Prophylactic Endotracheal Intubation in Patients with Upper Gastrointestinal Bleeding Undergoing Endoscopy: A Systematic Review and Meta-analysis

Fayez Alshamsi, Roman Jaeschke^{1,2}, Bandar Baw³, Waleed Alhazzani^{1,2}

Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates, ¹Department of Medicine, McMaster University, ³Division of Emergency Medicine, McMaster University, ²Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada

Correspondence: Dr. Waleed Alhazzani, Department of Medicine, Division of Critical Care St Joseph's Healthcare, McMaster University, 50 Charlton Avenue, Postal Code L8N 4A6, Hamilton, Ontario, Canada. E-mail: alhazzaw@mcmaster.ca

ABSTRACT

Background: Patients with upper gastrointestinal bleeding (UGIB) often require urgent or emergent esophagogastroduodenoscopy (EGD) and are at risk of complications such as aspiration of gastric content or blood. The role of prophylactic endotracheal intubation (PEI) in the absence of usual respiratory status-related indications is not well established.

Methods: We searched Medline, EMBASE, Cochrane Library's Central Register of Controlled Trials (CENTRAL) and SCOPUS from inception through July 2017 without date or language of publication restriction. We included studies that compared PEI with usual care (UC) in patients with acute UGIB, and reported any of the following outcomes: aspiration, pneumonia, mortality and length of stay. We excluded studies in which majority of included patients required intubation due to respiratory failure or decreased level of consciousness. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence for each outcome.

Results: We did not identify any randomized trials on this topic. We included 10 observational studies (n = 6068). We were not able to perform any adjusted analyses. PEI was associated with a significant increase in aspiration (OR 3.85, 95% CI, 1.46, 10.25; P = 0.01; $I^2 = 56\%$; low-quality evidence), pneumonia (OR 4.17, 95% CI, 1.82, 9.57; P = 0.0007; $I^2 = 52\%$; low-quality evidence) and hospital length of stay (mean difference 0.86 days, 95% CI 0.13, 1.59; P = 0.02; $I^2 = 0$; low-quality evidence), without clear effect on mortality (OR 1.92, 95% CI, 0.71, 5.23; P = 0.2; $I^2 = 95\%$; very low-quality evidence).

Conclusions: Low- to very low-quality evidence from observational studies suggests that PEI in the setting of UGIB may be associated with higher rates of respiratory complications and, less likely, with increased mortality. Although the results are alarming, the lack of higher quality evidence calls for randomized trials to inform practice.

Key words: Endoscopy, systematic review, meta-analysis, prophylactic endotracheal intubation, upper gastrointestinal bleeding

Access this	article online
Quick Response Code:	Website:
erangi e Kangi e	www.sjmms.net
	DOI: 10.4103/sjmms.sjmms_95_17

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Alshamsi F, Jaeschke R, Baw B, Alhazzani W. Prophylactic endotracheal intubation in patients with upper gastrointestinal bleeding undergoing endoscopy: A systematic review and meta-analysis. Saudi J Med Med Sci 2017;5:201-9.

INTRODUCTION

Upper gastrointestinal bleeding (UGIB) can result in significant morbidity and mortality. The mainstay treatment is endoscopic therapy whenever possible. As opposed to elective esophagogastroduodenoscopies (EGD), EGDs performed in emergency or critical care setting, especially in the presence of significant hematemesis, can be associated with significant cardiac and respiratory compromise.^[1] Therefore, it is not uncommon to perform prophylactic endotracheal intubation (PEI) in such patients to prevent aspiration or to assure that a agitated or confused patient is not actively resisting the procedure.

While it is possible that endotracheal intubation is beneficial for patients with UGIB and concomitantly decreased level of consciousness, agitation or hypoxia, the value of endotracheal intubation in patients with large hematemesis and no other indication for intubation is less clear. The recent European guidelines issued a weak recommendation to perform endotracheal intubation in patients with encephalopathy or agitation,^[2] while other guidelines did not address this issue.[3-5] The issue of performing PEI in patients without the above-mentioned characteristics was not addressed. A survey conducted over a decade ago demonstrated a considerable variation in the believes and practices of gastroenterologists with regards to endotracheal intubation in the presence of UGIB.^[6] Due to the complexity of this topic and the lack of clear guidance, we undertook a systematic review to determine the effect of prophylactic intubation on patient-important outcomes in the context of UGIB.

METHODS

Study selection

Studies were eligible if (1) the study design was a randomized controlled trial (RCT) or, if not available, an observational design; (2) the study included patients with UGIB requiring emergent esophagogastroduodenoscopy (EGD); (3) patients underwent PEI (intubation done preemptively to protect the airways in the absence of other indications for intubation) and the control group included patient who did not undergo endotracheal intubation; (4) the study reported any of the following outcomes: aspiration (as defined by authors of those studies), pneumonia (as defined by authors of those studies), mortality and hospital length of stay.

Search strategy

We searched Medline, EMBASE, Cochrane Library's Central Register of Controlled Trials (CENTRAL) and

SCOPUS from inception through July 2017. Our search strategy is detailed in Supplementary Appendix I [online only]. We did not apply any language or date of publication restrictions. Two reviewers, in duplicate, screened the titles and abstracts for potentially eligible articles. The reviewers then assessed the full text of the articles for final eligibility. We also screened references of relevant articles to identify additional studies not captured in database searches. Disagreement between reviewers was resolved by consensus and a third reviewer was consulted in cases it was not achieved.

Data extraction

Two reviewers independently extracted data from eligible studies using standard data abstractions forms. We resolved disagreements by discussion and consensus.

Risk of bias assessment

Two reviewers independently assessed the risk of bias. We used the Newcastle-Ottawa Scale (NOS) to assess the risk of bias for non-randomized studies.^[7] Using this scale, studies are judged based on the following three domains: selection of the study groups [maximum 4 stars (points)]; comparability of the groups (maximum 2 points) and ascertainment of the outcome of interest (maximum 3 points), yielding a maximum possible score of 9 [Supplementary Appendix II, online only].

