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Abstract

A large number of really interesting new gene (RING) E3 ligases contribute to the post-translational
modification of target proteins during plant responses to environmental stresses. However, the physical
interactome of RING E3 ligases in rice remains largely unknown. Here, we evaluated the expression
patterns of 47 Oryza sativa RING finger protein (OsRFP) genes in response to abiotic stresses via
semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and in silico analysis.
Subsequently, molecular dissection of nine OsRFPs was performed by the examination of their E3 ubiquitin
ligase activity, subcellular localization, and physical interaction with target proteins. Most of the OsRFPs
examined possessed E3 ligase activity and showed diverse subcellular localization. Yeast two-hybrid analysis
was then employed to construct a physical interaction map of seven OsRFPs with their 120 interacting
proteins. The results indicated that these OsRFPs required dynamic translocation and partitioning for
their cellular activation. Heterogeneous overexpression of each of the OsRFP genes in Arabidopsis suggested
that they have functionally diverse responses to abiotic stresses, which may have been acquired during
evolution. This comprehensive study provides insights into the biological functions of OsRFPs, which may
be useful in understanding how rice plants adapt to unfavourable environmental conditions.
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1. Introduction causing a reduction in cytosolic and vacuolar

volumes, which then negatively affects cellular struc-

Unfavourable environmental conditions, such as
salinity, drought, cold, heat, and nutrient limitation,
cause extensive losses to agricultural productivity
worldwide. In fact, environmental conditions are re-
sponsible for reducing average yields for most major
crop plants by >50%." Drought and soil salinity,
which are caused by osmotic stresses, are two of the
major stresses that adversely affect plant growth and
productivity. Both of these stresses lead to cellular de-
hydration and reactive oxygen species production,

tures and metabolism. Therefore, molecular dissec-
tion of the complex plant response to abiotic
stresses, such as drought and salinity, has attracted
much interest since understanding these responses
may enable researchers to develop transgenic plants
that have improved survival rates following exposure
to stressful environmental conditions.

The covalent attachment of ubiquitin(s) to target pro-
teins is a central mechanism in the regulation of protein
degradation via the Ub-26S proteasome pathway in
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eukaryotes. In particular,accumulating genetic analyses
support the notion that the Ub-26S proteasome
pathway regulates various key aspects of growth, devel-
opment, and defence mechanisms in plants.>~* In this
pathway, Ub, a highly evolutionary conserved 76-
residue polypeptide, is attached to protein substrates
in a multi-step reaction involving three enzymes, such
as Ub-activating enzyme (E1), Ub-conjugating enzyme
(E2), and Ub ligase enzyme (E3).” In an adenosine
triphosphate (ATP)-dependent process, E1 activates
the Ub molecule by forming a thioester bond between
the carboxy-terminal end of the Ub molecule and the
catalytic cysteine (Cys) of E1. Thioester-linked Ub is
then transferred to a Cys residue of an E2 enzyme. The
enzyme transfers the activated Ub from an E2-Ub
thioester intermediate to a lysine residue of the sub-
strate protein, either directly or in cooperation with a
specific E3 enzyme. Most eukaryotes, including plants,
have only a small number of E1 enzymes and multiple
E2 and E3 enzymes. It is believed that the Arabidopsis
genome encodes only two E1s, 45 E2s and E2-like pro-
teins,and more than 1200 E3 ligases.” E3 ligases are the
most numerous because they confer specificity to ubi-
quitination by recognizing substrate proteins and by
mediating the transfer of Ub froman E2 protein to a sub-
strate.® Therefore, the E3 ligase is considered the major
component that recognizes target substrates in the
pathway. E3 ligases can be grouped into two main
classes based on the presence of their functional
domains; one class has a single subunit and includes
ligases, such as the homologous to E6-AP C-terminus
(HECT), and a RING/U-box domain. The other class
forms a multi-subunit complex and includes the
S-phase kinase-associated protein 1 (SKP1)-cullin1
(CUL1)-F-box (SCF) complex and the anaphase-
promoting complex (APC).”*®

Cys-rich really interesting new gene (RING) proteins
are characterized either by the presence of a zinc-
binding motif, or by the RING finger domain. The RING
domain (Cys-X2-Cys-X9-39-Cys-X3-His-X2-3-Cys/His-
X2-Cys-X4-48-Cys-X2-Cys, where X can be any amino
acid) is similar to the DNA-binding zinc finger domain
in that Cys or His residues coordinate two zinc ions. The
RING domain is believed to play a role in protein—
protein interactions (PPIs).° The well-characterized
plant genomes of Arabidopsis and rice are known to
harbour 426 and 425 predicted RING-type E3 ligases
in high proportions, respectively.'®'" The canonical
RING domains can be sub-categorized into RING-H2
and RING-HC subtypes based on the fifth coordination
Cys or His residues, respectively. A number of RING E3
ligases have been reported to play important roles in re-
sponse to environmental stresses, such as drought and
salt conditions. For example, salt- and drought-induced
ring finger 1 (SDIR1) and small RING-H2 protein
RHA2a E3 ligases have been reported to enhance salt
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and drought stress-responsive abscisic acid (ABA) signal-
ling.'”>'® The dehydration-responsive element-binding
protein 2A (DREB2A)-interacting protein 1 and 2
(DRIP1 and DRIP2) E3 ligases negatively regulate the
DREB2A transcription factor, leading to the down-
regulation of drought—stress response genes.'* Hot
pepper RING membrane-anchor 1 homologue 1
(RmalH1) E3 ligase positively regulates the plasma
membrane aquaporin PIP2;1 under water-deficient con-
ditions."® In addition, AtAIRP2 (RING-HC type) has been
well characterized as a positive regulator ABA-dependent
drought responses.'® In contrast, Oryza sativa drought-
induced seven in absentia (SINA) protein 1 (OsDIS1) E3
ligase plays a negative role in drought—stress tolerance
through transcriptional regulation of stress-related
genes by post-translational regulation of OsNeké6 in
rice.'” However, the functional relationship between
rice RING E3 ligases and abiotic stresses is largely
unknown.

