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ABSTRACT Carriage evaluations were conducted during 2015 to 2016 at two U.S.
universities in conjunction with the response to disease outbreaks caused by Neisseria
meningitidis serogroup B and at a university where outbreak and response activities
had not occurred. All eligible students at the two universities received the serogroup
B meningococcal factor H binding protein vaccine (MenB-FHbp); 5.2% of students
(181/3,509) at one university received MenB-4C. A total of 1,514 meningococcal car-
riage isolates were obtained from 8,905 oropharyngeal swabs from 7,001 unique par-
ticipants. Whole-genome sequencing data were analyzed to understand MenB-FHbp’s
impact on carriage and antigen genetic diversity and distribution. Of 1,422 isolates
from carriers with known vaccination status (726 [51.0%] from MenB-FHbp-vaccinated,
42 [3.0%] from MenB-4C-vaccinated, and 654 [46.0%] from unvaccinated participants),
1,406 (98.9%) had intact fHbp alleles (716 from MenB-FHbp-vaccinated participants). Of
726 isolates from MenB-FHbp-vaccinated participants, 250 (34.4%) harbored FHbp pep-
tides that may be covered by MenB-FHbp. Genogroup B was detected in 122/1,422
(8.6%) and 112/1,422 (7.9%) isolates from MenB-FHbp-vaccinated and unvaccinated
participants, respectively. FHbp subfamily and peptide distributions between MenB-
FHbp-vaccinated and unvaccinated participants were not statistically different. Eighteen
of 161 MenB-FHbp-vaccinated repeat carriers (11.2%) acquired a new strain containing
one or more new vaccine antigen peptides during multiple rounds of sample collection,
which was not statistically different (P=0.3176) from the unvaccinated repeat carriers (1/
30; 3.3%). Our findings suggest that lack of MenB vaccine impact on carriage was not
due to missing the intact fHbp gene; MenB-FHbp did not affect antigen genetic diversity
and distribution during the study period.

IMPORTANCE The impact of serogroup B meningococcal (MenB) vaccines on carriage
is not completely understood. Using whole-genome sequencing data, we assessed
the diversity and distribution of MenB vaccine antigens (particularly FHbp) among
1,514 meningococcal carriage isolates recovered from vaccinated and unvaccinated
students at three U.S. universities, two of which underwent MenB-FHbp mass vacci-
nation campaigns following meningococcal disease outbreaks. The majority of car-
riage isolates recovered from participants harbored intact fHbp genes, about half of
which were recovered from MenB-FHbp-vaccinated participants. The distribution of
vaccine antigen peptides was similar among carriage isolates recovered from vacci-
nated and unvaccinated participants, and almost all strains recovered from repeat
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carriers retained the same vaccine antigen profile, suggesting insignificant vaccine
selective pressure on the carriage population in these universities.

KEYWORDS Neisseria meningitidis, carriage, serogroup B meningococcal vaccines,
FHbp, NhbA, NadA, genetic diversity, whole-genome sequencing

Invasive meningococcal disease (IMD) caused by Neisseria meningitidis (the meningo-
coccus) is a major public health concern (1). This bacterium can be asymptomatically

carried as a commensal in the human nasopharyngeal mucosa. Exposure to meningo-
cocci can lead to either carriage or, less commonly, to IMD. Carriage prevalence varies
among studies conducted in different populations and is age related, peaking during
late adolescence in developed countries (2, 3). Risk factors, including behaviors linked
with social mixing and smoking, have also been associated with carriage acquisition (3).