Statistical analysis

We used Revman software (Review Manager, version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) for data analysis. We used a random-effects model, as described by Dersimonian and Laird,^[8] to pool weighted effects of estimates across all studies. Study weights were estimated using the inverse variance method. We calculated pooled odds ratios (OR) and mean differences (MD) for dichotomous and continuous outcomes, respectively, with corresponding 95% confidence intervals (CI). Statistical heterogeneity was assessed using Chi-square and *I*² statistics,^[9] with significant heterogeneity defined as *P* < 0.10 or *I*² > 50%. We planned to conduct a meta-analysis of adjusted effect estimates, if reported, to generate pooled adjusted OR with 95% CI.

Subgroup analysis

We performed one subgroup analysis by type of bleeding (variceal versus other) hypothesizing that variceal bleeding is associated with larger benefit from intubation.

Sensitivity analysis

We performed sensitivity analysis excluding studies published in abstract form only,^[10-12] and excluding the

abstract by Lee *et al.*,^[12] as the data overlapped with their full-text publication on a later date. ¹³ Finally, we performed a *post hoc* analysis excluding the study by Rudolph *et al.*^[14] due to lack of clarity in the reporting outcomes of the study groups.

Publication bias

We planned to inspect funnel plots and to use Egger's test to assess for publication bias for outcomes that included ≥ 10 studies.^[15]

Quality of evidence

We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to assess the quality of evidence for each outcome.^[16]

RESULTS

Characteristics of included studies

Our initial search identified a total of 601 citations. After eliminating duplicates, 500 citations remained, of which 489 were non-relevant. Eleven^[1,10-14,17-21] articles were retrieved for full-text assessment. Of those, we excluded an abstract^[20] that was subsequently published as a full text [Figure 1]. We did not identify any randomized trials. A total of 10^[1,10-14,17-19,21] retrospective observational studies (7 full-text articles^[1,13,14,17-19,21] and 3 abstracts^[10-12]) enrolling 6068 patients met our eligibility

Figure 1: Study flow diagram

criteria. Two studies exclusively enrolled patients with variceal bleeding.^[17,21] Characteristics of included studies are presented in Table 1.

Risk of bias assessment

Two reviewers assessed the risk of bias using NOS, and its assessments are presented in Table 2.

Main outcomes Aspiration

Six studies^[1,10,14,17,19,21] enrolling 620 patients reported on incidence of aspiration [Figure 2]. Conventional analysis showed that PEI was associated with a significant increase in probability of aspiration (OR 3.85, 95% CI, 1.46, 10.25; P = 0.01; $I^2 = 56\%$; low-quality evidence).

Pneumonia

Five studies^[1,11,13,19,21] enrolling 1912 patients reported on incidence of pneumonia [Figure 3]. PEI was associated with a significant increase in probability of developing pneumonia (OR 4.17, 95% CI, 1.82, 9.57; P = 0.0007; $I^2 = 52\%$; low-quality evidence).

Mortality

Eight studies^[10-13,17-19,21] enrolling 5818 patients reported on mortality [Figure 4]. PEI did not affect mortality to a statistically significant degree (OR 1.92, 95% CI, 0.71, 5.23; P = 0.2; $I^2 = 95\%$; very low-quality evidence).

Hospital length of stay

Six studies^[10,13,17-19,21] enrolling 4188 patients reported on length of stay in hospital [Figure 5]. PEI was associated with a small but statistically significant increase in length of stay (MD 0.86 days, 95% CI 0.13, 1.59; P = 0.02; $I^2 = 0$; low-quality evidence).

Subgroup analysis

We conducted one subgroup analysis by type of bleeding; two studies (n = 172) included only patients with variceal bleeding.^[17,21] We did not detect any significant subgroup differences across all outcomes. Details of the results of subgroup analysis are presented in Supplementary Figures I-IV [online only].

Sensitivity analysis

Sensitivity analysis, excluding three studies published in the abstract form (n = 1768),^[10-12] yielded similar results for pneumonia, mortality and length of stay outcomes. However, for aspiration outcome, the results were no longer statistically significant (OR 4.39, 95% CI 0.75, 25.66; P = 0.1; $I^2 = 77\%$). Our second sensitivity analysis, excluding the Lee *et al.* abstract,

Table 1: Charact	teristics of inclu	ded studies			
Author	Design	Population	Interventions	Definition of aspiration	Definition of pneumonia
Lipper, ^[1] USA (<i>n</i> = 30)	Case series	ICU admission for active and severe UGIB Age: NR Males: 50%	PEI (<i>n</i> = 6) Usual care (<i>n</i> = 24) Both groups: endoscopy within 12 hours of admission	Direct observation by authors during EGD	New infiltrate on CXR and any one of the following: Fever Leukocytosis
Koch, ^[17] USA (<i>n</i> = 62)	Retrospective cohort	Active esophageal varices bleeding or varices with high-risk stigmata and blood in the stomach Age (mean): 48.7 years Males: 71% Child–Pugh score (mean): 8.6 Encephalopathy (Grade I): 23%	PEI (<i>n</i> = 42) Usual care (<i>n</i> = 20) Both groups: endoscopy within 12 hours of admission	Clinical diagnosis of aspiration by the primary team	Aspiration pneumonia: New pulmonary infiltrates on the post-EGD CXR, or Clinical diagnosis of aspiration by the primary team
Rehman, ^[19] USA (<i>n</i> = 98)	Retrospective case-control	Medical ICU admitted for UGIB with cirrhosis, hematemesis or shock. Age (median): 65 years Males: 62%	PEI (<i>n</i> = 49) Usual care: (<i>n</i> = 49)	Witnessed or suspected abnormal entry of secretions, fluid or particles into lower respiratory airways within 48 hours after EGD	New infiltrate CXR with any two of the following within 48 hours after EGD: Fever Leukocytosis Purulent sputum
Perisetti, ^[10] (Abstract) USA (<i>n</i> = 138)	Retrospective	Admitted to ICU with UGIB Age (mean): 63.5 years Males: NR	PEI (<i>n</i> = 69) Usual care: (<i>n</i> = 69)	NR	NR
Lohse, ^[18] Denmark (<i>n</i> = 3580)	Retrospective database	Nationwide registry of patients with peptic ulcer bleeding undergoing emergency EGD under anesthesia care. Age (mean): 75 years Males: 54%	PEI (<i>n</i> = 2101) Usual care: (<i>n</i> = 1479)	NR	NR
Abdulsamad, ^[11] (Abstract) USA (<i>n</i> = 1474)	Retrospective cohort	UGIB defined as hematemesis, coffee ground emesis or melena who underwent EGD	PEI (<i>n</i> = 264) Usual care (<i>n</i> = 1219)	NR	NR
Lee, ^[12] (Abstract) USA (<i>n</i> = 156)	Retrospective cohort	EGD in ICU for UGIB defined as one of: Hematemesis patient Melena hypovolemic shock with/without cirrhosis Age: NR Males: NR	PEI (<i>n</i> = 78) Usual care (<i>n</i> = 78)	NR	Within 48 hours post-EGD but no definition provided

