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Abstract 

Background and objective: Automatic voice condition analysis systems to detect 
Parkinson’s disease (PD) are generally based on speech data recorded under acousti‑
cally controlled conditions and professional supervision. The performance of these 
approaches in a free‑living scenario is unknown. The aim of this research is to investi‑
gate the impact of uncontrolled conditions (realistic acoustic environment and lack of 
supervision) on the performance of automatic PD detection systems based on speech.

Methods: A mobile‑assisted voice condition analysis system is proposed to aid in the 
detection of PD using speech. The system is based on a server–client architecture. In 
the server, feature extraction and machine learning algorithms are designed and imple‑
mented to discriminate subjects with PD from healthy ones. The Android app allows 
patients to submit phonations and physicians to check the complete record of every 
patient. Six different machine learning classifiers are applied to compare their perfor‑
mance on two different speech databases. One of them is an in‑house database (UEX 
database), collected under professional supervision by using the same Android‑based 
smartphone in the same room, whereas the other one is an age, sex and health‑status 
balanced subset of mPower study for PD, which provides real‑world data. By applying 
identical methodology, single‑database experiments have been performed on each 
database, and also cross‑database tests. Cross‑validation has been applied to assess 
generalization performance and hypothesis tests have been used to report statistically 
significant differences.

Results: In the single‑database experiments, a best accuracy rate of 0.92 (AUC = 0.98) 
has been obtained on UEX database, while a considerably lower best accuracy rate of 
0.71 (AUC = 0.76) has been achieved using the mPower‑based database. The cross‑
database tests provided very degraded accuracy metrics.

Conclusion: The results clearly show the potential of the proposed system as an aid 
for general practitioners to conduct triage or an additional tool for neurologists to 
perform diagnosis. However, due to the performance degradation observed using data 
from mPower study, semi‑controlled conditions are encouraged, i.e., voices recorded at 
home by the patients themselves following a strict recording protocol and control of 
the information about patients by the medical doctor at charge.
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Introduction
Parkinson’s disease (PD) is an up-to-now incurable neurodegenerative disorder that 
mainly, but not exclusively, affects the motor system. It is the most relevant neurodegen-
erative disorder after Alzheimer’s disease, but with a faster growth. The Global Burden 
of Disease study projects to reach 13 million people affected by PD in 2040 [10].

PD is typically diagnosed by a neurologist when certain motor symptoms become 
clinically evident, in particular when bradykinesia occurs along with rigidity or tremor. 
Early diagnosis is key to improve quality of life of people suffering from PD. However, in 
the European survey presented by Bloem and Stocchi [6], diagnosis time after the first 
symptoms’ onset was above 2 years in 11.8% of the patients. Misdiagnoses are also com-
mon and can be as high as 25% when the practitioners have limited clinical experience 
in PD [26]. The situation is critical in developing countries, where many patients remain 
undiagnosed [11]. Therefore, new tools seem necessary to obtain an early diagnosis.

Subjects with PD suffer from speech impairment [8]. This leads to consider automatic 
analysis of voice recordings as a potential tool to aid diagnosis. Different vocal tasks, 
focused on phonation, articulation, prosody, and cognitive–linguistic aspects have been 
used for the detection of PD through voice. The most used vocal task is the sustained 
phonation of the /a/ vowel due to its simplicity and ubiquity in different languages [30, 
46]. Previous works have used a wide variety of acoustic features extracted from this type 
of speech recordings. For example, perturbation measures (such as Jitter or Shimmer 
[50]), noise measures (for instance, the harmonic-to-noise ratio (HNR) [20]), spectral 
and cepstral features [37], and several features based on nonlinear analysis [50], among 
others.

Also, diadochokinesis test recordings studying articulatory tasks [28, 41], prosodic 
features extracted from reading texts and spontaneous speech [19, 53], and even com-
binations of different vocal tasks [43] have been proposed. An equally wide range of pro-
posals can be found regarding machine learning techniques. Commonly used classifiers 
that have been used for this application are: Random Forest, Neural Networks or Sup-
port Vector Machines, among others [18, 29, 38].

Those studies were carried out using speech recordings obtained using high-grade 
equipment like professional microphones and sound cards. Several feature datasets that 
have been extracted from recordings obtained with this type of equipment are publicly 
available [24, 30, 44]. Some authors have performed cross-database tests, which involve 
different microphones, environment, and even languages [35, 54], although always 
under controlled conditions. In this article, the term “controlled conditions” refers to the 
fact that there is professional supervision of the recordings and a certain control on the 
acoustic environment so that at least the noise level is low.

Systems built on recordings based on professional equipment are limited in the range 
of potential applications. Due to the ever-increasing penetration of smartphones, using 
these mobile devices would allow for extending the application of automatic PD detec-
tion through voice on a larger scale. The use of these devices to record phonations and 
build databases is an interesting strategy introduced in some recent studies. Almeida 
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et al. [1] proposed a comparison of two different datasets of sustained vowel phonations. 
These datasets have been obtained through simultaneous recordings by using a profes-
sional microphone and a smartphone. Afterwards, a common methodology, consist-
ing of preprocessing, feature extraction, and classification, was applied to both datasets 
comparing the results obtained in each case. In a similar way, Rusz et al. [42] simultane-
ously recorded different vocal tasks with a professional head-mounted condenser micro-
phone and a smartphone, comparing the results. The outcomes point in the direction 
that detection of speech abnormalities due to PD via a smartphone is possible.

As the use of mobile phones increases the scope of this research line, specialized app 
development is a natural step. Some reviews have been published on the existing and 
potentially useful apps for PD patients available in the leading app stores [23, 39]. How-
ever, they concluded that, despite the clear potential of this type of technology, further 
efforts and more improvements are needed for it to be effectively used in a real clini-
cal scenario. In line with this demand, a smartphone app frontend in conjunction with 
a computing server backend has been designed and implemented as a necessary step 
to build a mobile-assisted voice condition analysis system. The app allows patients to 
provide data and physicians to check the complete record of every patient. The system 
is completed with a machine learning approach to perform PD detection on the server 
side. This approach is built on top of a feature extraction process that includes some of 
the most relevant algorithms for PD detection, a recursive feature elimination selection 
process, and a classifier. To provide robust results cross-validations have been consid-
ered. Besides, approaches with six different classifiers have been implemented for com-
parison purposes. The system also allows its use with future implementations to aid also 
disease monitoring.

