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3Laboratoire Matières et Systèmes Complexes, UMR7057, CNRS and Université Paris Diderot, Paris, France
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With the continuous expansion of single cell biology, the observation of the

behaviour of individual cells over extended durations and with high accuracy

has become a problem of central importance. Surprisingly, even for yeast cells

that have relatively regular shapes, no solution has been proposed that reaches

the high quality required for long-term experiments for segmentation and

tracking (S&T) based on brightfield images. Here, we present CellStar, a tool

chain designed to achieve good performance in long-term experiments. The

key features are the use of a new variant of parametrized active rays for seg-

mentation, a neighbourhood-preserving criterion for tracking, and the use of

an iterative approach that incrementally improves S&T quality. A graphical

user interface enables manual corrections of S&T errors and their use for

the automated correction of other, related errors and for parameter learning.

We created a benchmark dataset with manually analysed images and com-

pared CellStar with six other tools, showing its high performance, notably

in long-term tracking. As a community effort, we set up a website, the

Yeast Image Toolkit, with the benchmark and the Evaluation Platform to

gather this and additional information provided by others.
1. Introduction
Observing cellular processes at the single cell level is often necessary to under-

stand how cells respond to endogenous and environmental changes. Used in

combination with fluorescence reporter techniques, flow cytometry and time-

lapse microscopy are arguably the two most widely employed quantitative

single-cell observation approaches. The former provides great statistical details

on the diversity of the studied cell population, whereas the latter provides

longitudinal information on single cells: individual cells can be tracked in

time. This is a decisive advantage to investigate a number of important bio-

logical problems, including chronological ageing, epigenetic heritability and

dynamic features such as the cell cycle and circadian oscillations in

non-synchronized cell populations. One can take advantage of microfluidic

microchemostat that, unlike liquid bulk culture, enables long-term observations

of cells growing as a monolayer. Moreover, microfluidics can be used to create

time-varying environments. Both aspects are of increasing importance to obtain

a quantitative understanding of cellular processes at the single cell level.

However, the capability to extract single cell traces from microscopy images in

a fully automated manner is a necessary prerequisite to obtain conclusions that
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Figure 1. Precision decay in long-term tracking. Tracking quality decreases
exponentially with the increase in the number of frames. Assuming that the
probability r of a correct cell assignment (i.e. a cell in one frame corresponds
to the same cell in the previous frame) is constant in time, then the probability
of the trace being correct (i.e. to describe always the same cell) is rðn�1Þ, with
n being the length of the trace (i.e. the number of frames). If the probability of
correctly mapping a cell across two consecutive frames is 99%, then the
probability that a trace spanning 100 frames is correct is only 37%.
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are valid and biologically relevant in long-lasting experiments.

Incorrect assignments (e.g. two cells exchanged at some time

point) can possibly hide interesting features or worse, create

spurious information. Although such incorrect assignments

are expected to be relatively rare at each time point, a simple

analysis shows that the number of correct traces decreases

rapidly with the duration of the experiment (figure 1).

In the following, we focus on the analysis of microscopy

images of the budding yeast Saccharomyces cerevisiae observed

in brightfield. While fluorescent markers can be used to tag

cellular compartments and significantly ease the image analysis

problem, brightfield imaging circumvents the need for geneti-

cally engineering cells and avoids dedicating one precious

fluorescent channel to find cells’ contours, together with

possible phototoxicity effects coming from fluorescence imaging.

The extraction of cell traces is usually separated into two

distinct tasks: segmentation and tracking. The aim of segmen-

tation is the detection of the areas (technically called

segments) occupied by each cell in each image. Tracking

maps each segment in one image to one (or no) segment in

the following image, so that the history of each cell is recon-

structed over the entire duration of the experiment.

Segmentation and tracking of yeast cells in microscopy

images are widely studied problems [1–14]. Usually, seg-

mentation is obtained through a combination of a few basic

image operations: intensity thresholding, filtering and other

morphological operations [15]. Other classical methods use

region accumulation approaches such as Voronoi-based

methods [16], the watershed transform [17] or deformable-

model approaches such as active contours [18,19]. Methods

and tools for cell segmentation and tracking have been

described in reviews such as [15,20,21].

Nevertheless, yeast single cell segmentation and tracking

are still frequently a technical bottleneck, for example as a con-

sequence of the difficulties in the tuning of image-processing

parameters, the meaning of which is mostly obscure for the

average user. Most of the time researchers resort to home-

made solutions based on semi-automated tracking systems.