Alshamsi, et al.: Prophylactic	endotracheal	intubation in	upper G	al bleeding
--------------------------------	--------------	---------------	---------	-------------

Table 1: Contd					
Author	Design	Population	Interventions	Definition of aspiration	Definition of pneumonia
Hayat, ^[13] USA (<i>n</i> = 200)	Retrospective cohort	EGD in ICU for UGIB defined as one of the following: Hematemesis patient Melena hypovolemic shock (SBP <90 mm Hg and HR >100 beats/ min requiring either fluids or vasopressor agents) with/without cirrhosis Age (mean): 59.3 years Males: 63.5%	PEI (<i>n</i> =100) Usual care (<i>n</i> = 100)	NR	New focal infiltrates on CXR with any two of the following: Fever Leukocytosis Productive cough
Tang, ^[21] USA (<i>n</i> = 110)	Retrospective cohort	Medical ICU patients with cirrhosis and hematemesis with EGD findings of active variceal bleeding or blood in stomach plus presence of varices with high-risk stigmata Age (mean): 55 years Males: 67.6%	PEI (<i>n</i> = 65) Usual care (<i>n</i> = 45)	NR	New infiltrate on CXR plus any two the following findings within 48 hours after EGD: Fever (temperature >100.8°F) Leukocytosis (WBC >10,000/mm ³) Purulent sputum
Rudolph, ^[14] USA (<i>n</i> = 220)	Retrospective before and after	Admitted to ICU with UGIB in 1988 and 1992	PEI (<i>n</i> = 21) No intubation (<i>n</i> = 161)	Witnessed aspiration or new infiltrate on CXR	Not an outcome

PEI – Prophylactic endotracheal intubation; CXR – Chest X-ray; EGD – Esophagogastroduodenoscopy; HR – Heart rate; ICU – Intensive care unit; NR – Not reported; SBP – Systolic blood pressure; UGIB – Upper gastrointestinal bleeding; WBC – White blood cells

Table 2: Risk of bias	assessme	ent	
Study	Selection	Comparability	Outcome
Lipper et al.[1]	***	*	***
Rudolph et al.[14]	***	*	**
Koch <i>et al</i> .[17]	***	**	***
Rehman et al.[19]	***	**	***
Perisetti et al.[10]	***	*	**
Lohse et al.[18]	***	**	***
Abdulsamad et al.[11]	***	*	***
Lee et al.[12]	***	*	***
Hayat <i>et al</i> . ^[13]	***	**	***
Tang et al.[21]	***	**	***

did not significantly alter the effect on mortality (OR 2.3, 95% CI 0.79, 6.99; P = 0.12; $I^2 = 96$). We present the details of sensitivity analyses in Supplementary Figures V-X [online only].

Publication bias

Fewer than 10 studies were included for individual outcomes; therefore, we were not able to assess for publication bias.

Quality of evidence

The quality of evidence using the GRADE system ranged between very low to low across study outcomes, mainly due to observational nature of data and the lack of adjustment for important confounders (risk of bias), and also due to inconsistency and imprecision. The large intervention effect was offset by these limitations. The details of quality assessment are presented in Table 3.

DISCUSSION

In this systematic review, we identified 10 observational studies (6068 patients) that reported the effect of

	Prophylactic Intu	bation	Usual (Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lipper 1991	0	6	0	24		Not estimable	1991	
Rudolph 2003	10	21	25	161	29.2%	4.95 [1.90, 12.87]	2003	
Koch 2007	7	42	0	20	8.7%	8.66 [0.47, 159.62]	2007	
Rehman 2009	10	49	9	49	28.4%	1.14 [0.42, 3.11]	2009	_
Perisetti 2013	26	69	4	69	26.4%	9.83 [3.20, 30.14]	2013	
Tang 2017	1	65	0	45	7.4%	2.12 [0.08, 53.13]	2017	
Total (95% CI)		252		368	100.0%	3.85 [1.46, 10.15]		-
Total events	54		38					
Heterogeneity. Tau ² = 0.60; Chi ² = 9.01, df = 4 (P = 0.06); $I^2 = 5$								
Test for overall effect:	Z = 2.73 (P = 0.00	06)						Prophylactic Intubation Usual Care

Figure 2: Aspiration outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lipper 1991	0	6	5	24	6.4%	0.27 [0.01, 5.63]	1991	
Rehman 2009	9	49	5	49	23.4%	1.98 [0.61, 6.41]	2009	
Abdulsamad 2016	97	264	94	1210	41.1%	6.90 [4.97, 9.56]	2016	
Tang 2017	7	65	1	45	11.3%	5.31 [0.63, 44.76]	2017	
Hayat 2017	14	100	2	100	17.9%	7.98 [1.76, 36.10]	2017	· · · · · · · · · · · · · · · · · · ·
Total (95% CI)		484		1428	100.0%	4.17 [1.82, 9.57]		•
Total events	127		107					
Heterogeneity: $Tau^2 = 0.41$; $Chi^2 = 8.25$, $df = 4$ (P = 0.08); $I^2 = 5$					52%			
Test for overall effect:	Z = 3.38 (P = 0.0	007)						Prophylactic Intubation Usual Care

