorLocal R shiny app to capture color from flowers
in the image (approximately 15 samples per image) and,
separately, to capture color from each of the 24
ColorChecker panels (three samples per panel for each
image). Images were calibrated (i.e., color‐corrected)
using equations provided in the R package patternize
(Van Belleghem, 2018); however, the package itself was
not used because our field photos of ColorCheckers
varied too much in orientation and angle.

To determine whether particular colors are more
variable than others in the field, we generated boxplots
for each of the 24 ColorChecker panels of the distance
between observed color and true color for all 439
images. We also plotted histograms to determine
whether univariate errors differed across the hue,
saturation, or value components of the HSV color
values. To determine whether the calibration of images
might substantively change interpretation of our results,
we used a subset of six of the 39 populations distributed
along strong elevational color gradients (two low‐ and
two high‐elevation populations in the Sierra Nevada,
and one high‐ and one low‐elevation population in the
Southern Rocky Mountains). Boxplots of the observed
color and corrected color for images in each of the six
populations were compared qualitatively to known
trends in the iNaturalist data set.

RESULTS

Spatial patterns of color

Color in the E. capitatum complex is significantly more
clustered than expected by chance (Moran's I = 0.087,
P < 0.001; Figure 1). Spatial randomization tests illus-
trated that this pattern is largely driven by the presence
or absence of orange flowers. Yellow flowers are nearly
ubiquitous, and many regions have significantly more
yellow flowers than expected by chance (Figure 2).
Regions with significantly more orange flowers than
expected are more localized and occur primarily in
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Arizona and New Mexico, with scattered regions in
Colorado and California (Figure 2). There is a significant
correspondence between pixels that are more yellow
than expected and those that are more homogeneous
than expected (Table 1); there are no pixels that are both
more homogeneous and orange than expected or both
more heterogeneous and more yellow than expected
(χ2 = 98.37, P < 0.001; Table 1). Together, these indicate
that orange flowers are relatively restricted and that
when local flower color heterogeneity exists, it is driven
by the co‐occurrence of yellow and orange flowers, as
compared to homogeneous areas that only have yellow
flowers.

Color patterns with respect to climate

Overlaying biogeographic groups and regions with signifi-
cantly more yellow or orange flowers than expected onto the
climate PCA revealed that, while the relationship of color
and climate is not random, there are not broadscale
generalities to be made across the entire range of the
species complex (Figure 3). Regions with more yellow
flowers are aggregated in clusters across all five of the
biogeographic regions, while regions with more orange
flowers than expected are found in only two of the five
regions and these two clusters are widely separated
climatically. Together, these give a clear indication that

F IGURE 1 Geographical distribution of flower color in the Erysimum capitatum complex. (A) Occurrences colored using color obtained from
iNaturalist records. (B) Occurrences aggregated into grid cells, colored using the mean color of occurrences in each grid cell.

F IGURE 2 Geographical distribution of flower color in the Erysimum capitatum complex, showing regions with (A) flowers having significantly more
yellow values (yellow cells) and significantly more orange values (red cells) than expected by chance and (B) with more homogeneous (blue cells) and more
heterogeneous (red cells) flower color than expected by chance.
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the distribution of orange and yellow flowers is not random,
but that the association of flower color and climate depends
greatly on the regional context.

Correlations between color and climate in the spatial
regression were significant, but climate did not explain
much of the variation in color (Table 2). The spatial
regression demonstrated that four of the six climate

predictors contributed significantly (at α = 0.01) to the
model, with precipitation of the warmest quarter (i.e.,
summer rainfall) contributing the most by far based on the
change in Akaike information criterion (AIC; Table 2). The
full regression model with no spatial term was significant as
well, but with an adjusted R2 of only 0.095. The spatial
regressions do not produce R2 values, but the low R2 of the
nonspatial model is consistent with the univariate correla-
tion coefficients of each predictor against color, all of which
had an absolute value less than 0.20.

Both the standard deviation of color and mean color
indicated that the Southern Rocky Mountains differ from
other regions. Further exploration confirmed this, with the
Southern Rockies exhibiting both a bimodal distribution of
flower color (red and yellow) and a generally high
proportion of occurrences on the red end of the spectrum
(Figure 4). A relationship with elevation was also present,
with redder flowers tending to occur at higher elevations. In

F IGURE 3 Relationships of flower color to climate. (A) Principal component analysis (PCA) axes 1 and 3 with occurrences across six BIOCLIM
variables plotted with mean color of each occurrence. (B) PCA axes 1 and 2 plotted with bioregions assigned by k‐means clustering. (C) PCA axes 1 and 3
plotted with bioregions assigned by k‐means clustering, with occurrences from significantly yellow or orange regions in yellow and orange. (D) Map of
occurrences displaying bioregions and significantly yellow and orange regions.