Previously, we identified 425 genes harbouring
RING domains and classified them into four groups:
RING-H2, RING-HC, RING-v, and RING-C2. We then
evaluated the expressional diversity and evolutionary
dynamics of 369 RING finger protein (RFP) genes by
using a rice public genome array dataset.'' In this
study, the expression patterns of 47 O. sativa RFP
(OsRFP) genes in response to abiotic stresses were
analysed via semi-quantitative RT-PCR and in silico
analysis. Subsequently, molecular dissection of nine
OsRFPs was performed by examining their E3 Ub
ligase activity, subcellular localization, and physical
interaction with other proteins (interactors). We
further constructed a physical interaction network
with 120 interactors. In addition, heterogeneous
overexpression of OsRFPs in Arabidopsis was performed
in order to reveal their molecular function in response
to drought and salinity stresses.

2. Materials and methods

2.1. Plant materials for RT-PCR

Rice seedlings (O. sativa L. cv. Donganbyeo) were
grown on mesh supported in plastic containers with
Murashige and Skoog (MS) solution in a growth
chamber (16/8-h light/dark photoperiod at 25°C
with 70% relative humidity) for 14 days. For abiotic
stress treatments, seedlings were treated with salinity
(200 mM NaCl), dehydration, cold (4°C), and heat
(45°C). Leaf tissues were harvested 0, 1, 6, 12, and
24 h after stress treatment, and control leaf tissues
were also sampled at the same time. The samples
were frozen using liquid nitrogen and immediately
stored at —80°C. Total RNAs were extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), accord-
ing to the manufacturer’s protocol. Semi-quantitative
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RT-PCR was performed as described previously.'
First-strand cDNA synthesis was performed using
1 ng total RNA and a cDNA synthesis kit (Takara-
Bio, Shiga, Japan). A total of 47 gene-specific primer
pairs for OsRFPs were designed using Primer-BLAST
(NCBI, http://www.ncbi.nlm.nih.gov/tools/primer-blast/).
Os18S-rRNA'® was used as an internal control. A list
of all primer pairs are provided in Supplementary
Table S1.

2.2. Subcellular localization

For subcellular localization, the coding sequence of
the enhanced green fluorescent protein (EGFP) and
multiple cloning sites were PCR-amplified using
primers 5’-GAGATCTAGAGGATCCCCCGGGATGGTGAG
CAAGGGCGAG-3’ (forward) and 5'-GAGAGAGCTCTT
ACTTGTACAGCTCGTC-3' (reverse) from the pEGFP-
C1 vector as a template (Clontech, Palo Alto, CA,
USA). Both the PCR product and the pBIN35S vector
were digested with Xbal and Sacl and were ligated to-
gether. The coding regions of the full-length cDNAs of
OsRFPH2-3, OsRFPH2-14, OsRFPH2-16, OsRFPH2-23,
OsRFPHC-2, OsRFPHC-3, OsRFPHC-4, OsRFPHC-13,
and OsRFPV-6 were amplified with the appropriate
primer pairs and were then cloned into a 35S:EGFP
vector (Supplementary Table S1). The recombinant
vectors were verified by sequencing. The resulting
plasmids were transformed into Agrobacterium tume-
faciens strain GV3101 and used for agro-infiltration.
For transient expression of OsRFPs in Nicotiana
benthamiana leaves, the Agrobacterium strains harbour-
ing each construct were grown in liquid yeast extract
peptone (YEP) medium and resuspended in infiltration
medium [10 mM 4-Morpholineethanesulfonic acid
hydrate (MES), pH 5.6, 10 mM MgCl,, and 200 mM
acetosyringone]. The cell cultures were injected into
4-week-old N. benthamiana leaves (final optical
density at 600 nm = 0.5). Several leaves were cut
and then observed under confocal microscopy at the
Korea Basic Science Institute, Chuncheon Center.

2.3. Invitro ubiquitination assay

Full-length OsRFP coding sequences (OsRFPH2-3,
OSRFPH2-7, OsRFPH2-14, OsRFPH2-16, OsRFPH2-23,
OsRFPHC-2, OsRFPHC-3, OsRFPHC-13, and OsRFPV-6)
were amplified by RT-PCR with the appropriate
primer pairs (Supplementary Table S1). The PCR pro-
ducts were digested and cloned into a pMAL-c5X
vector (New England Biolabs, Ipswich, MA, USA).
Nine recombinant maltose-binding protein (MBP)-
OsRFP plasmids and the MBP-empty plasmid (as
a negative control) were expressed in E. coli strain
BL21 (DES) pLysS (Promega, Madison, WI, USA) and
purified by affinity chromatography using amylose
resin (New England BiolLabs). The full-length coding
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sequences of AtUBC10 and AtUBC11 were cloned
into the pET-28a (+) vector (Novagen, Gibbstown,
NJ, USA). 6X His-AtUBC10 and 6X His-AtUBC11 were
expressed in E. coli strain BL21 and purified using a
Ni-NTA Purification System (Invitrogen).

In vitro self-ubiquitination assays were conducted
according to the methods of Hardtke et al.'® with
some modifications.  Briefly, each  MBP-OsRFP
(250 ng) was purified and mixed with 50 ng yeast E1
(Boston Biochemicals, Cambridge, MA, USA), 250 ng
Arabidopsis E2s, and 10 pg bovine Ub (Sigma-Aldrich,
St. Louis, MO, USA) before incubation in ubiquitination
reaction buffer [50 mM Tris—HCI, pH 7.5, 10 mM
MgCl,, 0.05 mM ZnCl,, T mM ATP, 0.2 mM dithiothrei-
tol (DTT), 10 mM phosphocreatine, and 0.1 U creatine
kinase (Sigma-Aldrich)]. The reaction was stopped by
the addition of 6x SDS sample buffer followed by a
3-h incubation at 30°C. Twenty microliters of each
reaction mixture was analysed via 10—-14% sodium
dodecyl sulfate polyacrylamide gel electrophoresis
(SDS—PAGE) depending on the molecular weight of dif-
ferent fusion proteins and then transferred to a nitro-
cellulose membrane. Immunoblot analyses were
conducted using anti-Ub antibodies (Sigma-Aldrich)
with secondary goat anti-rabbit IgG peroxidase anti-
bodies (Sigma-Aldrich). Detection was carried out
using the chemiluminescent substrate SuperSignal
West Pico (Thermo Scientific, Waltham, MA, USA) for
horse-radish peroxidase and imaged on an X-ray film
(Kodak).