Figure 3: Pneumonia outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Koch 2007	9	42	1	20	8.8%	5.18 [0.61, 44.12]	2007	
Rehman 2009	7	49	10	49	12.6%	0.65 [0.23, 1.88]	2009	
Perisetti 2013	15	69	3	69	11.8%	6.11 [1.68, 22.22]	2013	
Lohse 2015	238	2101	178	1479	14.5%	0.93 [0.76, 1.15]	2015	+
Abdulsamad 2016	106	264	85	1210	14.4%	8.88 [6.38, 12.36]	2016	-
Lee 2016	7	78	13	78	12.8%	0.49 [0.19, 1.31]	2016	
Tang 2017	15	65	4	45	12.2%	3.08 [0.95, 9.98]	2017	· · · · · · · · · · · · · · · · · · ·
Hayat 2017	10	100	10	100	13.0%	1.00 [0.40, 2.52]	2017	· · · · · · · · · · · · · · · · · · ·
Total (95% CI)		2768		3050	100.0%	1.92 [0.71, 5.23]		
Total events	407		304					
Heterogeneity. Tau ² =	= 1.78; Chi ² = 144.	80, df =	7 (P < 0.	00001)	$ _{1}^{2} = 959$	6		
Test for overall effect:	Z = 1.28 (P = 0.2	0)						Prophylactic Intubation Usual Care

Figure 4: Mortality outcome

	Prophylac	tic Intub	ation	Usi	ual Ca	re		Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Koch 2007	8.2	6	42	6.9	7	20	4.2%	1.30 [-2.26, 4.86]	2007		
Rehman 2009	6.9	5.8	49	5.9	6.1	49	9.7%	1.00 [-1.36, 3.36]	2009		
Perisetti 2013	10	43.7	69	5	14.1	69	0.5%	5.00 [-5.83, 15.83]	2013		\rightarrow
Lohse 2015	8.16	12.4	2101	7.63	13.8	1479	69.2%	0.53 [-0.35, 1.41]	2015		
Tang 2017	10.6	7.9	65	8.8	7.5	45	6.3%	1.80 [-1.11, 4.71]	2017		
Hayat 2017	9	9.6	100	7	6.7	100	10.2%	2.00 [-0.29, 4.29]	2017		
Total (95% CI)			2426			1762	100.0%	0.86 [0.13, 1.59]		◆	
Heterogeneity. Tau ² =	0.00; Chi ²	= 2.52, d	f = 5 (P	= 0.77); ² =	0%				Han te Lite	10
Test for overall effect:	Z = 2.30 (P	= 0.02)								Prophylactic Intubation Usual Care	10

Figure 5: Hospital length of stay outcome

endotracheal intubation on clinical outcomes of patients with UGIB undergoing endoscopy. Low-quality evidence suggest that PEI is associated with a higher probability of developing pneumonia and aspiration, longer stay in the hospital, and less likely and statistically non-significant impact on mortality.

Table :	3: Quality of e	vidence									
			Quality ass	essment			No. of p	atients		Effect	Quality Importance
No. of studies	Study design	Risk of bias	Inconsistency	/ Indirectness	s Imprecision	Other considerations	Prophylactic endotracheal intubation	No intubation	Relative (95% CI)	Absolute (95% Cl)	
						N	lortality				
ω	Observational studies	Serious ^a	Very serious ^b	Not serious	Not serious°	None	407/2768 (14.7%)	304/3050 (10.0%)	OR 1.92 (0.71-5.23)	76 more per 1000 (from 27 fewer to 267 more)	⊕⊖⊖⊖ Critical Very Low
						Pn	eumonia				
2	Observational studies	Serious ^a	Serious ^d	Not serious	Not serious ^e	Very strong association	127/484 (26.2%)	107/1428 (7.5%)	OR 4.17 (1.82-9.57)	178 more per 1000 (from 54 more to 362 more)	⊕⊕⊖⊖ Critical Low
						As	piration				
9	Observational studies	Serious ^a	Serious ^f	Not serious	Not serious ⁹	Very strong association	54/252 (21.4%)	38/368 (10.3%)	OR 3.58 (1.46-10.25)	189 more per 1000 (from 41 more to 438 more)	⊕⊕⊜⊖ Critical Low
						Hospital len	gth of stay (days)				
9	Observational studies	Serious ^a	Not serious	Not serious	Not serious ^h	None	2426	1762	I	MD 0.86 days more (0.13 more to 1.59 more)	⊕⊖⊖⊖ Important Very Low
CI – Con effect is a down the of eviden imprecisi	fidence interval; OF a result of a confour s quality of evidence ice for imprecision; on; h – Although the	R – Odds rainder or a tru to the truth of the truth of the truth of the truth of the truth of the truth of tr	atio; MD – Mean d Le effect, b – We r sision; d – We rater down the quality ce interval includec	ifference; a – We ated down the qu d down the qualit / of evidence for d small and mode	r rated down the Lality of evidence by of evidence by inconsistency, <i>P</i> = erate harm, we d	quality of evidence by two levels for inco one level for inconsis -64%; g – Although th id not rate down the c	one level for risk of bia ansistency, the $l^2=95\%$; tency, the $l^2=57\%$; e – . te confidence interval ir luality of evidence for in	is as non-adjusted esti c – Although the confi Although the CI was w rcluded both small anc nprecision	mates were us dence interval i de including s substantial ha	ed; therefore, we are uncertain included significant benefit and mall and large harm, we did not m, we did not rate down the qu	If the observed treatment narm, we did not rate rate down the quality ality of evidence for

A recent meta-analysis of four observational studies (n = 367) showed a significant increase in pneumonia within 48 hours of endoscopy in a group of patients undergoing PEI, without affecting the risks of death or aspiration.^[22] Our meta-analysis included more studies and patients (10, n = 6068), potentially improving the precision of our findings. We did not apply any restrictions on date or language of publication. In addition, we used the GRADE approach to assess the quality of the evidence, and adhered to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) reporting guidelines.^[23]