TABLE 1 Correspondence of grid cells that were significantly
different from random in mean color (orange/yellow) and standard
deviation of color (homogeneous/heterogeneous). See also Figure 2.

Color Homogeneous Not significant Heterogeneous

Orange 0 17 2

Not significant 21 165 0

Yellow 33 18 0
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contrast, the Sierra Nevada had a unimodal distribution
with yellow at the mode and demonstrated the opposite
elevational trend, with yellow flowers at higher elevations
and orange at lower.

Impacts of image color correction

Error, quantified as the difference between observed Color-
Checker color and true ColorChecker color, was generally
low and was not substantially concentrated in one portion
of the color spectrum (Figure 5). The three‐dimensional
distances (i.e., incorporating hue, saturation, and value
distances together) ranged from 0.117 to 0.494 with a mean
of 0.243 across the 24 ColorChecker colors. Grayscale colors
tended to have higher error, but otherwise no strong
trends were detected with respect to the distribution of error
across the 24 colors.

In the analyses of differences between different‐colored
populations at different elevations (Figure 6), we found that
we were able to recover the expected color shifts across
elevation, and that analyses performed with calibrated
images were qualitatively very similar to those performed
on raw images.

DISCUSSION

Citizen science data sets have tremendous potential to
increase the breadth of sampling for scientific research, and
we demonstrate that here with our analysis of color
variation in western wallflowers from thousands of sites
across western North America. We found that color is
strongly non‐randomly distributed across the range of the
E. capitatum complex as well as non‐randomly distributed
with respect to climate; however, patterns are localized and

appear to be context specific. This study also demonstrates
that error (the difference between the true color of an object
and the color of the object as recorded in a photograph) was
reasonably low for a data set of more than 400 images taken
in the field, indicating that uncontrolled iNaturalist images,
for at least some projects with reasonably high sample sizes,
provide usable estimates of color. Finally, the R shiny
pipeline introduced here provides a rapid method for
acquiring color data from iNaturalist or other images.

Flower color variation in Erysimum

The analyses presented here indicated that both mean color
and color variance were distributed non‐randomly across
the range of E. capitatum, and that the two were not
independent. Yellow flowers were common throughout the
range, and many areas had significantly homogeneously
yellow flowers. In contrast, areas with more orange flowers
were localized in the Southern Rocky Mountains and coastal
California, and these areas contained both yellow and
orange flowers. This non‐randomness at the landscape scale
is an important finding that was possible only through the
large number of citizen science records.

The non‐random pattern of color variation we observed
could be driven by either natural selection or by non‐
selective processes. On one hand, divergent floral
colors could experience higher fitness across a heteroge-
neous landscape, with selection driven by biotic factors such
as pollinator preference or herbivore defense, or by abiotic
factors such as the ability to tolerate environmental stressors
including UV exposure, drought, or cold. Alternatively,
shifts in flower color may arise through non‐selective factors
such as genetic drift or hybridization, with allelic
recombination resulting in novel phenotypes. We found
that at the scale of the entire range of the E. capitatum

TABLE 2 Results from regression analyses. Standardized coefficients are provided for both the simple linear (non‐spatial) regression and spatial
regression, both of which had full models with significance of P < 0.001. The full spatial model had an Akaike information criterion (AIC) of 48835; ΔAICs
are the change in AIC from a model that left out each predictor individually. Correlation coefficients are provided for each (unstandardized) variable against
flower color, and the overall R2 of the non‐spatial model was 0.095.

Climate variable
Non‐spatial standardized
coefficients

Spatial standardized
coefficients

Spatial P
value

Spatial
ΔAIC

Univariate correlation
coefficient

Temperature seasonality 0.041 0.022 <0.001 −11 0.097

Mean temperature of wettest
quarter

0.065 0.214 0.165 −11 −0.105

Mean temperature of driest
quarter

−0.880 −1.332 <0.001 −21 −0.023

Mean temperature of coldest
quarter

−0.341 −0.207 0.492 −12 −0.066

Precipation in warmest
quarter

−0.194 −0.222 <0.001 269 −0.120

Precipation in coldest quarter 0.021 0.011 0.002 −4 0.001

COLOR SAMPLING FROM INATURALIST IMAGES | 7 of 12



complex, floral color does not appear to be strongly
correlated with climate. Although color is clearly not
random with respect to climate (Figures 3 and 4), most of
the clustering can be explained by spatial autocorrelation
(Table 2).