A critical aspect is to check the results obtained in increasingly realistic environments. 
The works previously mentioned were issued in a controlled environment and under 
supervision. More concretely, in Rusz et al. [42] the speech recordings were performed 
in a quiet room with an environmental noise level lower than 50 dB, and with a special-
ist who guided the participants through the recording protocol. In the case of Almeida 
et  al. [1], the recordings were taken in a sound-proof booth. However, there are also 
recent studies that use public repositories where participants send their voice recordings 
and complementary information (age, health status, sex, etc.) without any professional 
supervision. This is the case of mPower PD database [7]. Some previous contributions 
using this database show the results of applying different feature extraction and machine 
learning techniques to perform PD detection based on uncontrolled conditions, that is, 
unknown acoustic environment and without a professional control to make sure that 
the recordings strictly follow the protocol [48, 49, 55, 56]. These studies do not ensure 
age and sex balances in the mPower-based datasets they use. Age and sex balances are 
necessary to avoid potential biases in the results. Also, to the authors’ best knowledge, 
cross-database studies that use data obtained in a realistic environment have not been 
presented. Research that considered smartphone recordings has focused on datasets col-
lected either in controlled or uncontrolled conditions. However, both types of scenarios 
have not been jointly considered under the same methodology.

The research hypothesis is that the accuracy obtained by a mobile-assisted PD 
detection system based on voice tested on a controlled scenario (in terms of acoustic 
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environment and professional supervision) is degraded when the scenario is uncon-
trolled. The aim of this research work is to analyze the impact of uncontrolled acous-
tic environment and lack of professional supervision during the recordings avoiding 
the influence of the feature extraction and machine learning algorithms. This requires 
the application of exactly the same methodology on controlled and uncontrolled data-
bases and the realization of cross-database experiments, in which the training is per-
formed with one database and the test with the other one.

One of the databases is an in-house one (UEX database), collected with professional 
supervision in a controlled environment. It has been obtained from an experiment 
specifically conducted to help in the detection of PD. The second one is a subset of 
the public mPower database, collected in a realistic environment without professional 
control. This subset has been chosen to ensure age and sex balance as well as compa-
rable disease severity in relation to the in-house database. The concrete voice record-
ings from mPower study that we have used can be checked in the Appendix, which 
provides the health codes, unique identifiers provided by mPower. Both databases are 
also the same size. The comparison allows for evaluation of the performance degrada-
tion that might be expected when moving an automatic PD detection system from a 
controlled mobile scenario to an uncontrolled one. Also, cross-database tests are per-
formed to assess the generalizability of the results.

The novel contributions of this paper can be summarized as follows:

– Performance comparison of a speech-based PD detection approach on two differ-
ent databases created by using smartphones, one of them recorded under controlled 
conditions (quiet acoustic environment, professional supervision) and the other one 
collected without supervision in realistic environments (mPower-based database).

– Cross-database experiments involving the controlled database and the database 
recorded in realistic environments.

– Methodologically robust analysis based on the following considerations: balanced 
datasets regarding age and sex, comparable disease stage between datasets, identi-
cal methodology (preprocessing, feature extraction, feature selection and six clas-
sification algorithms) applied in all the experiments.

– Design and implementation of client–server system architecture: Android-based 
app and artificial intelligence engine, ready to perform further analysis in semi-
controlled clinical trials.

Results
Experimental settings

The methodology proposed in Section  is applied to the UEX and mPower-based data-
bases. A total of 100 iterations of stratified 5-fold  cross-validations have been used 
for the feature selection step. For hyperparameter optimization with grid search also 
a stratified 5-fold cross-validation has been issued. Finally, the classification process 
consists of 1000 iterations. In each one of them the set is randomly split in training 
and test subsets with a 75–25% ratio stratified by health status.
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Results for UEX database

Table  1 shows the evaluation metrics resulting from applying the machine learning 
approaches with the considered specifications to the UEX database.

Three out of six approaches (Passive Aggressive, Perceptron, and Support Vector 
Machine (SVM)) produced accuracy rates greater than 0.9, and Logistic Regression is 
close to this value. Random Forest and Gradient Boosting showed a downgrade in per-
formance with accuracy rates around 0.75. Sensitivity and specificity are used to ana-
lyze how balanced the system is by checking whether PD or healthy subjects are better 
detected. All of the approaches provided slightly larger sensitivities (right classifications 
for subjects suffering from PD) than specificities (right classifications for healthy peo-
ple). However, these differences are small and it can be concluded that all of them are 
reasonably well balanced.

Figure 1 shows mean receiver operating characteristic (ROC) curves (blue lines) with 
bands for ± 1 standard deviation (light gray area) for the six classifiers under considera-
tion. The ROC curve shows the trade-off between false-positive rate (FPR = 1-specific-
ity) in the x-axis and true-positive rate (TPR=sensitivity) in the y-axis. As performance 
is measured with the area under the curve (AUC) metric, ROC curves closer to the top-
left corner indicate a better performance.

Gradient Boosting ROC curve presented in Fig.  1a provides a relatively good AUC 
mean value of 0.8387 with a standard deviation of 0.0964. Given the shape of the curve 
the results are far from the optimal classifier (TPR = 1, FPR = 0), and the slow growth 
indicates that we should face a very high FPR for TPR higher than 0.7. Random Forest 
ROC in Fig. 1e shows a similar performance, with mean AUC = 0.8787, and the same 
problem of high FPR for TPR higher than 0.7. On the other side, Logistic Regression 
(Fig.  1b), Passive Aggressive (Fig.  1c), Perceptron (Fig.  1d) and SVM (Fig.  1f ) show a 
great AUC, well above 0.95 in every case, and a standard deviation that shows a perfect 
classifier for some of the cross-validation experiments performed. In these cases, the 
FPR/TPR trade-offs are much more beneficial, with FPR lower than 0.2 for TPR above 
0.9 in every case.

Table  2 presents the run times separated by feature selection, grid search and clas-
sification. The most time-consuming task for all six classifiers is feature selection, since 
a very exhaustive recursive feature elimination with cross-validation (RFECV) has been 
applied, followed by grid search. Finally, classification, applied here with cross-valida-
tion, is the least expensive task in terms of computational time. Gradient Boosting and 

Table 1 Evaluation metrics (mean ± standard deviation) obtained with the proposed procedure by 
using the UEX database

Accuracy rate Sensitivity Specificity AUC 

Gradient Boosting 0.7503 ± 0.0983 0.7683 ± 0.1486 0.7331 ± 0.1697 0.8387 ± 0.0964

Logistic Regression 0.8897 ± 0.0820 0.9007 ± 0.1145 0.8788 ± 0.1324 0.9627 ± 0.0522

Passive Aggressive 0.9205 ± 0.0723 0.9396 ± 0.1005 0.9018 ± 0.1108 0.9756 ± 0.0403

Perceptron 0.9083 ± 0.0781 0.9284 ± 0.1030 0.8881 ± 0.1232 0.9713 ± 0.0457

Random Forest 0.7631 ± 0.1024 0.7666 ± 0.1591 0.7605 ± 0.1486 0.8787 ± 0.0821

SVM 0.9148 ± 0.0853 0.9229 ± 0.1102 0.9076 ± 0.1229 0.9749 ± 0.0483
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Random Forest, which yield the lowest performance, also have the largest execution 
times. The rest of the classifiers have closer values, all of them with less than one minute 
for the total run time.