Although the results of this meta-analysis are intriguing, it needs to be interpreted with great caution. Observational studies tend to be at risk of yielding biased results, study groups differ often in prognosis (i.e. confounders). Even when adjustment for important variables is possible, it may not be enough to yield reliable results. In our meta-analysis, we used only un-adjusted (crude) values, as almost all studies did not report adjusted estimates. This is an important limitation of the results, as it is challenging to determine whether the observed effects are true or confounded. It appears intuitive that the more unstable the patient is (i.e., with more bleeding and vomiting, hypoxic, agitated, non-cooperative, aspirating or judged at higher risk of aspiration), the more likely intubation is performed. Because of the observational nature of studies, lack of adjustment for the severity of clinical situation as well as additional inconsistency among study results and imprecision of estimates, the quality of the results is judged as very low to low. This markedly limits our confidence that the observed effects are true. Therefore, over-interpretation of the results should be avoided and we believe that these results, although alarming, should be considered as hypothesis generating. At the same time, these results should alert clinicians to the fact that PEI may be associated with harm, and that decision-making should take into consideration this possibility. The information we have found, including lack of higher quality data, also indicates the need for a proper randomized trial to be performed in this population of patients.

CONCLUSION

Low to very low- quality evidence suggest that PEI may be associated with higher risk of respiratory complications. Future randomized trials or, if not possible, prospectively matched cohort studies are needed to confirm or dispute these findings.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- 1. Lipper B, Simon D, Cerrone F. Pulmonary aspiration during emergency endoscopy in patients with upper gastrointestinal hemorrhage. Crit Care Med 1991;19:330-3.
- Gralnek IM, Dumonceau JM, Kuipers EJ, Lanas A, Sanders DS, Kurien M, *et al.* Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2015;47:a1-a46.
- 3. Barkun AN, Bardou M, Kuipers EJ, Sung J, Hunt RH, Martel M, *et al.* International consensus recommendations on the management of patients with nonvariceal upper gastrointestinal bleeding. Ann Intern Med 2010;152:101-13.
- 4. Garcia-Tsao G, Sanyal AJ, Grace ND, Carey WD, Practice Guidelines Committee of American Association for Study of Liver D, Practice Parameters Committee of American College of Gastroenterology. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Am J Gastroenterol 2007;102:2086-102.
- 5. Laine L, Jensen DM. Management of patients with ulcer bleeding. Am J Gastroenterol 2012;107:345-60; quiz 361.
- Waye JD. Intubation and sedation in patients who have emergency upper GI endoscopy for GI bleeding. Gastrointest Endosc 2000;51:768-71.
- Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]; 2008. Available from: www.ohri.ca/programs/clinical_epidemiology/ oxford.asp. [Last accessed on 2017 Jul 10].
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
- 9. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.
- Perisetti A, Khan H, Sahmoun A, Newman W, Meidinger R. Role of prophylactic pre-esophagogastroduodenoscopy (EGD) endotracheal intubation (ETI) in upper gastrointestinal bleed (UGIB): A retrospective study. Am J Gastroenterol 2013;108:S15-6.
- 11. Abdulsamad M, Kamireddy C, Karki N, Sakam S, Kumar K, Ebiem O, *et al.* Should we intubate the patient first? Outcomes of prophylactic endotracheal intubation for upper gastrointestinal bleeding. Am J Gastroenterol 2016;111:S1283.
- 12. Lee PJ, Hayat U, Ullah H, Lopez R, Vargo JJ. Prophylactic endotracheal intubation in critically ill patients with upper gastrointestinal bleeding is associated with higher cardiopulmonary unplanned events. Gastrointest Endosc 2016;85:AB201.
- Hayat U, Lee PJ, Ullah H, Sarvepalli S, Lopez R, Vargo JJ. Association of prophylactic endotracheal intubation in critically ill patients with upper GI bleeding and cardiopulmonary unplanned events. Gastrointest Endosc 2017; DOI: http://dx.doi. org/10.1016/j.gie.2016.12.008 [In Press].
- Rudolph SJ, Landsverk BK, Freeman ML. Endotracheal intubation for airway protection during endoscopy for severe upper GI hemorrhage. Gastrointest Endosc 2003;57:58-61.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34.

- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, *et al.* GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924-6.
- Koch DG, Arguedas MR, Fallon MB. Risk of aspiration pneumonia in suspected variceal hemorrhage: The value of prophylactic endotracheal intubation prior to endoscopy. Dig Dis Sci 2007;52:2225-8.
- Lohse N, Lundstrøm LH, Vestergaard TR, Risom M, Rosenstock SJ, Foss NB, *et al.* Anaesthesia care with and without tracheal intubation during emergency endoscopy for peptic ulcer bleeding: A population-based cohort study. Br J Anaesth 2015;114:901-8.
- Rehman A, Iscimen R, Yilmaz M, Khan H, Belsher J, Gomez JF, et al. Prophylactic endotracheal intubation in critically ill patients undergoing endoscopy for upper GI hemorrhage. Gastrointest Endosc 2009;69:e55-9.

- Tang YM, Wang Y, Wang WW. Elective endotracheal intubation prior to emergent EGD in patients with suspected variceal hemorrhage: An evaluation of outcome and complications. Gastrointest Endosc 2014;79:AB515-6.
- Tang YM, Wang WZ. Prophylactic endotracheal intubation prior to urgent endoscopy in patients with suspected variceal hemorrhage: An evaluation of outcomes and complications. J Gastroenterol Hepatol Res 2017;6:2324-8.
- Almashhrawi AA, Rahman R, Jersak ST, Asombang AW, Hinds AM, Hammad HT, *et al.* Prophylactic tracheal intubation for upper GI bleeding: A meta-analysis. World J Metaanal 2015;3:4-10.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, *et al.* Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008-12.