Six serogroups (A, B, C, W, X, and Y) cause most IMD cases worldwide, with B, C, and
Y predominating in the United States (1, 4), and unencapsulated N. meningitidis (non-
groupable, or NG) is commonly associated with carriage (5–8). Quadrivalent meningo-
coccal conjugate vaccines confer protection against serogroups A, C, W, and Y and
are routinely recommended for all U.S. adolescents aged 11 to 18 years as well as
certain other individuals at increased meningococcal disease risk (9). Two protein-
based serogroup B meningococcal (MenB) vaccines were licensed in the United
States in 2014 to 2015 (10). MenB-FHbp (Trumenba; also known as bivalent rLP2086;
Pfizer) contains two FHbp (factor H binding protein) peptides, one from subfamily
A (A05) and one from subfamily B (B01) (Pfizer nomenclature) (10, 11), correspond-
ing to peptides 3.45 and 1.55 (GlaxoSmithKline [GSK] nomenclature), respectively.
MenB-4C (Bexsero [also known as 4CMenB]; GSK) has four components: FHbp B24
or 1.1, NhbA (neisserial heparin binding antigen) peptide 2 (p0002), NadA (neisse-
rial adhesin A) peptide 3.8 (NadA-3.8), and outer membrane vesicle (OMV) from the
N. meningitidis serogroup B strain NZ98/254 (derived from the MeNZB vaccine) with
porin A variable region 2 (PorA-VR2) variant 4 as the major antigen (12, 13). In the
United States, MenB vaccines are recommended for adolescents aged 16 to 23 years
based on shared clinical decision making; they are also recommended for individu-
als aged 10 years or older who have increased risk for N. meningitidis serogroup B
disease because of specific underlying conditions, a serogroup B outbreak, or occu-
pational exposure as a microbiologist (14). Although licensed to protect against
serogroup B disease, the vaccine antigens are also present in meningococci of
other serogroups and may protect against non-B meningococcal disease (15, 16).
While the long-term impact of MenB vaccines on meningococcal disease remains to
be evaluated, collective evidence indicates that MenB vaccines do not have an
impact on total or serogroup B carriage prevalence (7, 8, 17).

Outbreaks of serogroup B meningococcal disease were reported at 10 U.S. univer-
sities during 2013 to 2018 (18). Two outbreaks occurred in 2015 at universities in
Rhode Island (RI-1) and Oregon (OR) (7, 8). MenB vaccination campaigns were imple-
mented at each university for outbreak control. All eligible students at RI-1 received
MenB-FHbp (8). While the majority of the eligible students at OR received MenB-FHbp,
5.2% of students received MenB-4C (7). Carriage evaluations conducted at the univer-
sities during 2015 to 2016 showed no decrease in meningococcal carriage following
vaccination (7, 8). A third carriage evaluation was also conducted at a university near
RI-1 (RI-2) as a reference population, where neither N. meningitidis serogroup B out-
breaks nor MenB mass vaccination campaigns occurred (19). To understand the molec-
ular mechanisms underlying the lack of impact of MenB-FHbp on carriage and the
selective pressure of this vaccine on genetic diversity and prevalence of MenB vaccine
antigens over time, we sequenced genomes of all carriage isolates collected from the
three carriage evaluations and assessed potential changes in diversity and distribution
of MenB vaccine antigens among vaccinated and unvaccinated students as well as
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changes in vaccine antigen profiles among students who participated in the carriage
evaluations at multiple rounds of sample collection.

RESULTS
Genetic diversity and distribution of MenB vaccine antigens. Of the 1,337 iso-