Such methods generally fail to robustly recover cell trajectories,

or at best are tailored for a very specific experimental system,

usually relying on additional fluorescent markers or

constrained microfluidic geometry forming cell traps.
In this paper, we present CellStar, a tool chain for the

analysis of videomicroscopy data in which all the steps have

been designed to meet the quality requirements needed for

the analysis of long-term experiments using budding yeast

cells. This has been achieved by the application of iterative

algorithms that incrementally gather information from the

image in order to make cell segmentation and tracking robust
with respect to the most common image analysis errors. In

particular, for segmentation, we use a new variant of active
rays, which exploits information regarding the interior of con-

tours. Active rays, also called polar active contours, are a

computationally efficient framework for the identification of

object outlines in which the contour extraction problem is

defined as an energy minimization problem and contours

belong to a family of parametric curves [22]. For tracking,

we use a multi-criteria optimization algorithm. It notably

includes the penalization of relative displacements between

neighbours proposed by Delgado-Gonzalo et al. [23], which

provides robustness to collective cell movements. The high-

quality results obtained by automatic image processing can

be further improved manually thanks to CellStar’s graphical

user interface (GUI). Manual corrections are also exploited

for automatic parameter learning, which relieves the user of

understanding the trickiest parameters of the algorithms.

Furthermore, we compare CellStar with other seg-

mentation and tracking tools. We developed a manually

curated set of yeast microscopy images to be used as a bench-

mark. Indeed, no consensus has emerged yet on the

best-performing tool, and no systematic analysis of their

performance has been proposed for long-term videomicro-

scopy data. We thus selected images that reflect a diversity

of situations encountered in typical experiments. We com-

pared CellStar with six software solutions dedicated to yeast

cell segmentation and tracking in brightfield microscopy,

namely CellID [1], CellTracer [6], CellSerpent [7], CellX [12],

Tracker [24] and the intensity-based segmentation-overlap-

based tracking (IBSOBT) pipeline for CellProfiler [25] (see

electronic supplementary material, table S2). These tools

have been selected for their representativity, together with

the availability and usability of their implementation. Other

dedicated tools or image analysis platforms could have

been considered [2–5,8,10,11,13,14,26].

In our comparative analysis, we found that CellStar out-

performs the other tools we tested. Naturally, these results

should be interpreted with care because they have been

obtained on data produced in our laboratory and with the

best parametrization we could find for each tool, which

might not be the optimal one. Therefore, this study does

not aim to provide definitive conclusions but rather to

initiate a community effort to compare tools on the same

data. To this end, we additionally set up a companion web-

site, Evaluation Platform, enabling segmentation and tracking

results to be compared and updated when new benchmarks

or new tools become available. CellStar, the Evaluation
Platform and the benchmark dataset are freely available on

the website.
2. Results
2.1. Segmentation
Segmentation is often a key phase of image processing,

during which each image is processed independently with
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Figure 2. Segmentation pipeline: preprocessing, seeding and contour deformation. The background (b) is computed and subtracted from the original image (a) to
give the clean image (e). Preprocessing steps also include the computation of the foreground (c), cell border (not shown) and cell content (d ) masks. These masks
are used to place initial seeds, represented by red/white dots (g). Starting from each seed, the initial shape of the snake (h) is computed by drawing concentric rays,
computing an approximated Esnake and selecting its minimum along each ray; the initial shape of the snake is modified according to the given regularity constraints
to obtain the final contour (k). After filtering (figure 3), selected contours ( j ) are removed from the border and content masks, as shown in (i) so as to ease the
discovery of new cells. The final result is shown in (l ).
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the aim of identifying the boundaries of every cell. In order to

meet the precision requirements needed in long-term exper-

iments, we designed a segmentation pipeline based on a

new variant of polar active contours [22]. The pipeline has

been conceived to provide high segmentation quality in the

presence of several problematic conditions typical of mono-

layer cultures of growing yeast cells, including images fully

crowded with packed cells and wide range of cell sizes.

Here we simply describe the main steps of the approach, high-

lighting the specific features that all together enable effective

long-term tracking. A detailed description of the pipeline

including the mathematical formalization of active contours

and the specification of the main algorithm in pseudo-code

is provided in electronic supplementary material.
2.1.1. Active contours with interior
Active contours (or snakes [18]) are a well-known framework

for the identification of objects outlines. Informally speaking,

active contours are deformable curves that are pulled or

pushed towards the boundaries of the objects to be identified.