SUPPLEMENTARY

APPENDIX I

Database(s): Embase 1974 to 2017 July 07, OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:

#	Searches	Results
1	endotracheal intubation.mp. or exp Intubation, Intratracheal/	84661
2	Intubation, Intratracheal/or tracheal intubation.mp. or Airway Management/	91542
3	airway protection.mp.	1863
4	exp Gastrointestinal Hemorrhage/or exp "Esophageal and Gastric Varices"/or upper gastrointestinal bleed\$.mp.	159044
5	gastrointestinal bleeding.mp.	39897
6	exp Hematemesis/	10361
7	gastrointestinal bleeding.mp.	39897
8	1 or 2 or 3	101741
9	4 or 5 or 6 or 7	170084
10	8 and 9	499

Search strategy for Cochrane Library's Central Register of Controlled Trials (CENTRAL)

Date Run:	13/07/17 18:16:25.978
Description:	
ID	Search Hits
#1	MeSH descriptor: [Gastrointestinal Hemorrhage] this term only 1473
#2	"gastrointestinal bleeding" or "gastrointestinal hemorrhage" or "esophageal varices" or "varices" 4808
#3	"endotracheal intubation" or "tracheal intubation" 5143
#4	MeSH descriptor: [Airway Management] explode all trees 9051
#5	#1 or #2 4808
#6	#3 or #4 12227
#7	#5 and #6 in Trials 38

Search strategy for SCOPUS

(("endotracheal intubation" OR "tracheal intubation" OR "intratracheal intubation") AND TITLE-ABS-KEY ("gastrointestinal hemorrhage" OR "gastrointestinal bleeding" OR "GI bleeding" OR "hematemesis" OR "variceal" OR "varices") AND TITLE-ABS-KEY ("airway protection" OR "prophylactic" OR "prophylaxis"))

Number of results: 64

APPENDIX II

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE COHORT STUDIES

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability

Selection

- 1) Representativeness of the exposed cohort
 - a) Truly representative of the average _____ (describe) in the community 🗌
 - b) Somewhat representative of the average ______ in the community _____
 - c) Selected group of users eg nurses, volunteers
 - d) No description of the derivation of the cohort
- 2) Selection of the non exposed cohort
 - a) Drawn from the same community as the exposed cohort \Box
 - b) Drawn from a different source
 - c) No description of the derivation of the non exposed cohort
- 3) Ascertainment of exposure
 - a) Secure record (eg surgical records)
 - b) Structured interview
 - c) Written self report
 - d) No description
- 4) Demonstration that outcome of interest was not present at start of study
 - a) Yes
 - b) No

Comparability

- 1) Comparability of cohorts on the basis of the design or analysis
 - a) Study controls for _____ (select the most important factor)
 - b) Study controls for any additional factor [] (This criteria could be modified to indicate specific control for a second important factor.)

Outcome

- 1) Assessment of outcome
 - a) Independent blind assessment
 - b) Record linkage
 - c) Self report
 - d) No description
- 2) Was follow-up long enough for outcomes to occur
 - a) Yes (select an adequate follow up period for outcome of interest)
 - b) No
- 3) Adequacy of follow up of cohorts
 - a) Complete follow up all subjects accounted for
 - b) Subjects lost to follow up unlikely to introduce bias small number lost > _____% (select an adequate %) follow up, or description provided of those lost)
 - c) Follow up rate < $_\%$ (select an adequate %) and no description of those lost \square
 - d) No statement

Wells, G. A, Shea, B., O'Connel, D. et al. The Newcastle-Ottawa scale (NOS) for assessing the quailty of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm 2009 Feb 1.

SUPPLEMENTARY FIGURES

	Prophylactic Intu	bation	Usual (Care		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
1.5.1 All sites										
Lipper 1991	0	б	0	24		Not estimable	1991			
Rudolph 2003	9	19	10	201	25.5%	17.19 [5.71, 51.76]	2003			
Rehman 2009	10	49	9	49	26.3%	1.14 [0.42, 3.11]	2009	_		
Perisetti 2013	26	69	4	69	25.3%	9.83 [3.20, 30.14]	2013			
Subtotal (95% CI)		143		343	77.1%	5.69 [1.07, 30.34]				
Total events	45		23							
Heterogeneity. Tau ² :	= 1.89; Chi ² = 14.50	5, df = 2 ((P = 0.0)	007); l²	= 86%					
Test for overall effect	Z = 2.04 (P = 0.04)	4)								
1.5.2 Variceal only										
Koch 2007	7	42	0	20	12.2%	8.66 [0.47, 159.62]	2007			
Tang 2017	1	65	0	45	10.7%	2.12 [0.08, 53.13]	2017	•		
Subtotal (95% CI)		107		65	22.9%	4.60 [0.53, 39.91]				
Total events	8		0							
Heterogeneity. Tau ² =	= 0.00; Chi ² = 0.40,	df = 1 (P	= 0.52	$; ^2 = 0$	%					
Test for overall effect	Z = 1.38 (P = 0.17)	7)								
Total (95% CI)		250		408	100.0%	5.37 [1.46, 19.80]				
Total events	53		23							
Heterogeneity: Tau ² :	= 1.42; Chi ² = 14.93	7, df = 4 ((P = 0.0)	05); I ² =	= 73%					
Test for overall effect	: Z = 2.52 (P = 0.0)	L)						Prophylactic Intubation Usual Care		
Test for subgroup dif	ferences: $Chi^2 = 0.0$	2, df = 1	(P = 0.8)	8), l ² =	0%			riophylactic intubation Ostial care		

Supplementary Figure I: Subgroup analysis by bleeding type for aspiration outcome