lates (540 from RI-1, 573 from OR, and 224 from RI-2) analyzed, 635 (47%) were either
capsule null (cnl) or undetermined genogroup (see Table S1 in the supplemental mate-
rial). The remaining 702 isolates belonged to the following capsular genogroups: E
(384; 29%), B (225; 17%;), Y (33; 2.5%), C (24; 1.8%), Z (21; 1.6%), X (11; ,1%), and W (4;
,1%). Among the 1,337 carriage isolates, 1,326 (99.2%) isolates (532 from RI-1, 571
from OR, and 223 from RI-2) contained an intact fHbp allele; 11 (0.8%) isolates either
lacked or contained a truncated fHbp allele (peptide not found; referred as FHbp nega-
tive) (Table 1). A higher number of carriage isolates contained FHbp peptides belong-
ing to subfamily B/variant 1 (B/v1) (811/1,326; 61.2%) than subfamily A/variants 2/3 (A/
v2-3) (515/1,326; 38.8%). Collectively, 61 unique FHbp peptides were identified: 37
(60.7%) from A/v2-3 and 24 (39.3%) from B/v1. FHbp B01/1.55, one of two FHbp antigens
included in the MenB-FHbp vaccine (11), was not detected in any carriage isolate recov-
ered in this study. FHbp A05/3.45, the other FHbp antigen included in MenB-FHbp (11),
was detected in 23/1,326 (1.7%) isolates. FHbp B24/1.1 peptide, included in the MenB-4C
vaccine (12), was detected in 40/1,326 (3.0%) isolates (Table 1). All FHbp peptides found
among carriage isolates exhibited .82% amino acid sequence similarity to the FHbp pep-
tides included in MenB vaccines (A05/3.45 or B24/1.1 and B01/1.55) within the same FHbp
subfamily (Fig. 1).

All genogroup B isolates (225/1,326; 17.0%) contained an intact fHbp allele, with 28
unique FHbp peptides (19 belonging to A/v2-3 and nine to B/v1) being detected, and
had higher sequencing diversity than other genogroups. FHbp B/v1 peptides were
detected among 57/225 (25.3%) genogroup B isolates; all remaining genogroup B iso-
lates contained FHbp A/v2-3. FHbp A05/3.45 was detected in 21/225 (9.3%) genogroup
B isolates, and FHbp B24/1.1 was detected in 17/225 (7.6%) genogroup B isolates
(Table 1).

An intact nhbA allele was detected in 1,331 (99.6%) carriage isolates, with 90 unique
NhbA peptides being identified (Table S2). NhbA p0002, the peptide included in the
MenB-4C vaccine (12), was detected in 71/1,331 (5.3%) carriage isolates, of which 31
(43.7%) were genogroup B isolates. NhbA peptides identified among carriage isolates
in this study showed .67% sequence similarity to the MenB-4C component NhbA
p0002 (Fig. S1A).

Only 93 (7.0%) carriage isolates had intact nadA alleles, with 12 unique NadA peptides
being identified (Table S3). NadA-3.8, included in the MenB-4C vaccine (12), was detected
in two isolates: one in genogroup B and one in genogroup Y. NadA-1 and NadA-2/3 identi-
fied among carriage isolates showed .66% sequence similarity to NadA-3.8 in MenB-4C,
while NadA-4/5 and NadA-6 showed 37% sequence similarity to NadA-3.8 (Fig. S1B).

Overall, there were 1,320 (98.7%) isolates with both fHbp and nhbA intact. Ninety-
two (6.9%) carriage isolates contained all three intact fHbp, nhbA, and nadA genes, of
which 44 (47.8%) belonged to capsular genogroup B.

Among 1,337 carriage isolates, 1,316 (98.4%) harbored intact porA alleles that belonged
to 207 PorA types, and 9/1,316 (,1%) (seven genogroup B, one capsule null, and one
undetermined genogroup) contained PorA-VR2 variant 4, included in the MenB-4C vaccine
(13).

FHbp subfamily distribution among vaccinated and unvaccinated participants.
MenB-FHbp was provided to all eligible students at RI-1 and most eligible students at
OR; MenB-4C was provided to 5.2% (181 of 3,509) of students at OR. A total of 1,422 N.
meningitidis isolates (646 from RI-1, 528 from OR, and 248 from RI-2) were recovered
from participants with known vaccination status (Table S4), with 726 (51.0%) from
MenB-FHbp-vaccinated participants, 42 (3.0%) from MenB-4C-vaccinated participants,
and 654 (46.0%) from unvaccinated participants. Of the 238/1,422 (16.7%) genogroup
B isolates, 122/1,422 (8.6%) and 4/1,422 (0.3%) were from MenB-FHbp- and MenB-4C-
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vaccinated participants, respectively, and 112/1,422 (7.9%) were from unvaccinated
participants.