In the case of roundish cells like yeast, closed active contours

are usually exploited for segmentation, resembling a sort of

balloon in which inflation or deflation is applied to match

the contour of a cell [2,7]. Snakes are deformed to minimize

a weighted energy, Esnake, whose traditional definition has

been adapted as follows

EsnakeðgÞ ¼ EimageðgÞ þ EshapeðgÞ þ EsurfaceðSgÞ,

where g is the curve corresponding to the snake and Sg its

interior. Eimage represents an energy term related to the
intensity, the intensity gradient and terminations of the

image underlying contour (g). It is the line integral

EimageðgÞ ¼
ðl

0

EintensityðgðtÞÞ þ EedgeðgðtÞÞ þ EterminðgðtÞÞdt,

where l is the length of g. Here, we exploit the fact that

(i) cells appear darker than the background, (ii) cell borders

are characterized by a high-intensity gradient (effect of tran-

sition from darker inside to brighter outside), and (iii) in

dense settings, intercell space is significantly brighter

(figure 2a). More details are provided in the electronic

supplementary material. Eshape, also often called Einternal,

depends on the geometrical properties of the snake. Note

that in comparison with the traditional definition, the defi-

nition of Eshape has been modified to take into account the

area of the interior of the snake:

EshapeðgÞ ¼ aTðAðSgÞÞ þ
ðl

0

bjg00ðtÞjdt,

where A(Sg) represents the area of the interior of g. The first

term accounts for the extent of the snake and the second term

measures the regularity of the contour. T : R! R is an arbi-

trary (continuous) function that allows the introduction of a

bias in the energy term depending on the area of the snake,

for example to favour the detection of cells with some

expected average size.

We observed that including an additional term incorpor-

ating properties of not only cell contour but also the cell

interior leads to significant improvements in segmentation

results. With EsurfaceðSgÞ, we propose a new energy function

for closed active contours that critically differs from the

usual definition, thanks to the presence of terms related to
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contour interiors:

EsurfaceðSgÞ ¼
ðð

Sg

w1F1ðx, yÞ þ � � � þ wnFnðx, yÞdx dy

with F1, . . . , Fn being user-defined image filters weighted by

w1, . . . , wn. By default, we use as filters only the cell content

and cell border images. Esurface allows us to exploit infor-

mation about the content of snakes, which can increase the

quality of segmentation when contours are not continuous

and sharp, as it happens in images of packed cell clusters.

In particular, it allows us to substantially extend the range

of cell sizes that can be detected without succumbing to

under- and over-segmentation. Note that Eshape was already

deviating from classical definitions of the energy for active

contours that usually exclusively use properties of the

pixels lying on the contour itself. Consequently, optimiz-

ations need to be done on two-dimensional structures

rather than on one-dimensional structures, possibly leading

to significantly larger computational costs. A complete for-

malization of the above energy terms is provided in the

electronic supplementary material.
2.1.2. CellStar segmentation pipeline
Minimization of the energy of active contours is a key

element to segment each single cell in the image. However,

it is only a part of the CellStar segmentation pipeline consist-

ing of a few independent steps. First, original images are

preprocessed to create helper images. Initial contours

(called seeds) are then placed on the image. Next, the shape

of each contour is modified independently by minimizing

EsnakeðgÞ, until it matches the outline of a cell. The procedure

of seeding, contour shape modification and filtering is

repeated until the area with cells is completely covered

with contours or a given number of iterations is reached.

From the computational perspective, contour defor-

mation is an expensive part of the algorithm. To lower the

computational complexity, we use polar active contours

[22]. The class of shapes allowed for polar active contours cor-

responds in practice to star-shaped polygons: a star-shaped

polygon is such that there exists (at least) one point in its

interior (referred to as the centre of the polygon) from

which the entire polygon is directly visible. Polar active con-

tours provide numerous advantages for the segmentation of

roundish cells like yeast: a more efficient energy minimiz-

ation process, obtained by the reduction of the freedom of

contour control points from two dimensions to one and the

absence of contour self-crossing by design. In the remainder

of the section, the main concepts of the pipeline are briefly

described. We refer the reader to the electronic supplementary

material for a more formal description of the pipeline.