2.4. Yeast two-hybrid screening

A rice cDNA library in the pGADT7-AD (GAL4
activation domain) was generated from salt-treated
14-day-old seedlings. Full-length coding sequences
of OsRFPH2-3, OsRFPH2-14, OsRFPH2-16, OsRFPH2-
23, OsRFPHC-2, OsRFPHC-13, and OsRFPv-6 were
amplified and cloned into pGBKT7-BD (GAL4 DNA-
binding domain) vector as bait. A library screening
for proteins that interact with OsRFPs was conducted
in accordance with the recommended commercial
procedures (Make Your Own ‘Mate & Plate TM’
Library System; Matchmaker Gold Yeast Two-Hybrid
System; Yeastmaker Yeast Transformation System 2,
Clontech). A total of 1540 yeast transformants were
selected on a synthetic defined (SD) medium lacking
Leu and Trp with 40 pg/ml X-a-Gal and 70 ng/ml
aureobasidin A (DDO/X/A). The selected transfor-
mants were repatched or dotted on SD medium
lacking His, Leu, and Trp with 40 wg/ml X-a-Gal and
70 ng/ml AbA (QDO/X/A). A total of 154 clones
were identified as positive interactors with the
OsRFPs and were sequenced and verified by BLASTp
searches in the GenBank database (http://blast.ncbi.
nim.nih.gov/).
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2.5. Arabidopsis transformation

Agrobacterium strains GV3101 containing 3 5S:OsRFP-
EGFPs or 35S:EGFP (control) were used to transform
Arabidopsis plants according to the floral-dip method.?°
For selection of transgenic lines, seeds harvested
from T; transformants were placed on MS agar
plates containing 50 wg/ml kanamycin.

2.6. Plant growth and treatments

Three-independent 35S:0sRFP-EGFP- and 3 5S:EGFP-
overexpressing Arabidopsis lines were tested to observe
the effects of salt and drought stresses. For seed ger-
mination assays, seeds of OsRFPH2-3-EGFP, OsRFPH2-
14-EGFP, OsRFPH2-16-EGFP, OsRFPH2-2 3-EGFP, OsRFPHC-
2-EGFP, OSRFPHC-3-EGFP, OSRFPHC-4-EGFP, OsRFPHC-
13-EGFP, OsRFPV-6-EGFP, and 35S:EGFP (control)
were sterilized in 70% ethanol for 5 min followed by
20% bleach for 3 min and were then rinsed three
times with double-distilled water. Sterilized seeds
were sown and monitored on 1/2 MS medium
containing different concentrations (0, 100, or
150 mM) of NaCl and (—0.25, —0.5, or —0.7 MPa)
of PEG 8000 (Sigma-Aldrich). Germination percen-
tages were scored and calculated at 1-day interval
for 7 days. PEG plates were prepared as described by
Verslues et al.?" Briefly, 40 ml of 1.5% agar containing
1/2 MS medium was solidified for 16 h and then
overlaid with 60 ml of a solution containing 0, 250,
or 400 g/l PEG 8000, yielding final MPas of —0.25,
—0.5, or —0.7, respectively. The PEG solution was
allowed to stand for 24 h and was then removed
from the plates. For root elongation assays, transgenic
seeds were germinated on 1/2 MS medium for 2 days
and transferred into medium containing 100 mM
NaCl and —0.5 MPa PEC. Plant growth was then mon-
itored and photographed after 7 days, at which point
root length was analysed using Image ] software.

2.7. Transcriptome analysis and in silico subcellular
localization prediction

The cell intensity file (CEL) files of Affymetrix
GeneChip genome arrays for four abiotic stresses
[drought, salt, cold (GSE6901), and heat stress
(GSE14245)] of O. sativa were downloaded from the
Gene Expression Omnibus (GEO) datasets of the NCBI
database (http://www.ncbi.nlm.nih.gov/geo/) and were
then normalized by the robust multi-array average
(RMA) method with R statistical software (http://
www.r-project.org/). The similarities of expression pat-
terns between genes under the different stresses were
evaluated via Pearson’s correlation coefficient (PCC).
The regulatory pathways of genes were predicted by
using MapMan software.”> Heat maps of the genes
were visualized by the MEV v4.6 program (http://
www.tm4.org/) using hierarchical clustering with
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default parameters. In silico subcellular localization
was predicted by WoLF PSORT tools?® with default
parameters, and the predicted localizations with the
highest PSORT feature values were then chosen. An
interaction map consisting of OsRFPs and interactors
was visualized using Cytoscape software.”*

3. Results
3.1. Expression patterns of 47 OsRFP genes in response
to abiotic stresses

A total of 47 OsRFP genes, including 24 RING-H2,
16 RING-HC, and 7 RING-v subtypes, were randomly
selected from targets with high levels of expression
in specific tissues and/or stress treatments.'' In an
effort to evaluate the expression patterns of 47
OsRFP genes in response to abiotic stresses, we
retrieved microarray datasets for different stressors,
including drought (GSE6901), salt (GSE6901), heat
(GSE6901), and cold (GSE14245) in rice deposited
to the GEO database (Fig. 1).2°

We next conducted semi-quantitative RT-PCR ana-
lysis with leaf tissues of rice seedlings (O. sativa) sub-
jected to dehydration, high salinity (200 mM NacCl),
cold (4°C), and basal heat (45°C) stress conditions
for 2 days and then evaluated the transcript levels
of 47 OsRFP genes (Fig. 2). At least 60% (8 of 12) of
the seedlings up-regulated OsRFP genes as a result of
dehydration stress. The seedlings also showed a ten-
dency to increase OsRFP transcript levels in response
to salinity. For example, eight genes, i.e. OsRFPH2-3,
OsRFPH2-11, OsRFPHZ2-14, OsRFPHZ2-16, OsRFPH2-
23, OsRFPHC-03, OsRFPHC-13, and OsRFPv-6, were
up-regulated under drought and salinity conditions.
In addition, OsRFPH2-2, OsRFPH2-7, OsRFPH2-12,
and OsRFPH2-22 were up-regulated under drought,
whereas OsRFPHC-2, OsRFPHC-4, OsRFPHC-10, and
OsRFPv-6 were down-regulated under salt stress.
One gene (OsRFPHC-12) and five genes (OsRFPH2-6,
OsRFPH2-8, OsRFPH2-24, OsRFPHC-5, and OsRFPHC-
12) were down-regulated under drought and salt, re-
spectively. Under cold stress conditions, transcripts
levels of four OsRFP genes increased, whereas 23
OsRFP genes were down-regulated. For heat stress
conditions, six genes were up-regulated, whereas
nine genes were down-regulated. These findings
support the hypothesis regarding evolutional fate of
duplicate genes, i.e. there is functional diversity and
redundancy in OsRFP genes.