Among the 1,422 isolates, 1,406 (98.9%) had intact fHbp alleles: 716/1,422 (50.4%)
from MenB-FHbp-vaccinated participants, 42/1,422 (3.0%) from MenB-4C-vaccinated
participants, and 648/1,422 (45.6%) from unvaccinated participants. The distribution of
FHbp subfamilies in MenB-FHbp-vaccinated and unvaccinated groups was analyzed for
all three universities as well as each university (Table 2). Overall, for all three univer-
sities, higher proportions of isolates contained FHbp B/v1 than FHbp A/v2-3 among all
or non-B genogroups within both vaccinated and unvaccinated groups. In contrast, a
higher proportion of genogroup B isolates contained FHbp A/v2-3 than B/v1 within
both groups. There was no significant difference in FHbp subfamily distribution
between vaccinated and unvaccinated groups among all genogroups, B genogroup,

FIG 1 Phylogenetic analysis of unique peptide sequences of FHbp detected in carriage isolates in this study; all genogroups were
included for this analysis. Peptides included in MenB-FHbp or MenB-4C vaccines are shown in red dots; the predominant peptides
among carriage isolates are shown in blue dots. Prevalent peptides from invasive isolates obtained through domestic surveillance in
the United States (via active bacterial core surveillance) between 2009 and 2014 (37) are shown in green dots.

TABLE 2 FHbp subfamily among carriage isolates, stratified by university and MenB-FHbp vaccination status

University
Capsular
genogroup

Vaccination
status

Total no.
of isolatesa

FHbp a/v2-3
[no. (%)]

FHbp B/v1
[no. (%)]

FHbp
negative

Fisher exact
P valueb

RI-1 All Unvaccinated 195 59 (30.3) 132 (67.7) 4 (2.1) 1
All Vaccinated 451 137 (30.4) 305 (67.6) 9 (2.0)
B Unvaccinated 41 31 (75.6) 10 (24.4) 0 (0.0) 0.1146
B Vaccinated 89 54 (60.7) 35 (39.3) 0 (0.0)
Non-B Unvaccinated 154 28 (18.2) 122 (79.2) 4 (2.6) 0.2425
Non-B Vaccinated 362 82 (22.7) 270 (74.6) 9 (2.5)

OR All Unvaccinated 211 91 (43.1) 119 (56.4) 1 (0.5) 0.0545
All Vaccinated 275 99 (36.0) 175 (63.6) 1 (0.4)
B Unvaccinated 29 24 (82.8) 5 (17.2) 0 (0.0) 0.0133*
B Vaccinated 33 33 (100) 0 0 (0.0)
Non-B Unvaccinated 182 67 (36.8) 114 (62.6) 1 (0.6) 0.0169*
Non-B Vaccinated 242 66 (27.3) 175 (72.3) 1 (0.4)

RI-2 All Unvaccinated 248 142 (57.3) 105 (42.3) 1 (0.4) NA
B Unvaccinated 42 32 (76.2) 10 (23.8) 0 (0.0)
Non-B Unvaccinated 206 110 (53.4) 95 (46.1) 1 (0.5)

aForty-two isolates from MenB-4C participants were excluded for this analysis, resulting in a total of 1,380 isolates from unvaccinated and MenB-FHbp-vaccinated
participants from each university with intact or missing fHbp allele. FHbp-negative isolates were excluded from the statistical test.

bAn asterisk indicates not significant after Bonferroni correction of n=6 tests. NA, not applicable.
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and non-B genogroups observed for RI-1 and OR. At OR, while the P values for FHbp
subfamily distribution between vaccinated and unvaccinated participants among gen-
ogroup B and non-B genogroups were ,0.05, there was no statistically significant dif-
ference between the two groups after Bonferroni correction.