Fig. 1 ROC curves and AUC metric obtained with the proposed procedure by using the UEX database: a 
Gradient Boosting, b Logistic Regression, c Passive Aggressive, d Perceptron, e Random forest, f Support 
Vector Machine
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Table  3 summarizes the results from the feature selection process, providing a 
global perspective about which features are the most relevant for each approach. 
Checking the number of times each feature has been selected, it can be determined 
that Lempel–Ziv complexity (LZ-2), Cepstral Peak Prominence (CPP), Period Density 
Entropy (RPDE), and 4th and 8th Mel Frequency Cepstral Coefficients (MFCC) are 
the most selected features. Specifically, the most chosen feature is LZ-2, which is the 
only one selected by all the approaches. Conventional features like Jitter, Shimmer 
or HNR are not very relevant. Gradient Boosting only selected three features, but it 
performs badly in accuracy metrics and run time results. The rest of the classifiers 
selected a similar number of features and chose the five most relevant ones (LZ-2, 
CPP, RPDE, MFCC4, and MFCC8).

In summary, the best result is obtained with the Passive Aggressive approach. It pro-
duces the largest accuracy rate (0.9205) and AUC (0.9756), with the lowest standard 
deviations (0.0723 and 0.0403, respectively). Besides, its computing time is low. SVM 
and Perceptron approaches are also very competitive in accuracy metrics and computing 
time. Any of these three approaches could be considered for the mobile-assisted system 
to detect PD.

Table 2 Run times in seconds for the different steps of the proposed procedure by using the UEX 
database

Feature selection Grid search Classification Total

Gradient Boosting 390.05 318.47 105.69 814.21

Logistic Regression 24.63 21.51 12.28 58.42

Passive Aggressive 23.43 11.97 12.21 47.61

Perceptron 22.17 7.58 12.37 42.13

Random Forest 938.81 286.77 155.31 1380.89

SVM 17.75 14.00 9.16 40.91

Table 3 Selected features for each classifier in the proposed procedure by using the UEX database
Gradient
Boos�ng

Logis�c
Regression

Passive
Aggressive

Perceptron Random
Forest

SVM Total

Sex 0
Ji�er 0

Shimmer 1
LZ-2 6
CPP 5
Hurst 0
MFS 2

Shannon 0
Permuta�on 0

PPE 2
FMMI 0
FZCF 0
GNE 0
ZCR 3
D2 4
HNR 2
RPDE 5

GQ prc5 95 0
GQ std cycle open 0
GQ std cycle closed 4

MFCC0 4
MFCC1 0
MFCC2 1
MFCC3 0
MFCC4 5
MFCC5 3
MFCC6 0
MFCC7 0
MFCC8 5
MFCC9 4
MFCC10 1
MFCC11 4
MFCC12 2
Total 3 12 13 12 11 12

Gradient
Boos�ng

Logis�c
Regression

Passive
Aggressive

Perceptron Random
Forest

SVM ToTT tal

Sex 0
Ji�er 0

Shimmer 1
LZ-2 6
CPP 5
Hurst 0
MFS 2

Shannon 0
Permuta�on 0

PPE 2
FMMI 0
FZCF 0
GNE 0
ZCR 3
D2 4
HNR 2
RPDE 5

GQ prc5 95 0
GQ std cycle open 0
GQ std cycle closed 4

MFCC0 4
MFCC1 0
MFCC2 1
MFCC3 0
MFCC4 5
MFCC5 3
MFCC6 0
MFCC7 0
MFCC8 5
MFCC9 4
MFCC10 1
MFCC11 4
MFCC12 2
ToTT tal 3 12 13 12 11 12
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Results for mPower‑based database

The same experimental settings and methodology applied to UEX database is 
applied to this matched database based on mPower study. Table 4 presents the accu-
racy metrics. T-tests reported statistically significant differences ( p-values < 0.001 ) 
for comparisons of each accuracy metric and method between UEX database and 
mPower-based database.

Accuracy rates are much lower than in the case of UEX database, ranging from 
0.6167 to 0.7138. The best approach is based on Gradient Boosting classifier. This 
means that the accuracy rates have been degraded for all the approaches. In percent-
age terms, the reductions with respect to UEX database range from 4.9% to 33.0%. 
Analogously, sensitivities and specificities are also degraded, with reductions ranging 
from 3.4% to 35.1%, and from 6.3% to 30.7%, respectively. Sensitivities and specifici-
ties are close for most of the approaches when applied to mPower dataset.

Figure  2 shows the ROC curves (blue lines) with bands for ± standard deviation 
(light gray area). Superiority of the ROC curves in Fig.  1 with respect to Fig.  2 can 
be seen at a glance. Following the AUC criterion, the best approach is also Gradient 
Boosting, but its AUC value is only 0.7449. In fact, the AUC values range from 0.6923 
to 0.7560, which means reductions of AUC between 9.9% and 28.9% with respect to 
the UEX database. Every classifier but Gradient Boosting (Fig. 2a) produces an AUC 
under 0.75, though the latter slightly exceeds that value, making it the best option. In 
every case, the trade-off between FPR and TPR is quite low. It is worth noting that 
the curve does not reach TPR = 1 in any case, no matter the threshold. Also, Passive 
Aggressive and Perceptron (Fig. 2c and d) are near random classification, given that 
standard deviation shows that, in the worst cases, AUC stays as low as 0.5.

It is remarkable that the standard deviations of the metrics are greater in the case of 
mPower-based database in spite of the fact that the mean values are lower than those 
of the UEX database. This means that the approaches provide more dispersed values 
with mPower-based dataset, and therefore the results obtained with UEX dataset are 
more robust.

With respect to the computing time, the results match those obtained with UEX 
database. Table  5 shows the computing times separated by tasks. There are two 
approaches, Gradient Boosting and Random Forest, that have large computing times. 
The other four approaches keep their execution time below one minute for the whole 
process.