Preprocessing. The aim is to compute a set of intermediate

images representing all the features exploited later on in the

proper segmentation phase, including the filters F1, . . . , Fn

previously mentioned. They are obtained by applying classic

filters for the attenuation of noise and illumination artefacts,

edge detection, as well as several custom filters for the

computation of binary masks necessary for the efficient pla-

cement of initial contours and their subsequent deformation

(e.g. background image, foreground mask, cell content and

cell border masks). Examples of these images are shown in

figure 2b–d.
Seeding. Seeding seeks to find the centres of future con-

tours (figure 2f–g). Tentative initial seed positions are

obtained by looking for brightness minima after having

applied smoothing filters to the cell border image. This seed-

ing strategy is similar to that of [7]. Several other strategies

are then applied using the cell content image, previously dis-

covered segments and randomization (see the electronic

supplementary material for details). Ideally, our procedure

places exactly one seed inside every cell. In practice, some

cells get more than one seed, whereas others get none. In

the case of cells with multiple associated seeds, it is usually

enough to choose the most ‘promising’ final contour (see

the ranking and filtering phase below). Cells with no associ-

ated seeds represent instead a serious problem because they

end up missing in the segmentation. Instead of overfilling

the image with many seeds at once, the CellStar pipeline per-

forms several seeding iterations where new seeds are placed

in those areas of the image where cells are expected but have

not yet been found. This is achieved by excluding the areas

already covered by contours from some of the images com-

puted in the preprocessing phase, in particular the cell

content and cell border images (figure 2i– j ). This is an impor-

tant step of the strategy. In this way, the CellStar pipeline

minimizes the number of missing cells efficiently from a

computational perspective.

Contour deformation. This is the most computationally

intensive phase of the segmentation process. To minimize

the computational cost, the centre of the related star-shaped

polygon is not modified during contour deformation.

Additionally, the number of vertexes of the polygon are

fixed and their movement is constrained along straight lines

originating from the centre (polar active contours are also

called active rays; figure 2h). We implemented ad hoc heuris-

tics for the minimization of contour energy, based on a

number of approximations of the energy function, to provide

acceptable trade-offs between segmentation quality and

computation time even in the most demanding situations,

such as real-time image analysis ([24]; figure 2h,k and

electronic supplementary material).

Ranking and filtering. Contour ranking and filtering is the

last phase of segmentation, where snakes are kept or discarded

according to several criteria. Snakes are ranked according to

Esnake, then those overlapping with other, lower-energy

snakes are discarded according to the hypothesis that they cor-

respond to a worse detection of the same cell, as shown in

figure 3. This procedure is similar to what is done for CellSer-

pent [7], however, in our pipeline the ranking and filtering

phase becomes an essential part of the search of optimal con-

tours, thanks to the seeding strategies previously described

and further detailed in the electronic supplementary material.
2.2. Tracking
During segmentation of a specific frame, each cell is assigned

with a numerical label called a (cell) detection number. Track-

ing is then defined as the task of associating each detection in

each frame with a unique cell identifier. Cell movement is

the main obstacle that has to be overcome during tracking.

Cells move across, appear in and disappear from the field

of view. First, we present an approach to relate cells in two

successive frames assuming that cells move independently

of one another. While this assumption is not always true

(clumped cells tend to move together), it greatly simplifies
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the algorithm. Second, we relax this assumption and propose

an improvement of the approach.
2.2.1. Independent motion assumption
We consider that detections of cells in frame i depend only on

detections in frame i 21. Therefore, we can introduce a

frame-to-frame assignment matrix Ai:iþ1 that specifies appear-

ing and disappearing cells as well as the presence of the same

cell in frames i and i þ 1. The problem is thus reduced to

finding the best frame-to-frame assignment matrix.

To do so, we introduce a cost matrix Ci:iþ1 that specifies

for each cell detection number the cost of assuming that it

corresponds to an appearing or disappearing cell, and for

each pair of cell detection numbers, the cost of assuming

that they correspond to the same cell in frames i and i þ 1.

The cost of missing cells is based on the distance of cell detec-

tions from frame borders (cells near borders tend to appear

and disappear more frequently). The cost of associating two

detections with a single cell depends on how similar they

are, that is their relative shapes and distance between the

two-dimensional coordinates of the frames.