FHbp peptides distribution and predicted strain coverage among vaccinated and
unvaccinated participants. The distribution of FHbp peptides was assessed among car-
riage isolates from MenB-FHbp-vaccinated and unvaccinated participants at RI-1 and
OR (Fig. 2). Overall, isolates containing FHbp B09/1.13 and B16/1.4 peptides were pre-
dominant among MenB-FHbp-vaccinated groups (215/646; 33.3% at RI-1 and 133/528;
25.2% at OR) and unvaccinated groups (95/646; 14.7% at RI-1 and 90/528; 17.1% at
OR). Only eight genogroup B isolates contained either FHbp B09/1.13 or B16/1.4, six
from MenB-FHbp-vaccinated (all at RI-1) and 2 from unvaccinated (one each at RI-1
and OR) participants. A small proportion of isolates either lacked the fHbp allele or con-
tained a truncated fHbp allele, including nine isolates from MenB-FHbp-vaccinated par-
ticipants and four isolates from unvaccinated participants at RI-1 and two isolates from
OR (one each from MenB-FHbp-vaccinated and unvaccinated participants). There was
no statistically significant difference in FHbp peptide distributions between vaccinated
and unvaccinated participants among genogroup B isolates and non-B genogroups
from each university.

While FHbp B01/1.55 was not detected in any isolate in this study, FHbp A05/3.45
was present in 12 of 726 (1.7%) isolates (11 genogroup B and one undetermined gen-
ogroup) from MenB-FHbp-vaccinated participants (nine from RI-1 and three from OR),
all of which were from six MenB-FHbp-vaccinated participants (each received either
one or two vaccine doses). Other FHbp peptides (A04/3.180, A22/2.19, B09/1.13, B24/
1.1, and B44/1.15), shown to be covered by MenB-FHbp (20–24), were detected in 1/
726 (0.1%), 29/726 (4.0%), 180/726 (24.8%), 26/726 (3.6%), and 2/726 (0.3%) isolates
from MenB-FHbp-vaccinated participants, respectively. A total of 84 isolates containing
FHbp that were covered by MenB-FHbp belonged to genogroup B isolates: 46 from
MenB-FHbp-vaccinated participants (37 from RI-1 and 9 from OR) and 38 from unvacci-
nated participants (22 from RI-1 and 16 from OR).

Vaccination impact on carriage acquisition in repeat participants. Of 194 repeat
carriers, 161 (83.0%) received MenB-FHbp, 3 (1.5%) received MenB-4C, and 30 (15.5%)
did not receive a vaccine. Among 161 MenB-FHbp-vaccinated repeat carriers, 143
(88.8%) had 302 isolates that retained the same strain genotype and 18 (11.2%) had 40
isolates that acquired a new strain genotype (Table S5). Among the 30 unvaccinated
repeat carriers, 29 (96.7%) had 58 isolates that retained the same strain genotype, and

FIG 2 Predominant FHbp peptides among carriage isolates, stratified by university (A, RI-1; B, OR) and vaccination status. All isolates, except 42 from
MenB-4C participants, were included for the analysis.
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one (3.3%) from RI-2 had two isolates that acquired a new strain genotype. The differ-
ence between vaccinated and unvaccinated repeat carriers who acquired a new strain
was not statistically significant (P= 0.3176).

Of the 342 isolates (53 genogroup B isolates: 44 from those retaining the same
strain genotype, 9 from those acquiring a new strain genotype) carried by MenB-FHbp-
vaccinated repeat carriers, 32 unique FHbp peptides were detected, with B16/1.4 (96/
342; 28.1%) being the most prevalent, followed by B09/1.13 (68/342; 19.9%). Within
the 302 isolates that retained the same strain genotype, six each (2.0%) harbored FHbp
A05/3.45 or B24/1.1. Among the 60 isolates (10 genogroup B isolates) from unvacci-
nated participants, 13 unique FHbp peptides were detected, with B16/1.4 (16/60; 26.7%)
being most prevalent. There was a statistical difference in FHbp peptide distribution
between vaccinated and unvaccinated repeat carriers among all isolates (P, 0.0001) and
genogroup B isolates (P=0.0225). Additionally, of the 42 isolates that acquired a new strain
genotype, the FHbp peptide prevalence between the detected strains in the previous
round and newly acquired strains in the following round changed from B09/1.13 (seven;
16.7%) to B16/1.4 (three; 7.1%) and from p0010 and p0024 (five each; 11.9%) to p0021
(seven; 16.7%) for NhbA (Table S5).