Table 4 Evaluation metrics (mean ± standard deviation) obtained with the proposed procedure by 
using the mPower‑based database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.7138 ± 0.1051 0.7419 ± 0.1712 0.6868 ± 0.1665 0.7560 ± 0.1147

Logistic Regression 0.6523 ± 0.1101 0.6530 ± 0.1961 0.6525 ± 0.1910 0.7330 ± 0.1258

Passive Aggressive 0.6167 ± 0.1167 0.6096 ± 0.2168 0.6247 ± 0.2141 0.6935 ± 0.1349

Perceptron 0.6245 ± 0.1179 0.6334 ± 0.2211 0.6164 ± 0.2150 0.6923 ± 0.1411

Random Forest 0.6957 ± 0.1048 0.7123 ± 0.1659 0.6823 ± 0.1664 0.7475 ± 0.1110

SVM 0.6562 ± 0.1122 0.6476 ± 0.2047 0.6657 ± 0.1879 0.7437 ± 0.1240
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Finally, it is remarkable that the feature selection processes have provided differ-
ent results than those of UEX database. Table  6 shows the selected features for each 
approach. Sex, Shimmer, MultiFractal Spectrum Width (MFSW), Glottal Quotients 

Fig. 2 ROC curves and AUC metric obtained with the proposed procedure by using the mPower‑based 
database: a Gradient Boosting, b Logistic Regression, c Passive Aggressive, d Perceptron, e Random forest, f 
Support Vector Machine
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(GQ prc5-95 and GQ std cycle open), and MFCC6 have been the most selected features, 
being Shimmer selected by all the approaches. MFCCs have also been selected with UEX 
database. The number of selected features range from 7 to 10.

Cross‑database tests

In this type of experiments, we use the selected features and hyperparameter val-
ues obtained in a single-database experiment and test the performance on the other 
database.

Table  7 shows the results obtained when the selected features and hyperparameter 
values obtained from UEX database are applied on mPower-based database. It can be 
observed that the detection capability has been lost, with a result close to random clas-
sification. Specifically, the degradation can be quantified with a reduction percentage 
with respect to the results obtained with the UEX database in 27.7–45.5% for accuracy, 
31.0–49.9% for sensitivity, 30.0–43.1% for specificity, and in 33.7–48.4% for AUC. This 
indicates that it is not recommendable to train the system with a controlled database if it 
is going to be applied on an uncontrolled scenario.

The results obtained using the reverse procedure are shown in Table 8. In this case, 
the selected features and hyperparameter values are obtained from the mPower-based 

Table 5 Run times in seconds for the different steps of the proposed procedure by using the 
mPower‑based database

Feature selection Grid search Classification Total

Gradient Boosting 392.43 379.88 24.64 796.95

Logistic Regression 19.22 15.81 9.58 44.60

Passive Aggressive 18.27 8.82 8.99 36.09

Perceptron 17.08 5.48 9.62 32.18

Random Forest 939.55 281.49 82.51 1303.55

SVM 18.61 13.59 9.21 41.42

Table 6 Selected features for each classifier in the proposed procedure by using the mPower‑based 
database

Gradient
B oos�ng

Logis�c Re-
gression

Passive Ag-
gressive

Perceptron Random Forest SVM Total

Sex 4
Ji�er 0

Shimmer 6
LZ-2 0
CPP 0
Hurst 0
MFS 4

Shannon 2
Permuta�on 0

PPE 0
FMMI 0
FZCF 0
GNE 1
ZCR 0
D2 1
HNR 0
RPDE 2

GQ prc5 95 4
GQ std cycle open 5
GQ std cycle closed 2

MFCC0 2
MFCC1 0
MFCC2 2
MFCC3 1
MFCC4 0
MFCC5 3
MFCC6 5
MFCC7 1
MFCC8 2
MFCC9 0
MFCC10 0
MFCC11 0
MFCC12 0
Total 8 7 7 7 10 7

Gradient
B oos�ng

Logis�c Re-
gression

Passive Ag-
gressive

Perceptron Random Forest SVM ToTT tal

Sex 4
Ji�er 0

Shimmer 6
LZ-2 0
CPP 0
Hurst 0
MFS 4

Shannon 2
Permuta�on 0

PPE 0
FMMI 0
FZCF 0
GNE 1
ZCR 0
D2 1
HNR 0
RPDE 2

GQ prc5 95 4
GQ std cycle open 5
GQ std cycle closed 2

MFCC0 2
MFCC1 0
MFCC2 2
MFCC3 1
MFCC4 0
MFCC5 3
MFCC6 5
MFCC7 1
MFCC8 2
MFCC9 0
MFCC10 0
MFCC11 0
MFCC12 0
ToTT tal 8 7 7 7 10 7
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database and tested on UEX database. Now, the reduction percentage with respect to 
the results obtained with the mPower-based database are in 7.7–13.6% for accuracy, 
5.7–11.6% for sensitivity, 6.3–24.2% for specificity, and 8.3–21.5% for AUC. In spite of 
the low performance, the results are better than in the previous experiment. This indi-
cates that system robustness is increased when a variety of acoustic conditions is used 
to determine the feature set and hyperparameter values, and they are applied to voice 
recordings fulfilling a very strict recording protocol.

Discussion
In this study, we have proposed a methodology to discriminate PD patients from healthy 
subjects based on sustained phonations of /a/ vowel recorded by a smartphone. We 
applied feature extraction, data standardization, feature selection, hyperparameter opti-
mization, and six different classification techniques. The results obtained when applying 
this methodology to recordings obtained under controlled conditions (protocol super-
vised by specialized staff, same recording room and same smartphone) have been pre-
sented first.

Under these controlled conditions, the procedure has allowed to identify a set of fea-
tures that provide good performance using accuracy, sensitivity, specificity and AUC 
metrics. The results demonstrate the relevance of LZ-2 and RPDE. The high ability for 
PD discrimination of these and other features based on nonlinear dynamics has been 
noted by other authors (see e.g., Orozco-Arroyave et al. [36]). It is also remarkable the 
role played by CPP which, as opposed to classic features such as Jitter, can be robustly 
extracted even from strongly aperiodic signals like those obtained from PD patients 
with a severely affected voice. It is also known the huge potential of MFCCs for different 

Table 7 Evaluation metrics (mean ± standard deviation) obtained by selecting features and 
hyperparameter values from UEX database and testing the performance on mPower‑based database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.5234 ± 0.1139 0.5358 ± 0.1827 0.5131 ± 0.1912 0.5377 ± 0.1294

Logistic Regression 0.5380 ± 0.1233 0.5376 ± 0.2024 0.5393 ± 0.2036 0.5569 ± 0.1495

Passive Aggressive 0.5021 ± 0.1243 0.4706 ± 0.2092 0.5357 ± 0.2130 0.5036 ± 0.1548