As shown in the electronic supplementary material, the

best frame-to-frame assignment matrix is the one minimizing

trðAi:iþ1Ci:iþ1Þ. This is a well-known assignment problem,

which can be solved by the Hungarian algorithm in

OððMi þMiþ1Þ3Þ steps, where Mi is the number of detections

in frame i [27].
2.2.2. Neighbourhood-preserving motion
Actually, when cells are clumped together, they tend to

move together, so that the motion of a cell is often correlated

with that of its neighbours. To relax the simplifying assump-

tion of independent cell motion, we introduce a heuristic

procedure detailed in the electronic supplementary material

which repeatedly applies the Hungarian algorithm, each

time adjusting the cost matrix in such a way that costs of

assignments leading to neighbourhood-preserving motions

are lowered. A similar idea was used in [23] to track flows

of cell crowds.
2.3. Graphical user interface and automated tool
calibration

No S&T algorithm can give perfect results when applied to

real datasets, errors will likely propagate through S&T iter-

ations. The need for GUIs that easily enable the detection

and manual correction of errors is now well recognized

[28]. A unique feature of CellStar is the ability to manually

curate segmentation and tracking results using a GUI and

use this information as ground truth for parameter learning

to further improve batch image processing.

Segmentation ground truth consists of segments drawn,

validated or corrected by hand. Thanks to the iterative

nature of the segmentation algorithm, manual corrections

may propagate and solve other segmentation and tracking

issues (figure 4a). These contours can be then used for auto-

matic learning of the weights appearing in the definition of

the surface energy Esurface. Such weights represent the most

delicate segmentation parameters and their tuning by hand

is time-consuming. The effectiveness of parameter learning

is represented in figure 4b on an example taken from our

test set. Importantly, learning here amounts to calibrating a

few parameters used by the algorithm. It does not require

the massive amounts of data needed by machine learning

approaches (e.g. deep learning).

Tracking ground truth allows the user to validate or cor-

rect the assignment of cells between consecutive frames.

Thanks to the iterative heuristic based on neighbourhood-

preserving motion, a single correction can propagate to all

the neighbour cells, so that a whole cluster of tracking

errors may be corrected with a single fix.

Lastly, we implemented a problem-finding procedure that

highlights suspicious situations to the user, as for example

the sudden appearance or disappearance of cells. The

detailed description of GUI features is available in the

CellStar user manual.
2.4. Benchmarks and evaluation platform
The choice of an image-processing tool is often difficult,

because many tools have been proposed so far and because

it is impractical to evaluate the effectiveness of each

of them by visual inspection, in particular in the case of
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long-term observations where a considerable amount of data

should be inspected by eye. To help with this issue, we cre-

ated a tool called Evaluation Platform. The tool enables

convenient evaluation and comparison of the results of algor-

ithms for the segmentation, tracking and long-term tracking

of cells (figure 5). The evaluation is based on benchmark data-

sets, consisting of manually annotated images. Given analysis

results, the tool computes the percentage of correct elements

in the results (precision) and in the ground truth (recall), and

computes the F-measure, combining precision and recall. For

segmentation, two cells—one in the ground truth and one in

the segmentation result—are correctly mapped if their centres

are closer than a given threshold distance and they are the

closest to each other in both images. Note that we do not

assess the correctness of the segmentation at the pixel level.

Therefore, our method will detect frequently encountered

oversegmentation issues (several predicted cells in a true

cell) and undersegmentation issues (one predicted cell

spanning several true cells), but may miss small local

segmentation issues. In tracking results, links correspond to

the positions of a cell centre in two successive frames. Links

are correct if they associate the same cell in the tracking

ground truth. Lastly, for long-term tracking, the scores are

computed identically but using only the first and last image

of a movie.

We created an annotated benchmark composed of seven

test sets that cover common situations for budding yeast

micro-colonies growing as a mono layer, in particular images

with sparse cells, dense cells, dividing cells and cells motion

(for details, see Materials and methods). It contains more

than 12 000 cells to segment and cell pairs to identify and

spans up to 3 h of observations (60 frames). Using the

Evaluation Platform, we compared the performance of seven

software tools: Cell Tracer [6], CellID [1], IBSOBT via CellPro-

filer [25], Tracker [24], CellSerpent [7], CellX [12] and CellStar.
The tools are listed in electronic supplementary material, table

S1. For each algorithm, we dedicated 6 h to tune the tool par-

ameters to the benchmark. During this time, parameters were

changed to improve the results, the quality of which was

assessed by visual inspection. This approach mimics the typi-

cal parameter tuning made by users of imaging software tools.