	Prophylactic Intub	ation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.6.1 All								
Lipper 1991	0	6	5	24	5.0%	0.27 [0.01, 5.63]	1991	
Rudolph 2003	13	21	18	199	21.1%	16.34 [5.98, 44.65]	2003	
Rehman 2009	9	49	5	49	18.4%	1.98 [0.61, 6.41]	2009	
Abdulsamad 2016	97	264	94	1210	32.7%	6.90 [4.97, 9.56]	2016	-
Hayat 2017	14	100	2	100	14.1%	7.98 [1.76, 36.10]	2017	
Subtotal (95% CI)		440		1582	91.2%	5.47 [2.40, 12.48]		-
Total events	133		124					
Heterogeneity: Tau ² =	0.50; Chi ² = 11.54	, df = 4	(P = 0.0)	2); l ² =	65%			
Test for overall effect:	Z = 4.04 (P < 0.00)	01)						
1.6.2 Variceal only								
Tang 2017	7	65	1	45	8.8%	5.31 [0.63, 44.76]	2017	
Subtotal (95% CI)		65		45	8.8%	5.31 [0.63, 44.76]		
Total events	7		1					
Heterogeneity. Not ap	plicable							
Test for overall effect:	Z = 1.54 (P = 0.12))						
Total (95% CI)		505		1627	100.0%	5.58 [2.68, 11.60]		•
Total events	140		125					-
Heterogeneity, Tau ² =	0.40; Chi ² = 11.58	. df = 5	(P = 0.0)	4); $ ^2 =$	57%			
Test for overall effect:	Z = 4.60 (P < 0.00)	001)						0.01 0.1 1 10 100
Test for subgroup diff	erences: $Chi^2 = 0.00$), df = 1	(P = 0.9)	98), l ² =	0%			Prophylactic intubation Usual Care

Supplementary Figure II: Subgroup analysis by bleeding type for pneumonia outcome

	Prophylactic Intu	bation	Usual (Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.7.1 All sites								
Rehman 2009	7	49	10	49	12.6%	0.65 [0.23, 1.88]	2009	
Perisetti 2013	15	69	3	69	11.8%	6.11 [1.68, 22.22]	2013	
Lohse 2015	238	2101	178	1479	14.5%	0.93 [0.76, 1.15]	2015	-
Abdulsamad 2016	106	264	85	1210	14.4%	8.88 [6.38, 12.36]	2016	
Lee 2016	7	78	13	78	12.8%	0.49 [0.19, 1.31]	2016	
Hayat 2017	10	100	10	100	13.0%	1.00 [0.40, 2.52]	2017	
Subtotal (95% CI)		2661		2985	79.1%	1.60 [0.50, 5.11]		
Total events	383		299					
Heterogeneity. Tau ² :	= 1.91; Chi ² = 142.	71, df = 5	(P < 0.)	00001)	; l ² = 969	6		
Test for overall effect	Z = 0.79 (P = 0.4)	3)						
1.7.2 Variceal only								
Koch 2007	9	42	1	20	8.8%	5.18 [0.61, 44.12]	2007	
Tang 2017	15	65	4	45	12.2%	3.08 [0.95, 9.98]	2017	
Subtotal (95% CI)		107		65	20.9%	3.47 [1.24, 9.74]		
Total events	24		5					
Heterogeneity. Tau ² :	= 0.00; Chi ² = 0.18	, df = 1 (P	= 0.68); $ ^2 = 0$	%			
Test for overall effect	Z = 2.36 (P = 0.0)	2)						
Total (95% CI)		2769		3050	100.0%	1 92 (0 71 5 22)		
Total (95% CI)		2700	201	3030	100.0%	1.92 [0.71, 5.25]		
i otal events	407	00 -16 -7	304		. 12 050	/		
Heterogeneity. Tau* :	= 1.78; Chi ^e = 144.	80, df = 7	(P < 0.)	00001)	; 1* = 959	6		0.01 0.1 1 10 100
Test for overall effect	Z = 1.28 (P = 0.2)	0)	(D 0 D	D. 12	00/			Prophylactic Intubation Usual Care
l est for subgroup dif	terences: $Chi^{*} = 0.9$	95, df = 1	(P = 0.3)	3), 1° =	0%			

Supplementary Figure III: Subgroup analysis by bleeding type for mortality outcome

	Prophylac	tic Intub	ation	Usu	ual Ca	re		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.8.1 New Subgroup										
Rehman 2009	6.9	5.8	49	5.9	6.1	49	9.7%	1.00 [-1.36, 3.36]	2009	
Perisetti 2013	10	43.7	69	5	14.1	69	0.5%	5.00 [-5.83, 15.83]	2013	
Lohse 2015	8.16	12.4	2101	7.63	13.8	1479	69.2%	0.53 [-0.35, 1.41]	2015	
Hayat 2017	9	9.6	100	7	6.7	100	10.2%	2.00 [-0.29, 4.29]	2017	
Subtotal (95% CI)			2319			1697	89.5%	0.77 [-0.00, 1.55]		◆
Heterogeneity: Tau ² =	0.00; Chi ² =	= 2.01, d	f = 3 (P :	= 0.57)	; ² =	0%				
Test for overall effect:	Z = 1.95 (P	= 0.05)								
1.8.2 Variceal only										
Koch 2007	8.2	6	42	6.9	7	20	4.2%	1.30 [-2.26, 4.86]	2007	
Tang 2017	10.6	7.9	65	8.8	7.5	45	6.3%	1.80 [-1.11, 4.71]	2017	
Subtotal (95% CI)			107			65	10.5%	1.60 [-0.66, 3.86]		
Heterogeneity: Tau ² =	0.00; Chi ² =	= 0.05, d	f = 1 (P :	= 0.83)	; ² =	0%				
Test for overall effect:	Z = 1.39 (P	= 0.16)								
T . 1 (0 T (C))										
Total (95% CI)			2426			1762	100.0%	0.86 [0.13, 1.59]		· · · · · · · · · · · · · · · · · · ·
Heterogeneity: Tau ² =	0.00; Chi ² =	= 2.52, d	f = 5 (P	= 0.77)	; ² =	0%				-10 -5 0 5 10
Test for overall effect:	Z = 2.30 (P)	= 0.02)								Prophylactic Intubation Usual Care
Test for subgroup diff	erences: Chi ²	= 0.46,	df = 1 (f	P = 0.5	0), l ² =	= 0%				