DISCUSSION

Analysis of whole-genome sequencing data has allowed us to understand MenB
vaccine antigens and assess the impact of MenB-FHbp on their genetic diversity and
distribution in U.S. meningococcal carriage. Almost all carriage isolates (99%) con-
tained an intact fHbp gene, with 61% belonging to FHbp B/v1 peptides. These findings
are in contrast to a previous study showing a higher proportion of FHbp A/v2-3 pep-
tides among carriage isolates (25), but the proportion of genogroup B isolates in this
prior study was greater than that found in our study. Similarly, the majority of carriage
isolates (.99%) in our study contain an intact nhbA gene, with 99% of isolates harbor-
ing both fHbp and nhbA. In contrast, the nadA gene was detected in only a small pro-
portion (7%) of carriage isolates. We found an equal proportion of carriage isolates with
an intact fHbp gene recovered from vaccinated (95% received MenB-FHbp) and unvacci-
nated participants. Statistical analysis showed no significant difference in the distribution
of FHbp subfamilies or peptides between vaccinated and unvaccinated populations, sug-
gesting that the vaccine does not impact the overall FHbp diversity and distribution.

Comparative whole-genome analyses provide evidence of ongoing genetic shift
and gene loss in Bordetella pertussis following the introduction of pertussis vaccines,
possibly due to vaccine selective pressure (26). Our data suggest that MenB-FHbp vac-
cination did not exert significant selective pressure on MenB vaccine antigens in our
study. We found that 63% of carriage isolates lacking or containing a truncated form of
the fHbp allele were from MenB-FHbp-vaccinated participants. However, whether
MenB-FHbp administration exerts a long-term impact similar to that observed with
pertussis vaccines warrants further investigations. Most repeat carriers received MenB-
FHbp. Almost all strains recovered from MenB-FHbp-vaccinated and unvaccinated repeat
carriers retained the same vaccine antigen peptides. Only a small percentage of carriage
isolates recovered from the vaccinated repeat carriers acquired a new strain with different
vaccine antigen peptides. Among isolates from the repeat carriers, we observed significant
differences in FHbp peptide distribution between vaccinated and unvaccinated groups.
However, it could be due to the much higher proportion of isolates from MenB-FHbp-vac-
cinated than from unvaccinated repeat carriers.

Previous analyses indicated that the meningococcal carriage rate remained unchanged
following vaccination campaigns at RI-1 and OR, where the majority of participants
received MenB-FHbp (7, 8). However, it remains unclear whether vaccine-induced antibod-
ies will affect the overall meningococcal or serogroup B carriage long term. Clinical studies
conducted in healthy individuals vaccinated with MenB-FHbp demonstrate a robust induc-
tion of bactericidal antibodies by the vaccine against meningococcal strains expressing
vaccine-homologous (A05/3.45) and -heterologous (A04/3.180, A17/2.49, A22/2.19, A56/
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3.187, B02/1.87, B09/1.13, B24/1.1, or B44/1.15) FHbp peptides, as determined by bacteri-
cidal activity assay using human complement (hSBA), a method to predict vaccine cover-
age (20–24). In our study, FHbp A04/3.180, A05/3.45, A22/2.19, B09/1.13, B24/1.1, and B44/
1.15 were detected in 34% of isolates from MenB-FHbp-vaccinated participants, suggest-
ing that these strains are covered by the vaccine if FHbp is sufficiently expressed on the
surface of these strains.