Perceptron 0.5289 ± 0.1205 0.5267 ± 0.2019 0.5334 ± 0.2027 0.5522 ± 0.1452

Random Forest 0.5519 ± 0.1245 0.5286 ± 0.1956 0.5818 ± 0.1980 0.5822 ± 0.1474

SVM 0.5230 ± 0.1209 0.5308 ± 0.2023 0.5166 ± 0.2025 0.5442 ± 0.1432

Table 8 Evaluation metrics (mean ± standard deviation) obtained by selecting features and 
hyperparameter values from mPower‑based database and testing the performance on UEX database

Accuracy Sensitivity Specificity AUC 

Gradient Boosting 0.6165 ± 0.1046 0.6260 ± 0.1786 0.6089 ± 0.1736 0.6664 ± 0.1216

Logistic Regression 0.6022 ± 0.1175 0.5940 ± 0.2138 0.6114 ± 0.1985 0.6495 ± 0.1426

Passive Aggressive 0.5302 ± 0.1262 0.5877 ± 0.2529 0.4738 ± 0.2426 0.5446 ± 0.1625

Perceptron 0.5877 ± 0.1258 0.5925 ± 0.2219 0.5849 ± 0.2142 0.6322 ± 0.1539

Random Forest 0.6421 ± 0.1003 0.6717 ± 0.1749 0.6152 ± 0.1664 0.6851 ± 0.1216

SVM 0.6053 ± 0.1142 0.6033 ± 0.2062 0.6074 ± 0.2024 0.6511 ± 0.1416



Page 12 of 24Carrón et al. BioMedical Engineering OnLine          (2021) 20:114 

classification applications based on speech. They have been previously used for PD 
detection by Sakar et  al. [45]. MFCCs allow for capturing differences in the resonant 
characteristics of the vocal tract. It has been reported that patients with PD present an 
asymmetric centralization of tongue position during the phonation of vowels, which 
produces a decrease in the vowel space area in comparison to healthy speakers [2]. This 
can explain the high number of MFCCs present in the subsets of selected features that 
result from our study.

With UEX database, the best results have been achieved using Passive Aggressive clas-
sifier: 0.9205 in accuracy rate, 0.9396 in sensitivity, 0.9018 in specificity, and 0.9756 in 
AUC. Placing these results in the context of the literature is a complex task since a real 
comparison of methodologies would require working on the same databases, or at least 
on databases with comparable disease stages which also ensure age and sex balance. To 
the authors’ best knowledge the published scientific work does not allow for a compari-
son that fulfills these three requirements. However, in the next paragraphs we provide 
a rough overview of the performance obtained using professional microphones and 
smartphones.

In the case of professional microphones, in a recent work, Solana-Lavalle et  al. [46] 
compare their accuracy rate (0.94) with other scientific works presenting values between 
0.85 and 1. In the case of databases based on smartphone recordings, Almeida et al. [1] 
use sustained vowel recordings and a similar methodology than ours: feature extrac-
tion and classification process with 2/3 training and 1/3 test ratio for cross-validation. 
They achieve 0.9294 of accuracy rate and 0.9240 of AUC by using 1-nearest neighbor 
classifier with smartphone recordings. The health status of PD patients was evaluated 
at stages 1 to 2.5 according to HY (Hoehn and Yahr) scale. The experimental design was 
not age-balanced, since the mean age of PD patients was 61.5 years, while the mean age 
of healthy subjects was 41.8 years. Rusz et al. [42] recorded different vocal tasks includ-
ing sustained vowels with a professional microphone and a smartphone. The experiment 
was well balanced in terms of age and sex. The mean HY stage was 2.1 (0.4) in compari-
son to 2.7 (0.53) in this study. Their methodology is based on the extraction of 6 acous-
tic features and the use of Logistic Regression with Leave-One-Out cross-validation for 
classification. They achieved an AUC of 0.85 for smartphones. Zhang [57] proposed a 
smartphone-based PD detection service by using a deep learning methodology based on 
stacked autoencoders and K-Nearest-Neighbor classifier achieving a maximum accuracy 
value of 0.9881. However, this can not be considered a complete smartphone-based sys-
tem since their experimental results were not obtained from recordings made by mobile 
phones. Instead, they used already extracted features from publicly available datasets.

Once the potential of our methodology to perform automatic detection of PD has 
been proved on a controlled scenario, the next step is applying the same techniques in 
an uncontrolled one, therefore, we considered mPower database [7]. It must be pointed 
out that this database has been massively collected. As a consequence, it contains some 
faulty recordings that would not pass a simple playback quality check performed by the 
majority of the users if they were immersed in a real clinical scenario. Also, it includes 
some inconsistencies in diagnosis, having recordings from the same subject labeled as 
PD affected and healthy. In order to issue a valid comparison with it, a previous work 
has been done to select recordings from the database which provided a balanced set by 
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sex, age, and disease stage. The results show a best accuracy rate of 0.7138 with sensitiv-
ity of 0.7419, specificity of 0.6868 and AUC of 0.7560 for Gradient Boosting versus a 
best accuracy rate of 0.9205 with sensitivity of 0.9396, specificity of 0.9018 and AUC of 
0.9756 for Passive Aggressive with the UEX database. This has provided statistically sig-
nificant differences for the four accuracy metrics ( p-values < 0.001 ). This shows a clear 
degradation in the accuracy performance in comparison to UEX database that is not 
only reported for the best methods, but for all ones. In this case, using mPower-based 
database produces a performance degradation of 22.5% for accuracy rate, 21% for sensi-
tivity, 23.8% for specificity and 22.5% for AUC.

The aforementioned difficulties arise again when these results are intended to be 
placed in the context of the scientific literature, because previous works based on 
mPower database do not use exactly the same subset of recordings. Since the database 
has been massively collected, experiments based on large cohorts have been performed. 
For example, with a subset of mPower database consisting of 2222 phonation recordings, 
933 PD patients and 1289 healthy subjects, Giuliano et al. [14] obtained AUC values over 
0.82 in the discrimination of PD subjects from healthy ones. Their methodology was 
based on Neural Networks and Logistic Regression models. Wroge et al. [55] reached a 
maximum accuracy rate of 0.86 by using Minimum Redundancy Maximum Relevance 
for feature selection and Gradient Boosted Decision Tree for classification, with a total 
of 5826 voice recordings. Tougui et al. [48] achieved an accuracy rate of 0.9578 by using 
Least Absolute Shrinkage and Selection Operator feature selector, hyperparameter tun-
ing, and Extreme Gradient Boosting classifier with 18210 recordings (9105 PD patients 
and 9105 healthy subjects). In these works based on large cohorts, sex and age balances 
between PD and healthy groups are not ensured in the experiments.