To date, our understanding of flower color evolution in
Erysimum comes from a single study of Old World taxa.
Gómez et al. (2015) investigated floral color evolution
across a clade of 40 species distributed in Western Europe
and North Africa. Their results indicated little phylogenetic
signal associated with flower color, suggesting that color is a
highly labile trait. Ancestral state reconstructions demon-
strated that there have been multiple independent transi-
tions from yellow to lilac‐colored flowers as well as
secondary transitions back to yellow. Anthocyanins that
underlie purple color in Brassicaceae are associated with
stress tolerance (Chalker‐Scott, 1999; Dick et al., 2011).
Furthermore, because Old World Erysimum taxa with lilac‐
colored flowers are primarily relegated to the arid areas at
the southern end of the genus’ distribution, Gómez et al.
(2015) hypothesized that floral color shifts may originally
have arisen as an adaptation to stressful environments, in

F IGURE 4 Distribution of flower color (hue) for two regions in western North America. (A, B) Relationship of flower color to elevation. (C, D)
Histograms of flower color.

A B

F IGURE 5 Error in color between observed ColorChecker and true ColorChecker values across photographs from the field (n = 439). (A) Euclidean
distance, for each of the 24 ColorChecker panels, between true color and observed color. (B) Error (distance between true and observed values) in the hue,
saturation, and value components across the 24 ColorChecker panels combined.

F IGURE 6 Comparison of color values (hue) for raw images (left, in black
outline) and corresponding color‐calibrated images (right, in gray outline) for
six populations in California and New Mexico. Note that the relationship of
color to elevation switches between the California and NewMexico populations.
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alignment with a broader understanding across angio-
sperms that anthocyanin production is associated with
stressful environments (Landi et al., 2015). While differ-
ences in pollinator niches were observed for yellow and lilac
taxa, evolutionary reconstructions suggested that floral color
shifts in this group likely preceded shifts in pollinator niche.

While to our knowledge there has been no investigation
of floral color evolution in North American Erysimum taxa,
Lay et al. (2013) quantified color across four populations of
E. capitatum distributed along an elevational gradient in the
Rocky Mountains. They found, similar to the results we
presented here, that red flowers were associated with higher
elevations and yellow flowers were associated with lower
elevations. While pollinator observations suggested a shift
from bee to fly floral visitation as elevation increased,
pollinator communities still significantly overlapped across
populations, suggesting that they are unlikely to be driving
the observed floral color shifts. This is consistent with
observations by Price (1987), who anecdotally found no
differences among the diverse pollinators of orange and
yellow flowers in California and observed no additional
floral characteristics that might suggest selection by
pollinators. Although we did find that redder flowers were
associated with higher elevation in the Southern Rockies, we
also found the opposite to be true in the Sierra Nevada.
Together, these results highlight that floral color shifts in the
E. capitatum complex are likely not being driven by one
single factor (e.g., increased UV exposure or cooler
temperatures at higher elevations); instead, it is much more
likely that a variety of mechanisms (selective and non‐
selective) are occurring at local scales, resulting in the non‐
random but variable patterns we documented here. While
further research is needed to tease apart the relative
importance of ecological factors vs. non‐ecological factors
(e.g., drift or hybridization) in the establishment and
maintenance of floral color variation, our work highlights
the importance of thorough sampling when attempting to
make broad‐scale inferences about the role of environment
in driving phenotypic change and identifies regions where
selective pressure may be driving floral color shifts in the
E. capitatum complex.

Color correction and color selection best
practices

We encountered two primary challenges in compiling this
data set. First, iNaturalist photographs were unstandardized
and were taken under a wide range of lighting conditions in
the field. Second, within an image, shading of flowers by
other flowers in the same inflorescence creates a mosaic of
lighting conditions at a finer scale that must be sampled
consistently across images.

The uncontrolled nature of the iNaturalist images
would be problematic if either the magnitude of the
error was large relative to the magnitude of biologically
interesting color variation (signal‐to‐noise ratio) or the

distribution of error was not centered on zero (system-
atic directional bias), or if particular colors were
substantially more error prone than other colors. Using
our data set of images containing ColorCheckers, we
found reasonably low levels of color error that were both
symmetrically distributed and centered near an error of
zero for the red, green, and blue components individu-
ally. This suggests that, while error was present, it was
not systematically biased. In our data set, the color
variation relevant to our question occurred along the
green component between values of approximately 225
(corresponding to pure yellow) and 150 (corresponding
to orange). In comparison, standard deviations of error
for the red, green, and blue components were 27.2, 23.0,
and 21.7, respectively. The error in the blue component
was substantially greater in magnitude than in the red or
green components, which we interpreted as being
particularly influenced by shade/sun differences, but all
three were reasonably small relative to the magnitude of
color differences relevant to our research question.

Among the 24 colors in our ColorChecker, we similarly
found consistent errors, but with the error relatively low
compared to the magnitude of color differences of biological
interest. This is particularly evident in the direct compari-
sons of calibrated and uncalibrated images across elevation
gradients (Figure 6). While the distribution of within‐
population variation shifted slightly and unpredictably
between calibrated and uncalibrated images, the same
general patterns were evident across populations. Taking
each of these results into account and considering the ability
to easily generate large sample sizes using iNaturalist, we felt
confident that using iNaturalist images provided results that
were both unbiased and with a relatively small amount of
error compared to the biological differences we aimed to
quantify.