Supplementary Figure IV: Subgroup analysis by bleeding type for hospital length of stay outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lipper 1991	0	6	0	24		Not estimable	1991	
Rudolph 2003	9	19	10	201	32.2%	17.19 [5.71, 51.76]	2003	
Koch 2007	7	42	0	20	18.4%	8.66 [0.47, 159.62]	2007	
Rehman 2009	10	49	9	49	32.9%	1.14 [0.42, 3.11]	2009	_
Tang 2017	1	65	0	45	16.5%	2.12 [0.08, 53.13]	2017	
Total (95% CI)		181		339	100.0%	4.39 [0.75, 25.66]		
Total events	27		19					
Heterogeneity: Tau ² =	= 2.20; Chi ² = 13.16	5, df = 3	(P = 0.0)	04); l ² :	= 77%			
Test for overall effect:	Z = 1.64 (P = 0.10)))						Prophylactic Intubation Usual Care

Supplementary Figure V: Sensitivity analysis excluding studies published in abstract form only for aspiration outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lipper 1991	0	6	5	24	10.4%	0.27 [0.01, 5.63]	1991	
Rudolph 2003	13	21	18	199	26.9%	16.34 [5.98, 44.65]	2003	
Rehman 2009	9	49	5	49	25.1%	1.98 [0.61, 6.41]	2009	
Hayat 2017	14	100	2	100	21.6%	7.98 [1.76, 36.10]	2017	
Tang 2017	7	65	1	45	16.0%	5.31 [0.63, 44.76]	2017	
Total (95% CI)		241		417	100.0%	4.49 [1.38, 14.61]		
Total events	43		31					
Heterogeneity. Tau ² =	= 1.08; Chi ² = 11.3	9, df = 4	(P = 0.0)	2); I ² =	65%			
Test for overall effect:	Z = 2.50 (P = 0.0)	1)						Prophylactic Intubation Usual Care

Supplementary Figure VI: Sensitivity analysis excluding studies published in abstract form only for pneumonia outcome

	Prophylactic Int	ubation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Koch 2007	9	42	1	20	5.0%	5.18 [0.61, 44.12]	2007	
Rehman 2009	7	49	10	49	15.6%	0.65 [0.23, 1.88]	2009	
Lohse 2015	238	2101	178	1479	47.3%	0.93 [0.76, 1.15]	2015	+
Hayat 2017	10	100	10	100	18.7%	1.00 [0.40, 2.52]	2017	+
Tang 2017	15	65	4	45	13.4%	3.08 [0.95, 9.98]	2017	
Total (95% CI)		2357		1693	100.0%	1.14 [0.69, 1.89]		+
Total events	279		203					
Heterogeneity. Tau ² =	• 0.13; Chi ² = 6.72	2, df = 4 (l	P = 0.15); $ ^2 = 4$	10%			
Test for overall effect:	Z = 0.52 (P = 0.6)	50)						Prophylactic Intubation Usual Care

Supplementary Figure VII: Sensitivity analysis excluding studies published in abstract form only for mortality outcome

	Prophylac	tic Intub	ation	Usu	ual Ca	re		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Koch 2007	8.2	6	42	6.9	7	20	4.2%	1.30 [-2.26, 4.86]	2007	
Rehman 2009	6.9	5.8	49	5.9	6.1	49	9.7%	1.00 [-1.36, 3.36]	2009	
Lohse 2015	8.16	12.4	2101	7.63	13.8	1479	69.5%	0.53 [-0.35, 1.41]	2015	
Tang 2017	10.6	7.9	65	8.8	7.5	45	6.3%	1.80 [-1.11, 4.71]	2017	
Hayat 2017	9	9.6	100	7	6.7	100	10.2%	2.00 [-0.29, 4.29]	2017	
Total (95% CI)			2357			1693	100.0%	0.84 [0.11, 1.57]		◆
Heterogeneity: Tau ² =	0.00; Chi ² =	= 1.96, d	f = 4 (P	= 0.74)	; ² =	0%				
Test for overall effect:	Z = 2.24 (P	= 0.03)								Prophylactic Intubation Usual Care

Supplementary Figure VIII: Sensitivity analysis excluding studies published in abstract form only for LOS outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Koch 2007	9	42	1	20	10.2%	5.18 [0.61, 44.12]	2007	
Rehman 2009	7	49	10	49	14.4%	0.65 [0.23, 1.88]	2009	
Perisetti 2013	15	69	3	69	13.5%	6.11 [1.68, 22.22]	2013	
Lohse 2015	238	2101	178	1479	16.6%	0.93 [0.76, 1.15]	2015	-
Abdulsamad 2016	106	264	85	1210	16.4%	8.88 [6.38, 12.36]	2016	-
Tang 2017	15	65	4	45	14.0%	3.08 [0.95, 9.98]	2017	
Hayat 2017	10	100	10	100	14.9%	1.00 [0.40, 2.52]	2017	
Total (95% CI)		2690		2972	100.0%	2.35 [0.79, 6.99]		-
Total events	400		291					
Heterogeneity. Tau ² =	= 1.85; Chi ² = 138.	53, df =	6 (P < 0.	00001)	; l ² = 969	6		
Test for overall effect:	Z = 1.54 (P = 0.12)	2)						Prophylactic Intubation Usual Care

Supplementary Figure IX: Sensitivity analysis excluding Lee et al for mortality outcome

	Prophylactic Intu	bation	Usual	Care		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lipper 1991	0	6	0	24		Not estimable	1991	
Koch 2007	7	42	0	20	15.5%	8.66 [0.47, 159.62]	2007	
Rehman 2009	10	49	9	49	36.3%	1.14 [0.42, 3.11]	2009	_
Perisetti 2013	26	69	4	69	34.7%	9.83 [3.20, 30.14]	2013	
Tang 2017	1	65	0	45	13.5%	2.12 [0.08, 53.13]	2017	
Total (95% CI)		231		207	100.0%	3.58 [0.86, 14.88]		
Total events	44		13					
Heterogeneity: Tau ² =	= 1.19; Chi ² = 8.43,	df = 3 (l	P = 0.04); $ ^2 = 6$	54%			
Test for overall effect:	Z = 1.76 (P = 0.08)	3)						Prophylactic Intubation Usual Care

Supplementary Figure X: Sensitivity analysis excluding Rudolph et al for aspiration outcome