To better understand the subcellular distribution of
OsRFPs, we performed in silico prediction using WolF
PSORT.?® At least 66.0% (31 of 47) of OsRFPs were
associated with the nucleus (19 OsRFPs) and the
cytosol (12 OsRFPs). The other OsRFPs were predicted
to localize to the chloroplast (seven OsRFPs), plasma
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Figure 1. Expression patterns, general information, and gene structures of 47 RFPs in rice. Expression patterns under conditions such as
drought, salt, cold (GSE6901), and heat (GSE14245) were retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).
Probe ID and a.a indicate the probe of Affymetrix GeneChip genome arrays and the protein length (number of amino acids),
respectively. PL. indicates the predicted subcellular localizations by WoLF PSORT Server (http://psort.hgc.jp/). The gene structures
were retrieved from the Interpro database (http://www.ebi.ac.uk/interpro/). The colours of boxes represent different protein domains.

membrane (seven OsRFPs), mitochondria (one
OsRFP), and extracellular matrix (one OsRFP), as
shown in Fig. 1 and Supplementary Fig. S1. To further
define the structures of the 47 OsRFPs, we examined
whether these OsRFPs harboured any other functional
domains using the InterPro search program. A total of
32 OsRFPs did not harbour any other detectable
domains, whereas 15 proteins had one or more func-
tional domains (Fig. 1). Three of these domains har-
boured zinc finger domains, such ZF-C3H1, ZF-SIAH,
and ZF-CHY, which have been characterized as nucleic
acid-binding zinc fingers, while one was the zinc finger
domain, ZF-ZZ, which is believed to mediate PPIs.
Furthermore, other PPl domains were found, including
ankyrin repeats, after the C_terminal domain of a
breast cancer susceptibility protein (BRCT), and

kinesin motor domains, which may function as the
substrate-binding domains of E3 ligases."°

3.2. Subcellular localization of OsRFP—EGFP fusion
proteins

It is generally believed that the subcellular localiza-
tion of a gene is important in understanding its cellular
function. Therefore, we decided to further examine the
subcellular localization of 10 OsRFP genes (OsRFPH2-2,
OsRFPHZ2-3, OsRFPH2-14, OsRFPHZ2-16, OsRFPH2-23,
OsRFPHC-2, OsRFPHC-3, OsRFPHC-4, OSRFPHC-13, and
OsRFPv-6), chosen depending on their expression
patterns under salt and dehydration conditions. To do
this, full-length OsRFP cDNAs were cloned into
35S:EGFP and transformed into Agrobacterium strain
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Figure 2. Expression analysis of 47 OsRFP genes in rice plants. Expression patterns of OsRFP genes subjected to plant abiotic stresses.
Fourteen-day-old rice seedlings were treated with dehydration (dehydration on two pieces of tissue papers), cold (4°C), or heat
(45°C). Leaf tissues were sampled at 0, 1, 6, 12, and 24 h. Os18S-rRNA was used as an internal control. C and T indicate control and
stress-treated samples, respectively. Red and blue arrows indicate up-regulation or down-regulation of indicated genes, respectively.

GV3101. Each of the 10 OsRFP-EGFPs and the control
(35S:EGFP) were transiently expressed in N. benthami-
ana leaves. As shown in Fig. 3], transient expression of
35S:EGFP was found in both the cytosol and nucleus.
Fluorescent signals of each of the fusion proteins
(OsRFPH2-14-EGFP, OsRFPHC-2-EGFP, and OsRFPHC-
13-EGFP) were localized to the cytoplasm. Three
proteins, OsRFPH2-16-EGFP, OsRFPHC-4-EGFP, and
OsRFPv-6-EGFP, appeared as small, punctuate spots
with their aggregates in the cytoplasm. Interestingly,
subcellular localization of OsRFPHC-4-EGFP was
observed as punctate spots not only in the cytoplasm,
but also in the plasma membrane. In addition,
OsRFPH2-3-EGFP and OsRFPHC-3-EGFP were localized
to both the plasma membrane and nucleus, respect-
ively. OsRFPH2-23-EGFP was localized to both the
plasma membrane and nucleus, respectively. However,
OsRFPH2-2-EGFP did not show any fluorescence in
cells (data not shown).

3.3. Rice RING domain possess E3 Ub ligase activity

Proteins harbouring RING domains are involved in
numerous cellular processes. Functions attributed to
the RING domain itself include PPIs and degradation
via Ub-26S proteasome. RFPs can be classified based
on the presence of either a Cys or His residue in their
RING domains. However, it is still an open question as
to whether the modified RING domains function as
E3 ligases. We therefore used in vitro ubiquitination
assays to examine a total of 10 OsRFPs (OsRFPH2-2,
OsRFPH2-3, OsRFPH2-14, OsRFPH2-16, OsRFPH2-23,
OsRFPHC-2, OsRFPHC-3, OsRFPHC-4, OsRFPHC-13,
and OsRFPv-6), chosen on the basis of their expression
patterns under salt and dehydration conditions. Each of
the 10 OsRFPs was fused with MBP and expressed in
E. coli. However, MBP-OsRFPHC-4 was never expressed
in this E. coli system, even under several modified condi-
tions. A total of nine MBP-OsRFPs, with the exception of
OsRFPHC-4, were purified by affinity chromatography
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Figure 3. Subcellular localization of the OsRFP—EGFP fusion proteins in tobacco leaves. Agrobacterium strains GV3101 harbouring each

construct of 35S:0sRFPH2-3-EGFP (A),

35S:OsRFPH2-14-EGFP  (B),

35S:0sRFPH2-16-EGFP  (C), 35S:0sRFPH2-23-EGFP (D),

35S:0sRFPHC-2-EGFP (E), 35S:0sRFPHC-3-EGFP (F), 35S:0sRFPHC-4-EGFP (G), 35S:0sRFPHC-13-EGFP (H), 35S:0sRFPv-6-EGFP (1), or
35S:EGFP (J) were transiently expressed with p19 in Nicotiana leaves. Images were captured and merged by z-series optical sections
after 3 days of agro-infiltration. A 35S:EGFP construct was used as a control.