While the genomic data in this study showed that a high proportion of carriage iso-
lates harbored an intact fHbp gene, FHbp surface expression has not been evaluated
among these isolates. The antigen surface expression level and its accessibility to bac-
tericidal antibodies are essential factors that can impact vaccine effectiveness (27–29).
The genetic diversity and expression of FHbp may affect the bactericidal activity of
FHbp-specific antibodies. It is conceivable that a lack of vaccine impact on carriage is
due to the low level of antigen expression. A carriage study conducted in France
among individuals aged 1 to 25 years showed that FHbp expression was significantly
lower in carriage isolates than in invasive isolates; 32% of all carriage isolates tested
had no detectable FHbp (25). Further investigations on the level of vaccine antigen sur-
face expression in the carriage isolates from our study may shed light on mechanisms
underlying the lack of impact of MenB vaccines on carriage. While induction of muco-
sal antibody responses has been demonstrated for meningococcal serogroup C poly-
saccharide-conjugate vaccines, thereby reducing the carriage and improving the level
of herd protection (30–32), this effect has not been confidently demonstrated for
MenB vaccines. Prior research suggests that a mucosal mode of administration is required
to achieve an adequate immune response within the mucosal environment using MenB
vaccines (33–35). Finally, although MenB vaccine-induced bactericidal activity is a potential
surrogate marker for immunity after vaccination against invasive meningococcal diseases,
its correlation with meningococcal carriage remains unclear.

We recently showed that most of the carriage isolates belong to CC198 and CC1157,
with a very low proportion of carriage isolates in this study belonging to hyperinvasive lin-
eages such as CC32, CC41/44, and CC11 (36), consistent with a previous report (25).
Therefore, MenB vaccine antigens that are typically found in isolates of hyperinvasive line-
ages were detected in only a small proportion of carriage isolates. Previous studies indi-
cated that 56 to 60% of invasive serogroup B isolates collected during 2000 to 2014 in the
United States contain FHbp B/v1, with FHbp B24/1.1 included in MenB-4C being the most
prevalent (33 to 34%) (37, 38); this particular peptide was also present in the meningococ-
cal outbreak strains from RI-1 (ST-9069) and OR (ST-32/CC32). In our study, FHbp B/v1 pep-
tides were carried by 25% of genogroup B carriage isolates, with FHbp B24/1.1 being
detected in 8% of genogroup B isolates. FHbp A05/3.45, included in MenB-FHbp, was
detected in 9% of genogroup B isolates, while FHbp B01/1.55 was absent from all carriage
isolates analyzed in this study. Similarly, these two FHbp peptides were either absent or
present at a low prevalence among invasive isolates (37). Additionally, NhbA p0002,
included in MenB-4C, showed greater prevalence among invasive N. meningitidis serogroup
B isolates (9 to 11%) (37, 38) than among genogroup B carriage isolates (2%).

Overall, similar FHbp peptide distributions were observed among carriage isolates
from both vaccinated and unvaccinated participants during the study period.
Additional investigations over a longer period are warranted to adequately evaluate
the vaccine impact on carriage.

MATERIALS ANDMETHODS
Data collection. Isolates included in this study were collected during February 2015 to March 2016

from meningococcal carriage evaluations at three U.S. universities (RI-1, RI-2, and OR) following vaccina-
tion using standardized methods as previously described (7, 8, 19). Briefly, four carriage evaluation
rounds were conducted in conjunction with mass vaccination campaigns at RI-1 (February, April, and
September 2015 and March 2016) and OR (March, May, and October 2015 and February 2016); two car-
riage evaluation rounds (March and April 2015) were conducted at RI-2, which is located in the same city
as RI-1 and where no N. meningitidis serogroup B outbreak and response activities occurred. A total of
1,514 meningococcal isolates (650 from RI-1, 616 from OR, and 248 from RI-2) were recovered from
8,905 oropharyngeal swabs collected from 7,001 unique individuals (2,014 from RI-1, 3,509 from OR, and
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1,478 from RI-2). N. meningitidis species was determined using real-time PCR targeting sodC (39), and
serogroup was determined using slide agglutination serogrouping (SASG) (40, 41). A total of 1,587 indi-
viduals (615 from RI-1, 613 from OR, and 359 from RI-2) participated in multiple evaluation rounds
(repeat participants); 348 were identified to be N. meningitidis carriers, with 154 carrying N. meningitidis
in only one round and 194 carrying N. meningitidis in at least 2 rounds (repeat carriers).