The second major challenge was consistency of data
capture across images, as only approximately 15 pixels
were sampled from each flower. We found, similar to
other citizen science projects using iNaturalist images
(Barve et al., 2020), that repeatability required iterative
training and clear guidelines for data capture. For this
study, these guidelines included avoiding portions of
petals that were shaded by other petals, avoiding portions
of flowers that had glare or were clearly overexposed, and
eliminating images with poor quality (e.g., photos of
flowers taken from a distance or in deep shade). We
recommend, similar to Barve et al. (2020), iteratively
developing a set of guidelines on a case‐by‐case basis for
each study using a representative training set of images.
Particularly with flower color, species that range from, for
example, white to pink might be expected to present
different sets of challenges than species that range from
blue to purple. Additionally, pigmentation varies with age
for some flowers, or can vary in relation to veins or other
floral features, and it is important to incorporate these
sources of variation into the protocol for answering a
particular research question.
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Comparison to similar recent approaches

Two recent studies use similar approaches to quantify color
from citizen science images, and a description of the
differences between these studies and the workflow
presented here could help potential users decide on an
appropriate approach for their particular question. Laitly
et al. (2021) used a workflow employing the R package
colorZapper (Valcu and Dale, 2023). Their workflow, in
contrast to the workflow presented here and in the study
discussed below, does not directly interface with the results
of iNaturalist queries. However, their use of colorZapper,
which can be used to extract color from user‐defined pixels
or user‐defined polygons, is arguably the most flexible and
can be used for any set of images. Laitly et al. (2021) also
provide a head‐to‐head comparison of image analyses
across HSV, RGB, and CIELAB color spaces, comparisons
across cameras, and a comparison of museum specimen
images taken under controlled conditions with citizen
science images. A particularly relevant and broadly
applicable finding of that study was that, for separation of
species using these approaches, the use of more than 12–14
images per species provided diminishing returns.

In contrast, Perez‐Udell et al. (2023) provided a Python‐
based workflow that directly interfaces with iNaturalist
search results. Their workflow has an automated approach
to color selection that first identifies clusters of pixels based
on color using k‐means and then provides summary
statistics for the color clusters, with an option for
automatically classifying images into groups (e.g., in cases
of taxa with discrete color polymorphisms).

The approach introduced in this paper uses the R
environment and interfaces directly with iNaturalist queries,
similar to Perez‐Udell et al. (2023). However, in this
approach, users select pixels from images rather than
automatically defining color clusters. While we are en-
thusiastic about the potential of automation and explored
an automated approach in initial trials, we pursued user‐
defined pixel selection for two reasons. First, automated
color extraction requires a strong contrast between the
target segment (flowers) and background that is not always
reliably present (e.g., white flowers on light‐colored sand
substrates). In our experience, automated approaches will
reject many usable images that have similar background
colors or in which the flowers define a relatively small
portion of the overall image. Second, there is no automated
way to control for shading of portions of petals, which often
differ strongly from the primary petal color but also fade
gradually between shade and unshaded, thus thwarting a
clustering algorithm's ability to separate shaded from
unshaded portions of the image. In the future, as image
segmentation artificial intelligence becomes more accessible,
both of these challenges are likely to be overcome. Until
such time, we did find (unpublished data) that density‐
based spatial clustering, implemented in the R package
dbscan (Hahsler et al., 2019), outperformed k‐means
clustering, and this could be considered in ongoing attempts

to automate the color extraction process. Our approach also
offers a comparison of iNaturalist images to color‐calibrated
images taken in the field, which complements Laitly et al.'s
(2021) comparison to museum specimen images taken
under controlled conditions.

Caveats of citizen science data

In addition to the error associated with images taken under
uncontrolled lighting conditions, other factors should be
considered when using iNaturalist data sets. Similar to
museum specimens, iNaturalist records are notoriously poorly
identified and are strongly biased in space, in time, and toward
charismatic and/or common or rare species. This is a well‐
known and commonly discussed issue for museum collections
(Meineke and Daru, 2021), and citizen science records are
subject to the same challenges. In our study, we focused on a
genus that is showy and is easily visually separated from closely
related genera (by both humans and iNaturalist's suggestions
based on artificial intelligence). Species‐level identifications in
the genus are often not confidently assigned even by
taxonomic experts, and the clade in North America is known
to be monophyletic and of recent origin, thereby justifying an
analysis at the clade level rather than attempting to work with
individual species. Other studies should similarly focus on
discrete groups for which misidentifications will be low and/or
allocate time to confidently identifying records used for color
capture.
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