In the case of CellStar, we used a combination of manual and
automated parameter searches. For the other tools, because

automated parameter search strategies were not available,

parameter tuning was necessarily manual.

The results of the tools on the benchmark are summarized

in table 1. In all tests, CellStar obtained the best results for

segmentation accuracy, tracking quality and long-term track-

ing quality. The other software performed well, but none of

them was able to obtain consistent results on all test sets

for segmentation and tracking. It is worth remarking,

however, that the results of the comparison should be inter-

preted with care, because the results of the tested tools may

be different with other parametrizations of the tools, and

because not all tracking tools have been included in our

test. Camera resolution and temporal frequency of images

could also impact results.

As a community effort, we created the Yeast Image Toolkit
website from which the Evaluation Platform and existing bench-

marks can be downloaded. Additional results from other tools

and additional manually annotated benchmarks can be freely

added by other researchers in the field.
3. Discussion
We described CellStar, a novel open-source tool to robustly

segment yeast cells using brightfield images and to track

their trajectories through time with excellent accuracy, which

makes this image-processing tool suitable for long-term track-

ing. The key features of CellStar are iterative procedures for

segmentation and tracking that exploit additional information

to identify and trace cells, such as the cell interior for the

identification of cell contours, and cell size, shape and neigh-

bours relative distances for robust cell tracking. CellStar
comes with a GUI that allows the manual correction of seg-

mentation and tracking errors through easy point-and-click

procedures. A few manual interventions are often sufficient

to fix all the errors, because most corrections are automatically

propagated to neighbour cells by CellStar iterative segmenta-

tion and tracking procedures. Moreover, manual corrections

can be exploited for the automatic learning of the most impor-

tant parameters, to relieve the user of having to understand all

the technical details of the CellStar image-processing
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Figure 5. Evaluation Platform (EP) overview. EP requires a benchmark to work, which provides an annotated dataset(s) consisting of raw images and ground truth.
Raw images are analysed by an algorithm under investigation, and the outputs of analysis, stored in similar format as ground truth annotations. EP computes
precision, recall and F scores for all datasets on three problems: segmentation, tracking and long-term tracking. EP outputs contain numerical values summarizing
the performance over all datasets, plots providing insights into performance over series of frames as well as annotated images allowing investigation of the
performance within the frame (more details in electronic supplementary material, figure S4).
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algorithms. We showed that providing a few correctly segmen-

ted cells as ground truth for our learning algorithm enabled it

to tune our model and achieve good performance even when

starting from default parameter values. The proposed

approach should not be confused with machine-learning-

oriented approaches that aim to learn a complete model and

generally require significant amounts of data [29].

To evaluate the performance of CellStar and compare it

with other image-processing tools commonly used for yeast,

we prepared a benchmark composed of seven tests representa-

tive of the most common circumstances occurring in

brightfield video microscopy of yeast, including sparse cells,

dense cells, dividing cells and cells motion.

We compared CellStar with six other software solutions:

CellID [1], IBSOBT via CellProfiler [25], CellTracer [6],

Tracker [24], CellX [12] and CellSerpent [7]. In all tests, Cell-
Star obtained the best results for segmentation, tracking and

long-term tracking accuracy. These result should be treated

with caution, because every algorithm that we evaluated

required parametrization and we cannot guarantee that

optimal parameters were found in all cases.

In order to automate the comparison of different tools

and have an objective measure of image-processing quality

for segmentation, tracking and long-term tracking, we

built Evaluation Platform, which allows the automatic evalu-

ation and comparison of any segmentation and tracking

tool, thanks to benchmarks based on human-supplied

ground truth data.

We further worked on the implementation of CellStar on

different, open-source platforms such as CellProfiler to make

it available to a broader community. In contrast to the majority

of image analysis tools, the aim here is not for generality

regarding the analysis of different cell types (one-size-fits-all

approaches). We tailored our approach to a specific, yet

extensively studied model organism. We investigate the possi-

bilities to adapt CellStar algorithms to other model organisms,
such as Escherichia coli and Schizosaccharomyces pombe (rod

shape) without sacrificing performance.

The benchmark we proposed allows the comparison of

different existing solutions on the same ground. Together

with Evaluation Platform and its companion website, it facilitates

the exchange of information within the bioimaging commu-

nity. By resorting to crowdsourcing, we hope to improve the

existing tools, collectively develop proper documentation and

usage scenarios, collect more data and improve benchmarks.