using amylose resin. The purified MBP-OsRFP fusion
proteins were mixed with Ub, ATP, E1 (yeast), and E2s
(AtUBC10 or AtUBC11) and then incubated for 3 h.
Immunoblot analysis with anti-Ub antibodies showed
that a high-molecular mass poly-Ub chain was
present in eight OsRFP samples (Fig. 4). However, no
poly-Ub chain was observed when MBP-OsRFPH2-3
was incubated with AtUBC11 (Fig. 4B, lane 7). In add-
ition, omission of E2s, E1, or MBP-OsRFPs from the ac-
tivity assay resulted in a loss of protein ubiquitination.
Thus, most of the selected OsRFPs were capable of me-
diating E2-dependent protein ubiquitination in vitro.

3.4. Physical interaction map of OsRFPs

A yeast two-hybrid (Y2H) screen was conducted in
order to retrieve proteins that interacted with each
of the 10 OsRFPs Ub E3 ligases. Of these, seven
OsRFP genes (OsRFPH2-3, OsRFPH2-14, OsRFPH2-16,
OsRFPH2-23, OsRFPHC-2, OsRFPHC-13, and OsRFPv-6)

were screened, and their interactors were identified
viasequencinganalysis. Unfortunately, the transformed
yeast cells expressing OsRFPHC-3 did not survive on
the selection medium for more than three replica-
tions and, thus, the gene was excluded from further
experiments. Positive interactors were not found
for two genes, such as OsRFPH2-2 and OsRFPHC-4.
A total of 229 positive clones were screened and
selected depending on their a-galactosidase activity,
resulting in 147 positive interactors (Supplementary
Fig. S2). To understand their cellular distribution,
we performed in silico prediction analysis by
examining their subcellular localization (Fig. 5A and
Supplementary Fig. S2).

The Y2H screenings also showed that the seven
OsRFPs interacted with various environmental stress-
related proteins (Supplementary Fig. S2). For example,
membrane-localized OsRFPH2-3 interacted with
peptidyl-proly cis-trans isomerase, Peptidyl-prolyl cis-
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Figure 4. In vitro E3 ligase ubiquitin ligase activity of MBP-OsRPFs. The ubiquitination reaction contained E1, atE2s (Arabidopsis UBC10 and
UBC11), maltose-binding protein-tagged OsRFPH2-2 (A), OsRFPH2-3 (B), OsRFPH2-14 (C), OsRFPH2-16 (D), OsRFPH2-23 (E),
OsRFPHC-2 (F), OsRFPHC-3 (G), OsRFPHC-13 (H), or OsRFPv-6 (1), Ub, and ATP. Poly-Ub chains were detected by immunoblotting

with a Ub-specific antibody.

trans isomerase, FKBP-type (0s02g52290), aquaporin
protein  (0s02g44630), wound-induced protein
(Os11g37970), Cys-rich repeat secretory protein 55
(0s03g16950), coiled-coil domain-containing protein
(0s08g39090), and DUF581 domain-containing
protein (0s04g49670). OsRFPH2-14 interacted with
copper methylamine oxidase (Os04g40040), jacalin-
like lectin domain-containing protein (0Os01g24710),
profilin  domain-containing protein (Os06g05880),

and universal stress protein (0Os05g28740). The
OsRFPH2-16 protein interacted with glycosylhydrolase
and OsFBT7-F box and tubby domain-containing
protein (0s05g36190). OsRFPH2-23 interacted with
RNA recognition motif-containing protein (Os11g40510),
Cys-rich repeat secretory protein 55 precursor
(0Os03g16950), glycosyltransferase (0s02g32750),
and jaclin-like lectin domain-containing protein
(Os01g24710).0sRFPHC-2 and OsRFPHC-1 3 interacted



No. 3] S.D. Lim et al.

Extracellular

A 970

307

0s0

& = it

OsRFPH2-T6 --. ~_os

A W o 535.00 R

80, o:‘zt}o/ W

B '« Vacuole
\

800

“0s0
OsRFPV-6

@ Chloroplast

@ Nucleus

@ Cytosol

@ Plasma membrane
@ witochondria

@ Cytoskeleton

@ vacuole

Endoplasmic Reticulum

© Extracellular

— OsRFPH2-3
OsRFPH2-14
— OsRFPH2-16

— OsRFPH2-23
—— OsRFPHC-2

—— OsRFPHC-13
—— OsRFPv-6

a-GAL activity
A No activity
~ Weak

Very strong

. OsRFPH2-16 . OsSRFPHC-2

(Punctate spots)

OsRFPV-6

@ osrrPH2-14
[Punctate spots)

@ osrFPHC13

@ Chloroplast
@ Nucleus
@ Cytosol

@ WMitochondria

@ Vacuole

@ Extracellular

— OsRFPH2-3
OsRFPH2-13

~—— OsRFPH2-16

— OsRFPH2-23
—— OsRFPHC-2

—— OsRFPHC-13
—— OsRFPv-6

@ Plasma membrane

Figure 5. The interaction network of rice OsRFPs. (A) A total of 147 interactors with drought- and/or salt-induced OsRFPH2-3, OsRFPH2-
14, OsRFPH2-16, OsRFPH2-23, OsRFPHC-2, OsRFPHC-13, and OsRFPv-6 proteins detected by yeast two-hybrid screens are shown as a
physical interaction network. Visualization of yeast two-hybrid screening of OsRFPs using cytoscape (http://www.cytoscape.org/).
Different node colours and node line colours indicate subcellular localization and each OsRFP protein, respectively. Large nodes
indicate multiple interaction proteins with OsRFPs and different forms of node lines indicate a-GAL activity. Subcellular localization
and a-GAL activity of all of the interacting proteins based on prediction and experimental data are shown in Supplementary Fig. S2.
(B) Proteins that exhibited multiple interactions with OsRFPs. Numbers in parentheses indicate the number of interaction with OsRFPs.