These evaluations were considered public health evaluations and did not require CDC institutional
review for human subjects’ protection. Both evaluations were covered under project determination
numbers 2015–6436 and 2015–6442 for “Evaluation of Neisseria meningitidis serogroup B carriage in
institutional settings during an outbreak.”

Molecular characterization. Bacterial genomes of all 1,514 confirmed meningococcal isolates were
further characterized with whole-genome sequencing using Illumina platforms (HiSeq2500 or MiSeq;
San Diego, CA). Illumina reads were trimmed with cutadapt (42) to remove adaptor sequences and reads
below a quality score of 28 (Q28) and 75 bp. De novo short-read assembly was carried out using SPAdes
3.7.0 (43) with the “careful” option. The capsular genogroup of each isolate was determined based on
serogroup-specific genes (44); isolates that contained capsule genes but lacked any identifiable serogroup-
specific capsule gene were deemed to have an “undetermined genogroup.” Isolates that lack the whole-cap-
sule locus are defined as capsule null (cnl) (44). Genome sequence assemblies were used in subsequent
BLAST searches (45) against the PubMLST Neisseria allele database (46) to determine clonal complex (CC)/
sequence type (ST), MenB vaccine antigens (FHbp, NhbA, and NadA), and fine typing peptides (FetA and
PorA) (47). All unique peptides of MenB vaccine antigens, including PorA, were assigned PubMLST peptide
allele identifiers (IDs) as described previously (12, 48, 49).

Data analysis. While 1,514 carriage isolates were obtained, only one isolate from each participant
who carried the same meningococcal strain in more than one round (repeat carriers) was included in
the analysis to assess the MenB vaccine antigen diversity and distribution among the carriage isolates
circulating in the three universities, resulting in a total of 1,337 isolates.

To compare MenB vaccine antigen distribution between vaccinated (received $1 dose of MenB-
FHbp or MenB-4C 14 days prior to sample collection) and unvaccinated participants, all isolates from
repeat carriers were included even if they appeared to be the same strain genotype (CC:ST:PorA:FetA);
however, participants with unknown MenB vaccination records were excluded from the analysis (92 iso-
lates from RI-1 and OR), resulting in a total of 1,422 carriage isolates. For phylogenetic analysis of MenB
vaccine antigens, multiple-sequence alignment of peptides was generated by ClustalW (50) with CLC
Genomics Workbench 7. Networks were created by SplitsTree, v 4.0 (51), with default parameters.

Statistical analysis. Statistical analysis was performed using SAS version 9.4 (SAS Institute, Cary,
NC). Fisher’s exact test was used to assess changes in the distribution of FHbp subfamilies and peptides
in isolates recovered from vaccinated and unvaccinated participants, stratified by university and whether
the isolate was N. meningitidis serogroup B or non-N. meningitidis serogroup B. Isolates negative for both
subfamilies A and B were excluded from this test due to being a low proportion (0.9%) of the overall isolate
collection. Chi-squared goodness-of-fit tests were used to test for changes in distribution among N. meningi-
tidis serogroup B and non-N. meningitidis serogroup B isolates. A Bonferroni correction was applied to correct
for multiple comparisons. To assess proportions between vaccinated and unvaccinated repeat carriers who
acquired a new meningococcal strain, a Fisher’s exact test was performed; FHbp peptide distributions in all
isolates and genogroup B isolates among these groups were analyzed using a likelihood ratio chi-squared
test.

Data availability. Sequence reads are available under NCBI BioProject no. PRJNA533315.
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