Our initiative is therefore complementary with cell tracking

competitions recently initiated [30]. We believe that these two

approaches will help biologists to get more reliable quantitative

data on the behaviours of individual cells over extended dur-

ations. This information is essential to quantify cell-to-cell

differences, together with their temporal evolution [31, 32].
4. Material and methods
4.1. Tools implementations
CellStar is implemented in Matlab and is freely downloadable

with its documentation at http://www.cellstar-algorithm.org/.

The Evaluation Platform is implemented in Python and is freely

downloadable with its documentation on the Yeast Evaluation

Toolkit website at http://yeast-image-toolkit.biosim.eu.

4.2. Benchmark construction
We imaged a pSTL1-yECitrine-HIS5, Hog1-mCherry-hph S. cer-
evisiae strain derived from the S288C background [24]. Yeast

cells were placed in a microfluidic chamber limiting the growth

of the colony to monolayers. We used an automated inverted

microscope (IX81; Olympus) equipped with a 100� oil immer-

sion objective (PlanApo 1.4 NA; Olympus) and a QuantEM 512

SC camera (Roper Scientific). The resolution of the camera is

512 � 512. Brightfield images were taken every 3 min (50 ms

exposure time).

http://www.cellstar-algorithm.org/
http://www.cellstar-algorithm.org/
http://yeast-image-toolkit.biosim.eu
http://yeast-image-toolkit.biosim.eu


Table 1. Table summarizes segmentation, tracking and long-term quality (F-measure) in all test sets (green, best; blue, second best). Values were obtained
using Evaluation Platform. Note that scores for tracking and long-term tracking are not computed on the same set of cells. Tracking quality is computed based
on all cells present in the device, whereas long-term tracking quality is computed only based on cells present during the whole experiment. Therefore, tracking
quality can be worse than long-term tracking, as observed in some datasets. For CellSerpent, preprocessing was applied to ease background and edge detection
and prevent seeds from being between cells. (Online version in colour.)

test set IBSOBT CellTracer CellID Tracker CellSerpent CellX CellStar

segmentation quality

TS1 0.8847 0.9239 0.6302 0.9351 0.9712 0.9498 0.9921

TS2 0.8923 0.9071 0.3073 0.9531 0.9677 0.9565 0.9895

TS3 0.9094 0.9331 0.9356 0.9176 0.9349 0.9207 0.9852

TS4 0.8238 0.9362 0.9297 0.8960 0.9065 0.9317 0.9797

TS5 0.9023 0.9452 0.9209 0.9036 0.9045 0.9138 0.9728

TS6 0.7835 0.7374 0.7774 0.8671 0.8704 0.9252 0.9618

TS7 0.8837 0.8740 0.7805 0.8861 0.9008 0.8396 0.9610

average 0.8685 0.8938 0.7545 0.9084 0.9223 0.9196 0.9774

tracking quality

TS1 0.8393 0.9109 0.6164 0.9339 n.a. 0.9505 0.9928

TS2 0.7184 0.9020 0.3361 0.9545 n.a. 0.9130 0.9853

TS3 0.8709 0.8750 0.9100 0.8953 n.a. 0.9061 0.9802

TS4 0.7839 0.8713 0.8964 0.8589 n.a. 0.9061 0.9715

TS5 0.8940 0.9015 0.9015 0.8888 n.a. 0.9047 0.9771

TS6 0.7196 0.5413 0.7516 0.8619 n.a. 0.9137 0.9608

TS7 0.8363 0.7939 0.6512 0.8716 n.a. 0.8301 0.9549

average 0.8089 0.7035 0.7233 0.8950 n.a. 0.9035 0.9747

long-term tracking quality

TS1 0.0000 0.4211 0.2857 0.9167 n.a. 0.9600 1.0000

TS2 0.5000 0.3333 0.4444 1.0000 n.a. 1.0000 1.0000

TS3 0.4460 0.3649 0.6587 0.6905 n.a. 0.6627 0.8776

TS4 0.5076 0.3981 0.5517 0.5767 n.a. 0.6614 0.8922

TS5 0.7821 0.4526 0.8000 0.8176 n.a. 0.8837 0.9670

TS6 0.4091 0.2439 0.6415 0.9180 n.a. 0.9846 1.0000

TS7 0.5399 0.4471 0.5590 0.8800 n.a. 0.7958 0.9167

average 0.4550 0.3801 0.5630 0.8285 n.a. 0.8497 0.9505
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The benchmark consists of seven test sets that have been