http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dst011/-/DC1

308

with myeloid differentiation protein (MD)-2-related
lipid-recognition domain protein (0s07g06590) and
peroxidase precursor (Os04g51300), respectively.
OsRFPv-6 interacted with early flowering 3 (ELF3)
protein (Os01g38530), indole-3-glycerol phosphate
synthase (0s08g23150), ABC transporter
(0Os03g08380), Myb-like DNA-binding domain-con-
taining protein (0s02g04640), S-adenosylmethio-
nine-dependent methyltransferase (0s03g36910),
and aquaporin protein (Os07g26690). Furthermore,
we found multiple proteins that interacted with
more than two OsRFPs, including Ub family protein
(0Os02g06640) and jacalin-like lectin domain-
containing protein (Os01g24710), six expressed pro-
teins (0s09g00999, 0s02g22130, Os10g21190,
0s09g01000, 0s05g02070,and Os01g15270), uni-
versal stress protein (Os05g28740), and serine/
arginine repetitive matrix protein 1 (0Os05g01540;
Fig. 5B).

An obvious difference was observed in the frequen-
cies of subcellular localizations of these interactors. As
shown in Fig. 5A and Supplementary Table S2, about
36.7% (44 of 120) of interactors of the seven
OsRFPs were predicted to localize to chloroplasts. In
contrast, 19.2% (23 of 120) and 20.8% (25 of 120)
of the interactors were predicted to localize to both
the cytosol and nucleus, respectively.

An in silico analysis of the subcellular localizations of
the interactors and in vivo subcellular localizations
of OsRFPs demonstrated the dynamic interactions of
OsRFPs with other subcellularly localized protein
partners (Fig. 5A and Supplementary Table S2). For
example, even though OsRFPH2-23-EGFP was targeted
to the nucleus in vivo, it showed physical interactions
with chloroplast-localized proteins (i.e. 0s03g16950,
0s02g32750, 0s02g49720, Os07g36600, and
0s07g29290) as well as nuclear-targeted proteins
(Os11g40510 and Os08g31980). In addition, the
plasma membrane-associated protein, OsRFPH2-3,
exhibited interactions with eight chloroplast-
targeting proteins (i.e. 0s02g52290, 0Os07g37240,
0s03g19380, 0s03g16950, 0s06g38210,
0s05g28740, 0s05g39960, and 0Os02g05830)
and two nuclear-targeted proteins (Os05g02070
and 0s08g39090).

3.5. Comparative transcriptome analysis of OsRFPs
with interactors

To further investigate the functional relationships of
seven OsRFP genes and their interactors against four
abiotic stresses (drought, salt, heat, and cold), their
expression patterns in response to these stresses
were evaluated using a public microarray dataset
(Supplementary Table S3). A total of 7 OsRFP genes
and 112 interactor genes were found to correspond
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to one or more probes, respectively, whereas no
probes were found for eight interactors. Differentially
expressed genes (DEGs) were classified as either up-
regulated (log,-fold change >1) or down-regulated
(log,-fold change <—1) via a comparison of probe
signal intensities with treated plants and untreated
plants. Of the 119 genes, 52 and 25 genes were
either up-regulated or down-regulated under one or
more stress treatments, respectively, and were
considered as DEGs (Fig. 6A). A total of 25 (48%) up-
regulated and 2 (8.0%) down-regulated genes com-
monly responded to both drought and salt, supporting
the hypothesis that the genes may exhibit similar
molecular functions in both stresses. In contrast, heat
stress resulted in the up-regulation of 13 genes and
the down-regulation 12 genes. These genes were not
modulated in response to any other stresses.

We then grouped the DEGs depending on their ac-
tivities in different regulatory pathways by using the
MapMan program. A total of eight pathways, i.e.
protein degradation, transcription factor, thioredoxin,
ascorb/gluath, receptor kinases, ethylene, indole-3-
acetic acid (IAA), and light, were mapped (Fig. 6B).
As expected, the genes with the highest frequency
were those involved in protein degradation (18
genes). The genes involved in transcription factors
had the second highest frequency (10 genes).
Similarly, genes included in both pathways exhibited
closer relationships in expression patterns between
drought and salt stresses.

3.6. Tolerance evaluation by overexpression of each
OsRFP gene in Arabidopsis grown under salt

and drought conditions

The finding that the selected OsRFP genes were up-
regulated in response to salt and/or dehydration treat-
ment may provide some clues regarding the molecular
functions of these genes against stresses. Therefore, to
further examine their functions, we generated eight
transgenic Arabidopsis overexpressing each gene
(35S:RFPH2-3-EGFP, 35S:RFPH2-14-EGFP, 35S:RFPH2-
16-EGFP,  35S:RFPH2-23-EGFP,  35S5:RFPHC-2-EGFP,
35S:RFPHC-3-EGFP, 35S:RFPHC-13-EGFP, and 3 5S:RFPv-
6-EGFP) and examined their tolerances against both
stresses. The Agrobacterium strains GV3101 containing
35S:0sRFP-EGFPs and 3 5S:EGFP (control) were used to
transform Arabidopsis plants. Three-independent trans-
genic lines (T3) were selected depending on the expres-
sion levels of the OsRFP genes by RT-PCR under normal
conditions (Supplementary Fig. S3).