The application of an identical methodology to both databases has allowed for check-
ing the differences that can be expected when moving from a controlled scenario to an 
uncontrolled one. As previously mentioned, a clear degradation in the detection perfor-
mance can be noted, but there are also differences concerning the selected features and 
the best classifier. In terms of selected features, with the exception of Gradient Boost-
ing, the results obtained with UEX database show a good stability when varying the 
classification method. A similar conclusion regarding stability across classifiers can be 
extracted from the results obtained on mPower-based database, which means that the 
database plays a more important role than the classification method. On mPower-based 
database the most relevant features are: Sex, Shimmer, MFSW, GQ std cycle open, GQ 
prc5 95 and MFCC6. Although the features are different for each database, we can iden-
tify some common aspects. For example, if we consider the most repeated features, in 
both cases the role is shared by features that are able to capture source-related irregu-
larities considering the classical source-filter theory of speech production (CPP in the 
case of UEX database, GQ std cycle open and GQ prc5 95 in the case of mPower-based 
database), resonance-related features (MFCCs) and features based on nonlinear analysis 
(LZ2 and RPDE in the case of UEx database and MFSW in the case of mPower-based 
database).

A limitation of our work is the size of the databases. The reason is the difficulty in 
recruiting people suffering from PD in the case of the controlled database (UEX data-
base). Nevertheless, 60 people (30 with PD and 30 healthy controls) is a reasonable size 
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compared to other studies in the scientific literature. For example, in Benba et al. [4] the 
number of participants is 40 (20 with PD and 20 healthy); in Little et al. [24], this num-
ber was 31 (23 with PD) and in Novotny’ et al. [34] the total number was 80 (40 with PD 
and 40 healthy).

Regarding computation time, the executions on both databases yield similar conclu-
sions in the comparison of classifiers. In a real clinical application, the first two tasks 
will be only applied from time to time to improve the learning process, so that both the 
selected features and the searched hyperparameters will be used during a long time. Fur-
thermore, the third task, classification, is applied here with cross-validation, but in real 
time approaches it will be applied only to the new subject. For all these reasons, com-
putation time is not a critical issue. Anyway, even for model assessment purposes, the 
experiments have been performed in a very reduced time.

Due to the differences in the selected features found in the single-database experi-
ments, we have performed cross-database tests, in which the feature set obtained 
for each classifier with one database has been applied to the other one. Although we 
observe an important degradation in performance in both cases, the results are slightly 
better when feature selection is performed on mPower-based database and applied to 
UEX database than when using the reverse procedure. The wide variety of acoustic 
conditions available in mPower database due to the fact that the recordings were per-
formed by the participants themselves is considered a strength that could be exploited 
to achieve robustness. However, it must be taken into account that, since this database 
has been massively collected, some information provided by the participants may be 
incorrect and some voice recordings may be of bad quality, having an impact on the 
performance. Some research initiatives point out that personalized medicine and col-
laboration between patients and health professionals might provide a greater insight in 
disease impact by allowing patients to provide and self assess their condition outside 
clinical environment [22]. Therefore, a semi-controlled scenario appears as a very suit-
able option. This means that the participants would submit their audio files, recorded by 
following a strict recording protocol in a variety of acoustic conditions, but the clinical 
information is provided by the physicians. The proposed mobile-assisted system is con-
sidered a very useful tool to address this semi-controlled scenario.

Conclusion
Smartphones have a great potential to assist diagnosis and improve patient monitoring 
of many diseases. In the case of PD, smartphones allow for an easy collection of speech 
waveforms that can be used with clinical purposes. This can help general practitioners to 
conduct triage and neurologists or movement disorders specialists to perform diagnosis 
and tracking. In particular, PD management could be highly benefited by smartphone-
based systems, due to different aspects such as increasing incidence, diagnosis prone to 
errors, difficulty of tracking progression, and the fact that it mostly targets elderly peo-
ple, which in general have more difficulties to visit a hospital, among others.

We have designed and implemented a mobile-assisted voice condition analysis sys-
tem based on an Android app frontend in conjunction with a machine learning-based 
implementation hosted on a computing server backend. Although the machine learning 
approach is focused on a detection task, the app allows for monitoring PD progression.
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The most relevant novel contribution of our work is that we have applied identical 
methodology to an in-house smartphone-based database recorded under controlled 
conditions (in a quiet room with low noise level and with professional supervision of the 
recordings) and to a subset of mPower database (created by collecting data from free-liv-
ing scenarios). This comparison of results is performed within a methodologically robust 
framework ensuring age and sex balance and comparable disease stage. The results of 
this study show the potential of the proposed system under controlled conditions. The 
performance decreases when testing the methodology with the uncontrolled database 
and strongly drops in cross-database tests.

These results confirm the research hypothesis and suggest that semi-controlled scenar-
ios have high potential to be useful in real clinical applications. In these semi-controlled 
scenarios the relevant clinical information is provided by the physicians. Also, general 
practitioners (in the context of triage for diagnosis) or patient and caregivers (in a PD 
monitoring application...) should receive some initial training after which a test should 
be mandatory to ensure that the speech protocol is fully understood and that the user 
has some control on the acoustic environment regarding noise level. Within this frame-
work, recordings would be submitted via smartphone from different environments.

Future analyses should be performed on new datasets obtained in the described 
semi-controlled clinical scenarios. The proposed app is a very suitable tool for this task 
because it allows patients to submit phonations and physicians to check the complete 
record of every patient. In those semi-controlled conditions, also longitudinal studies 
would be interesting for PD tracking. This type of studies are difficult to perform because 
they require larger amounts of time. However, they would be very useful to achieve opti-
mal treatment of PD.

Methods
A mobile-assisted voice condition analysis system for PD detection is proposed. This 
system is built through the design and implementation of a mobile application that 
communicates with a server backend to collect and process voices recorded following a 
protocol. The system extracts acoustic features from the voice recordings and use them 
to feed machine learning approaches specifically designed for a PD detection task. An 
experiment has been conducted to test the proposed approaches. Also, the same archi-
tecture was used on a different database collected using smartphones and results are 
compared. In this section, the several parts that compose the system are described.

System architecture and mobile app design

Voice recordings are received and stored in a server where they can be accessed and 
processed. The server runs Windows 10 and the Windows Internet Information Services 
(IIS) functionality has been employed to host a web service written in PHP that manages 
a MySQL database. An Android app exchanges information with the server via an HTTP 
connection, using JavaScript Object Notation (JSON) format to organize it. Figure  3 
shows the system structure in a schematic way.