extracted from two different acquisitions. They cover a variety of

situations, such as isolated cells and small colonies (TS1, TS2

and TS6), colony translations and merging (TS3), big colonies

with heavily clustered cells (TS4, TS5 and TS7). For each test set,

segmentation and tracking ground truth was prepared in a

manual manner by one of the authors and then verified and cor-

rected by another author. The resulting ground truth includes cell

centre locations, unique cell number throughout the TS and ‘facul-

tative’ tag. Facultative tags are used to mark the cells on the edge

of images (some algorithms discard them by design) and objects

that we find questionable. Algorithms are not penalized nor

rewarded for discovering or omitting the cells marked as faculta-

tive. In total, our benchmark contains more than 12 800 cell

segments to process and more than 12 200 cell pairs to identify.

More details are in electronic supplementary material, table S1.
4.3. Performance evaluation
We computed and compared the quality of segmentation,

tracking and long-term tracking of seven different tools. Each
tool required some manual parametrization. Because an

exhaustive search was not possible, we fixed a maximal

amount of time (6 h) to be spent on manual, or in the case of

CellStar, manual and automated parameter search for each soft-

ware. From one to three images per test set have been used to

tune parameters. Although the resulting parameters depend

on the user and its knowledge of the parametrizations used

in the image-processing algorithms, this approach mimics the

typical usage of the tools and results should reflect both

the quality of the underlying algorithms as well as their

usability [33].

The quality of the analysis is evaluated using standard criteria.

Let G be the set of elements in the ground truth, R be the set of

elements in the algorithm results and C the set of associated

elements between G and R. Elements are cells for segmentation

evaluations and pairs of cells in successive frames for tracking

evaluation. Precision, recall, and F-measure are quality criteria

defined as

precision ¼ jCjjRj , recall ¼ jCjjGj and F ¼ 2 � jCj
jRj þ jGj :
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The F-measure combines precision and recall and represents how

similar the result is to the ground truth. In order to improve the

fairness and reliability of the F-measure, we added the possibility

to specify facultative elements in the ground truth, that is inconclu-

sive objects in the images for which the algorithms should not

be penalized nor rewarded, neither for finding nor missing

them. Let Gf be the set of cells in the ground truth marked as

facultative, Cf ¼ fðg, rÞ [ C j g [ Gfg. Precision and recall can

then be properly adjusted as precision ¼ jC n Cfj=ðjRj � jCfjÞ and

recall ¼ jC n Cfj=jG n Gfj.
For segmentation, two cells r and g correspond to one

another (i.e. are in C) if g is the closest cell in the ground truth

and r is the closest cell in the results, provided that the distance

between them is small.

4.4. Automated parameter search in CellStar
Parameter learning is currently implemented for segmentation

only. Contour and ranking parameters are optimized separately.

A contour match measure is used for both optimizations.

Given a ground truth contour u, we define the contour

match measure of a contour g with respect to u as

MuðgÞ ¼ ðAððSg < SuÞ � ðSg > SuÞÞÞ=AðSuÞ, where A(S) denotes

the area of a given surface S.

For contour parameter optimization, a few seeds are randomly

chosen not far from the centroids of every ground truth contour,

and contours are grown from every seed by using the given set

of contour parameter values. The ‘cost’ of the parameter set is

then defined as the root mean square of all contour match

measures. For ranking parameter optimization, several contours

are grown from a high number of seeds randomly chosen inside
and around every ground truth contours. For each ground truth

contour, the contour with the highest rank is selected. The ‘cost’

of the parameter set is then defined as the root mean square of

the match measures of all the selected contours.

In both cases, the costs can be minimized using simulated

annealing or global search (simulannealbnd and globalsearch in

Matlab). Computation times may vary considerably from min-

utes to days, depending on the number of ground truth cells,

the shape of the cells and the features of the images (contrast,

lighting, noise, etc). In our experience on the test set images,

good results are obtained within a few hours starting from a

random parameter set, and a few minutes are enough for incre-

mentally improving a parameter set after the addition of some

new contours to the ground truth.

Data accessibility. The datasets used to benchmark the seven image
analysis tools are can be freely downloaded from the YIT website
at http://yeast-image-toolkit.biosim.eu.
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