For germination rate analysis, sterilized seeds of
three-independent lines of eight transgenic plants as
well as 35S5:EGFP were placed on 1/2 MS medium
containing different concentrations of NaCl (0, 100,
or 150 mM) and PEG (0 or —0.7 MPa). Germination
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rates of transgenic lines and control seeds were not
significantly different on 1/2 MS medium without
treatment (Supplementary Fig. S4). In contrast, parts
of the transgenic seeds of OsRFP-EGFPs germinated
faster than control seeds when seeds were plated
on 1/2 MS medium supplemented with NaCl
(150 mM) and PEG (—0.7 MPa; Figs 7 and 8). For
example, even though about 46.6% of control seeds
germinated 7 days after plating with 150 mM NacCl
treatment, four transgenic lines exhibited >70%
germination rations, including OsRFPH2-23 (74.4%),
OSRFPHC-3  (92.2%), OsRFPHC-13 (87.7%), and
OsRFPv-6 (78.8%; Fig. 7). In dehydration stress,
control seeds were not germinated on PEG
(—0.7 MPa) plates until 7 days after plating, but trans-
genic seeds of OsRFPH2-14, OsRFPH2-2 3, OsRFPHC-3,
and OsRFPv-6 showed high germination rates with a
range of 31-79% (Fig. 8).

For root growth assays, sterilized seeds of three-in-
dependent lines of eight OsRFP-EGFPs and 35S:EGFP

were plated on 1/2 MS medium. Germinated seeds
were then transferred onto 1/2 MS medium contain-
ing 100 mM NaCl and —0.5 MPa PEG. The root
lengths of OsRFPH2-3, OsRFPH2-14, OsRFPH2-16,
OsRFPH2-23, OsRFPHC-2, and OsRFPHC-13 were not
significantly different from those of control plants;
however, the root lengths of two transgenic lines
(OsRFPHC-3 and OsRFPv-6) were significantly longer
than those of control plants (Supplementary Fig.
S5A). Overexpression of OsRFPHC-3 and OsRFPv-6
genes therefore improved seedling growth and root
length under normal conditions. We further assessed
the effects of salt (100 mM NaCl) and PEG
(—0.5 MPa) treatments on the roots of transgenic
seedlings. As shown in Supplementary Fig. S5B and
C, most of the root lengths of transgenic lines were
significantly longer than those of control plants.
Since parts of the transgenic plants exhibited toler-
ance to PEG treatment, we compared accumulation of
hydrogen peroxide (H,O;) in transgenic and control
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Figure 7. Increased germination rates of seven overexpressed OsRFP genes in Arabidopsis under salt stress conditions. Three-independent
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2-EGFP (E), 35S5:0OsRFPHC-3-EGFP (F), 35S:0sRFPHC-13-EGFP (G), and 3 5S:0sRFPv-6-EGFP (H) with control plants (35S:EGFP) were plated
on 1/2 MS containing 150 mM NaCl. Germination percentages for each experiment were scored and calculated at 1-day interval for 7
days. Data represent means + SDs of three-independent experiments (1 = 30).
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plant leaves after dehydration treatment. To do this,
each leaf was dehydrated for 90 min and then incu-
bated with 3,3’-diaminobenzidine (DAB) staining so-
lution. The analysis of DAB staining indicated that
H,0, accumulation was greater in all transgenic
leaves than in control plants (Supplementary Fig.
S6), suggesting that overexpression of OsRFPs in
Arabidopsis caused dehydration-induced H,0O, accu-
mulation. Finally, 2-week-old control and transgenic
plants were exposed to drought stress for 10 days by
being deprived of water. After the drought treatment,
control and transgenic plants were irrigated for 5
days, and their survival rates were determined
(Supplementary Fig. S7). When grown under normal
conditions in soil, no significant difference in pheno-
types was observed between control and transgenic
plants. However, after exposure to drought stress
(i.e. no irrigation for 10 days), the transgenic plants
exhibited more tolerance than control plants. After
watering again, the survival rates of the transgenic
plants were significantly higher than those of the
control plants (Supplementary Fig. S7). For example,
the survival rates of OsRFPH2-3 and OsRFPHC-13
transgenic plants reached 67.6% (48 of 71 for #2)
and 58.9% (43 of 73 for #1), while those in control
plants only reached 4% (50 of 275) and 7.5% (6 of
79), respectively. These results implied that heteroge-
neous overexpression of the selected OsRFP genes in
Arabidopsis can promote the germination rate, seed-
ling growth, and survival rate under salt and drought
stress conditions.

4. Discussion

Previously, we identified a gene family encoding rice
RFPs and divided their members on the basis of the
presence of a zinc-coordinating Cys or His residue in
their RING domain.'" In addition, their expression
patterns across a wide variety of tissues and environ-
ments were evaluated via in silico analysis, with a
dataset of 155 GEO samples on a rice genome micro-
array. By using these methods, we were able to divide
the 369 OsRFP genes into five groups. Interestingly,
members in three of the groups showed distinct ex-
pression patterns in specific tissues and/or environ-
ments, leading us to further investigate their
molecular functions. We randomly selected about
half of the proteins in the three groups (47 of 102)
and analysed their molecular functions to elucidate
their evolutionary dynamics and fate.