The Android application has two types of user accounts: patients and doctors. Every 
user needs to fill a registration form with the most relevant personal information, some 
of which will be used for the authentication. This form is slightly different for patient 
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and doctor accounts. The user receives a notification in the email account provided after 
the registration process. It is necessary to give permission for the use of personal data 
as part of a non-profit study. In the patient case, as part of the registration process, an 
informed consent document is requested to be signed by accepting participation in the 
mentioned study. Users can sign the document through the phone’s touch screen.

Once completely registered, users can employ their credentials (email and password) 
to access the functionalities allowed for the type of account created. On the one hand, 
patient accounts are able to record and send audio files following the given instruc-
tions. After each recording, the user can choose between three options: submit to the 
server, listen or discard and try again. On the other hand, doctor accounts can associ-
ate patients with their account to keep track of their cases. Only doctor accounts can 
access patient data, and only those linked to the doctor account. Figure 4 shows some 
screenshots extracted from the app: Fig. 4a shows the registration and login screen of 
the system; Fig. 4b shows the screen that allows to select the type of account (patient or 
physician) in the registration process; Fig. 4c presents the screen showing the instruc-
tions the patient should follow to perform the recordings; after that, three possibilities 
(listen, send, discard) are offered to the patient, as shown in Fig. 4d.

Participants

Two databases were used in the study. The first one was generated by the University of 
Extremadura with the collaboration of the Regional Association for Parkinson’s Disease 
of Extremadura (UEX database). A total of 60 participants with ages between 51 and 87 
years old were recruited, 30 of whom were affected by PD (PD subjects) and 30 were 
healthy. Patients suffering from PD were recruited among the voluntary members of 
the Regional Association for Parkinson’s Disease of Extremadura that meet the follow-
ing inclusion criteria: (1) have a definitive diagnosis of PD; (2) medical reports available. 
After the voluntary PD patients were recruited, then the healthy group was selected to 
approximately match sex and age. Healthy subjects were selected with the requirement 

Windows 10 server

Android 
App

IIS Server

Web Service

(PHP files)

MySQL 
database

HTTP 
+ 

JSON

Fig. 3 System structure



Page 17 of 24Carrón et al. BioMedical Engineering OnLine          (2021) 20:114  

of neither having been diagnosed with PD nor having any symptom related to PD. Those 
not meeting the inclusion criteria were not eligible for participation. There were 24 men 
and 6 women in the PD group and 26 men and 4 women in the healthy group. The mean 
(standard deviation) of the age was 70.27 (9.54) for the PD group and 67.33 (8.57) for 
the healthy group. The mean time in years since diagnosis was 9.93 (6.16), and the mean 

Fig. 4 Screenshots obtained from the Android mobile application: a first screen, b types of accounts, c 
instructions, d recording process
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time in hours since the last medication dose was 2.21 (1.32). The mean HY stage was 2.6 
(0.4). The research protocol was approved by the Bioethics Committee of the University 
of Extremadura. All of them signed an informed consent.

The second database (mPower-based database) is a subset extracted from the mPower 
Public Researcher Portal, a mobile PD study [7]. The goal of this initiative is to collect 
information of patients suffering from PD. The objective is to describe more precisely 
the experience, habits, lifestyle, drawbacks, and interactions with medication of those 
patients. By using a mobile application, each volunteer records different aspects of the 
impairment caused by the disease and tracks their evolution. The study is open to any-
one who wants to participate, and the only requirement is having a personal iPhone for 
PD patients, and also not having been diagnosed for the control group subjects. These 
requirements are not checked.

The subjects selected to build the mPower-based database were matched with the ones 
from the UEX database by keeping exactly the same proportion of health status and sex, 
and approximately the same age, so the results can be compared. Specifically, the mean 
of the age was 68.36 (8.14) for the PD group and 65.23 (7.76) for the healthy group. The 
mean time in years since diagnosis was 7.83 (4.54), whereas the estimated mean HY 
stage was 2.7 (0.53). The mean time since the last medication dose was not available. The 
voice recordings were stored for posterior use. Table 9  shows the codes of these voice 
recordings extracted from mPower.

Recording task and equipment

The selected vocal task was sustained phonation of /a/ vowel due to several advantages, 
such as its wide spread use in the scientific literature; simplicity to realize by the partici-
pants, which avoids fatiguing them, especially in the case of patients with more advanced 
PD stages; ease of analysis and control; ubiquity in different languages; and the fact that 
it is unaffected by phonetic context or intonation [12].

The recording task for UEX database consists of performing three 5-seconds voice 
phonations, pronouncing the /a/ vowel in a continuous and uninterrupted way holding 
pitch and loudness as constant as possible.

Due to the biological variability, voice recordings from a particular subject result in 
similar but not identical waveforms. The consequence is that the features are also not 
identical when extracted from different recordings from the same individual. To obtain 
more stable predictors, it was decided to record three utterances per subject so that the 
feature values can be later averaged to produce an only feature vector per subject.

All the voice recordings were made using the same smartphone (model BQ Aquaris V) 
at a sample frequency of 44.1 kHz. The recordings were taken at the facilities of the 
Regional Association for Parkinson’s Disease of Extremadura (Spain), always in the 
same room, that was relatively quiet but did not have any special acoustical isolation. A 
specialized person was present to ensure that all the participants properly followed the 
voice recording protocol and registered the complementary information based on medi-
cal reports.

Voice recordings from mPower were performed on participants’ iPhones (4th genera-
tion or a more advanced version) or iPods (5th generation or newer) by using the /a/ 
vowel phonation protocol. A sample frequency of 44.1 kHz was used. Since participants 
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record themselves without supervision, this database includes a variety of acoustic envi-
ronments. They were also responsible to fill in the form including the complementary 
information, which makes the obtained data somehow unreliable.

Before applying feature extraction, all the recordings from both databases were 
trimmed down to one second discarding any leading or trailing silence. This length has 
been considered sufficient to extract speech features from sustained vowel phonations 
by other authors [40]. Voice recordings were edited using Audacity software (release 
2.0.5).

Feature extraction

The same feature extraction algorithms are applied to both databases. A total of 33 fea-
tures have been considered to measure different aspects related to speech production: 
Sex (male, female), Jitter, Shimmer [51], CPP [34], HNR, glottal-to-noise excitation 
ratio, zero crossing rate [3], 3 GQ features [45], MFCCs (13 features) [52], correlation 
dimension, RPDE, pitch period entropy [51], Hurst’s exponent, LZ-2 [36], permutation 
entropy, Shannon’s entropy, first minimum in mutual information [25], MFSW [17], first 
zero in correlation function [16]. The methods have been coded in Python.