The analysis of PPIs is critical to understanding the
biological functions of different proteins during cellu-
lar processes. The interactions of RING E3 ligases are
generally localized to the same organelles or an inter-
actable subcellular compartment in the cell. For
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example, the Arabidopsis RING E3 ligase, DRIPT,
which can interact with the transcription factor,
DREB2A, and regulates DRIP1 protein levels via the
26S proteasome system, is localized to the
nucleus.'® In addition, the endoplasmic reticulum
membrane-localized RmalH1 inhibits subcellular
trafficking of ER-localized PIP2;1 to the plasma mem-
brane."® In this study, we demonstrated the subcellu-
lar localization of nine OsRFP-EGFPs via transient
expression in tobacco cells and predicted that they
had 120 interactors via in silico analysis (Figs 1—3).
However, we observed inconsistencies in the subcellu-
lar colocalization of OsRFPs and their interactors. For
example, OsRFPH2-14 was localized to the cytoplasm,
and only 7 of its 22 interactors were associated with
the same location. The plasma membrane-localized
OsRFPH2-3 had only one interactor, aquaporin
protein, which was also targeted to the plasma mem-
brane. Interestingly, 44 of the 120 interactors of
seven OsRFPs were localized to chloroplasts, even
though there were no chloroplast-localized OsRFPs
(Fig. 5A and Supplementary Table S2). Our findings
therefore raise questions regarding the physical inter-
actions of OsRFPs and their interactors in cases in
which each OsRFP/interactor is localized to different
compartments. An increasing body of evidence sug-
gests that proteins can be translocated to other cellu-
lar organelles during certain physiological and
environmental conditions.?®?” Additionally, a variety
of studies have indicated that plant RING E3 ligases
show dynamic translocation and partitioning for the
activation of cellular process during specific condi-
tions. For example, cytoplasm-localized Arabidopsis
HOS1 RING E3 ligase accumulates in the nucleus in
response to low temperature treatments and localizes
to the cytoplasm without cold treatment.?® In add-
ition, nuclear-localized COP1 RING E3 ligase is trans-
located to the cytoplasm under light signals for the
activation of photomorphogenic development.?®3°
Therefore, the translocation (or partitioning) of
RING E3 ligases may be a general cellular mechanism
through which plants adapt to the environment via
post-translational modifications. Interestingly, one of
the genes we studied, OsRFPHC-10, harbours a
kinesin motor domain. The presence of this domain
might be a reflection of the functional evolution of
the members of the E3 ligase family to acquire their
own mobility. Further analysis of OsRFPHC-10 is
required to conclusively determine whether this is
the case.

Our finding that some interactors exhibit multiple
PPIs with one or more OsRFPs may support the hy-
pothesis that there is complexity and redundancy in
the post-translational regulation of substrate proteins
via the 26S proteasome pathway. For example, the
OsSalT (0s01g24710, jacalin-like lectin domain
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protein) protein appeared to interact physically with
four OsRFPs (OsRFPH2-3, OsRFPH2-14, OsRFPH2-16,
and OsRFPH2-23). Transcript levels and protein accu-
mulation of OsSalT were reported to have increased
significantly in response to salt and drought stres-
ses.3' 733 A possible hypothesis is that the stress-
inducible protein, which is induced under a variety
of environments, participates in multiple stress regu-
lation pathways and is regulated by unique OsRFPs.

In the ubiquitination pathway, RING E3 ligases are
generally known to recognize specific target proteins
as substrates and directly transfer Ub from an E2
ligase to the substrate without an E3-Ub intermediate.®
The finding that five OsRFPs may exhibit physical inter-
actions with the Ub protein is somewhat inconsistent
with this notion. In contrast, a large number of Ub
E3 ligases have been reported to have the ability to
catalyse their own ubiquitination.>* Self-ubiquitina-
tion, which can occur in substrate-independent and
substrate-dependent modes, supports the notion
that RING E3 ligases can protect the substrate proteins
or their own proteins from self-destruction.>>*® Thus,
our results support the hypothesis that a large number
of OsRFPs may have the ability for self-ubiquitination
under specific conditions.

Increasing numbers of plant RING E3 ligases have
been reported to regulate molecular responses to
abiotic stresses, supporting the hypothesis that they
play an important role in the regulation of stress-
induced cellular processes. RING E3 ligases are
known to positively and negatively regulate target
proteins via the 26S proteasomal degradation
pathway. For example, salt- and drought-induced
SDIR1 are believed to be a positive regulator of ABA
signalling.'” Drought-induced Rma1H1 also plays a
role in responses to dehydration via inhibition of
aquaporin trafficking between compartments, which
lead to subsequent aquaporin degradation.'® In add-
ition, OsDIST and DRIP1 E3 ligases play negative roles
in drought—stress tolerance through post-translational
modification of their transcription factors.'®'” The
finding that overexpressing E3 ligases in most plants
confer protection against salt and/or dehydration
stress may be explained by their ability to regulate pro-
teins via the 26S proteasomal degradation pathway.
However, further research is required to confirm
these results. The OsRFPH2-3 protein, whose overex-
pression in plants conferred protection against dehy-
dration, may interact with an aquaporin protein and,
thus, the inhibition of the aquaporin protein through
OsRFPH2-3 E3 ligase could improve drought tolerance
in transgenic plants. Similarly, the finding that OsRFPv-
6 clearly confers salt and dehydration stress tolerance
and interacts with aquaporin as well as ABC transpor-
ters®” may also support this hypothesis. Furthermore,
Aharon et al.®® reported that overexpression of the
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plasma membrane aquaporin, PIP1b, in tobacco
caused a hypersensitive phenotype to drought stress.
The study suggested that enhanced water transport ac-
tivity via plasma membrane aquaporins and ABC trans-
porters may negatively affect plants during drought
stress. Therefore, our findings regarding the dynamic
responses of OsRFPs to abiotic stresses, the tolerance
of their overexpression in plants, and their interactors’
profiles may provide some clues regarding their
molecular regulation of abiotic stress responses.
Furthermore, the fact that heterogeneous overexpres-
sion of OsRFPs enhances drought and/or salt tolerance
warrants further investigation, since it is a mechanism
through which we can enhance monocot plants
(including rice) using genetic approaches.

The finding that there was high accumulation of
H,O, during drought stress in all tested plants overex-
pressing E3 ligases compared with control plants may
provide strong evidence regarding the relationship
between H,0; and stress tolerance in plants. H,O, pro-
duction may involve ABA-induced stomatal closure and
act as an intermediate in ABA signalling.>® A host of
studies have demonstrated the positive relationship
between H,0, accumulation and ABA-mediated
drought—stress tolerance in overexpressing plants. For
example, plants overexpressing AtAIRP2 (a cytosolic
RING-HC type Arabidopsis E3 ligase) exhibited strong
tolerance to drought stress, producing higher levels of
H,0, than knockout plants and wild-type plants.'®
Therefore, our findings may be a good example of the
positive relationship between H,O, accumulation
and stress tolerance in plants overexpressing the RING
E3 ligase gene. In conclusion, the findings obtained in
our comprehensive study may provide some insights
into the biological functions of RING E3 ligases and
may provide genetic strategies that promote plant
adaptation to unfavourable environmental conditions.

Supplementary Data: Supplementary Data are
available at www.dnaresearch.oxfordjournals.org.
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