Considering these feature extraction algorithms, 180 vectors (60 subjects × 3 audio 
recordings/subject) of 34 feature components (health status plus extracted features) 
were initially stored in a spreadsheet for UEX database. This spreadsheet was reduced 
to 60 vectors of 34 features by aggregating every 3 vectors corresponding to the same 
subject through a component-wise average. This ensures that each subject is represented 
by only one feature vector and no artificial increase of the dataset is considered. In the 
case of the mPower-based database, 60 vectors of 34 feature components were stored in 
another spreadsheet. These datasets were used to feed the machine learning approaches.

Statistical methods

Due to the amount of features, many of them measured in different scales, a preproc-
essing step is required. A standardization was applied based on the mean and standard 
deviation of each feature.

Several classifier methods have been considered to test their performance in this 
context. They cover a wide range of techniques commonly used in machine learning 
applications such as linear methods (Logistic Regression [33]), ensemble decision trees 
(Random Forest [9]), neural networks (Perceptron [31]), online learning (Passive Aggres-
sive [32]), additive models (Gradient Boosting [21]) and separating data models (SVM 
[13]).

In order to compare the performance of the procedure with each classifier, and based 
on the confusion matrix, the following metrics have been considered: accuracy, sensitiv-
ity, specificity, and AUC. Student’s t-test for independent samples were applied to report 
statistically significant differences between mean values of accuracy metrics. P-values 
smaller than 0.05 were considered statistically significant.

Figure 5 represents the whole procedure. After preprocessing, the machine learn-
ing approaches contain 3 steps: Feature selection, hyperparameter optimization, and 
classification process (steps 5, 6 and 7). The involved techniques have been coded in 
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Python based on the scikit-learn package [15]. Next paragraphs provide a detailed 
description of these three steps.

Feature selection Once having a standardized dataset, a feature selection process 
is applied. RFECV [27] is used to eliminate redundant features while keeping a good 
classification performance. The algorithm trains the chosen classifier and removes 
the feature with the weakest effect on the classification process, providing a feature 
top-ranked list based on the order of removal. It provides the optimal number of fea-
tures by selecting the top-ranked features of the mentioned ranking. The process is 
repeated several times in order to achieve a representative value. Since the number of 
optimal features can vary in each iteration, the result of each iteration is stored in a 
vector and the value of the first quartile after all iterations is chosen as the final num-
ber of selected features. A stratified k-fold cross-validation [5] is used in the RFECV 
algorithm, which consists in splitting the complete dataset in k groups but maintain-
ing the same ratio between PD subjects and healthy ones in each group.

Hyperparameter optimization Each classifier has its own parameters that can 
be adjusted, these are called hyperparameters. Once the most relevant features are 
known for the chosen classifier, a hyperparameter tuning has been issued in order 
to know which is the best configuration for the classifier. The method selected for 
this step is Grid Search [47]. It optimizes the chosen hyperparameters using stratified 
k-fold cross-validation again. Accuracy is calculated for each combination of classifier 
parameter values, selecting the set that provides the best result. These values are used 
in the classification process.

Classification process With the selected features and the optimal hyperparameter 
configuration for each classifier, a stratified cross-validation is issued. The dataset is 
randomly split into only a training and a test subset, maintaining the ratio between 
the number of PD and healthy subjects in each set. In order to maintain training and 
test sets independent from each other, the scaling is applied after this splitting with 
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respect to the training set values. With this splitted data, the classifier is fitted with 
the training data and after that, it makes a prediction of the PD-healthy state given 
the test subset. Finally, its predictions are compared with the correct labels. Based 
on this comparison, the considered metrics are extracted for each iteration. In order 
to obtain global results, this classification process is repeated several times and the 
resulting accuracy metrics are averaged after all iterations are finished.

At the end, for each approach, the following are available: the selected features, the 
optimal hyperparameter configuration, the averaged accuracy metrics, and run times.

Appendix: Codes of voice recordings from mPower
In this appendix, the codes of the voice recordings that have been considered from 
mPower database are presented in Table 9.

Table 9 Codes of considered voice recordings from mPower

Recording ID

Healthy PD

0f81a5ef‑14d4‑4a19‑9d89‑deabeb728adb 45155beb‑a91f‑4bca‑8296‑7612c6915af8

7c5a339d‑35ba‑48ec‑8447‑f51aec949a1e 955aa8c3‑9116‑43e7‑9e4b‑d1843be4839a

ebfb61fc‑c218‑4d3a‑a680‑eb3b4ce3b91d 4412716d‑e1b0‑4572‑b976‑8bcb7669925e

b3c61a60‑acff‑426b‑aaeb‑d8b6d4c31cb6 0ce23959‑8092‑47ce‑b394‑0f65c951a548

740240f3‑6752‑456b‑9f39‑6ede3afb3423 a86b7dee‑759d‑452c‑86b5‑4b6a248d7286

be0ecb7f‑95a2‑468a‑a12e‑2fb738c9b922 9e03615f‑1f52‑4a95‑94bf‑cc5805d0c3b8

18cd4553‑1c4f‑4f6d‑a622‑8951eb79e780 e2766ec9‑e97d‑4224‑81a8‑35b095ea9fd6

3accca87‑eaf1‑4219‑b0e0‑af29eb426093 22ad855e‑1c57‑4f9b‑bf67‑2a44f2a3ce41

f908e76b‑b4e1‑40b6‑86a5‑b4a0def0e6c0 7eac5187‑e241‑4f80‑b704‑0f91b8041dc6

75ad7180‑afb1‑49ea‑b766‑221106d32e02 0d1c8246‑8e42‑45e5‑b662‑91e26e6cb6d4

a3907344‑70e3‑410c‑a6ac‑3ae5e790d3ad 02ed9d30‑620f‑4c6c‑88ce‑64a286df79b9

393a367c‑9727‑4390‑96f8‑6a7a3c6e2797 90899edf‑a289‑4557‑aff9‑a168fd82a92e

6348a018‑d039‑4c38‑8920‑66ceba01c8e0 06e8ee83‑0e3a‑4575‑a7e4‑0c1c813376b6

2fabaecf‑423b‑4db1‑98e6‑54daf6844a2d 2b72e6d8‑9963‑4edd‑a8ca‑ae2d4262f640

8fa63734‑04cb‑4f15‑a954‑34db4d0c9d2e eb764994‑17ef‑4421‑b052‑9acbb0440a3b

15791b9e‑89c9‑421b‑be3c‑c3acf89bd167 a9b6687a‑c533‑410e‑8f87‑c319a969b98e

4366e9a8‑292c‑48a2‑afa2‑d6cbbbf438a9 b662bb1d‑ab78‑479e‑86c8‑7fc1bd1df59d

b3277c31‑add4‑40ae‑8621‑54da00f50012 1864ea1c‑b861‑49c3‑85f8‑549ba6c04679
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