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SUMMARY

Down syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering 

effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic 

understanding of DS pathophysiology. We examined the neuron-astrocyte interplay in a fully 

recapitulated HSA21 trisomy cellular model differentiated from DS-patient-derived induced 

pluripotent stem cells (iPSCs). By combining calcium imaging with genetic approaches, we 

discovered the functional defects of DS astroglia and their effects on neuronal excitability. 
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Compared with control isogenic astroglia, DS astroglia exhibited more-frequent spontaneous 

calcium fluctuations, which reduced the excitability of co-cultured neurons. Furthermore, 

suppressed neuronal activity could be rescued by abolishing astrocytic spontaneous calcium 

activity either chemically by blocking adenosine-mediated signaling or genetically by knockdown 

of inositol triphosphate (IP3) receptors or S100B, a calcium binding protein coded on HSA21. Our 

results suggest a mechanism by which DS alters the function of astrocytes, which subsequently 

disturbs neuronal excitability.

Graphical Abstract

In Brief

To understand how Down syndrome (DS) affects neural networks, Mizuno et al. used a DS-

patient-derived stem cell model and calcium imaging to investigate the functional defects of DS 

astrocytes and their effects on neuronal excitability. Their study reveals that DS astroglia exhibited 

more frequent spontaneous calcium fluctuations, which impair neuronal excitability.

INTRODUCTION

Down syndrome (DS) is a neurodevelopmental disorder occurring in 1 in 750 live births 

worldwide. DS is caused by trisomy of chromosome 21 (Ts21) (Dierssen, 2012), leading to 

triplication of up to 400 genes, resulting in an array of phenotypes, including profoundly 

impaired cognitive function. The brains of DS patients demonstrate consistent 

pathophysiological changes, such as reduced volume, altered neuronal densities and 

structure, and disturbed balance of all cell types. Confronted with this genetic complexity, it 

is difficult to determine precise molecular and cellular mechanisms of disease establishment 

and maintenance. Consequently, there are no therapeutic approaches to mitigate the effects 

of DS.

Mizuno et al. Page 2

Cell Rep. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To date, DS pathophysiology has been primarily studied in rodent models (Ts65Dn, Ts1cje, 

and Ts1Rhr; Das and Reeves, 2011). Though useful information has been revealed, rodent 

models do not faithfully reproduce DS pathophysiology, due in part to incomplete synteny 

between HSA21 and homologous mouse regions. Furthermore, rodent modeling of complex 

neurodevelopmental disorders, such as DS, is limited by the fact that the human brain is far 

more complicated than the rodent brain in terms of structure of the neural circuitry, 

plasticity, and cognitive capacity.

Advances in induced pluripotent stem cell (iPSC) technology have enabled the modeling of 

complex diseases, such as DS in the context of human cell biology (Chen et al., 2014; 

Murray et al., 2015; Weick et al., 2013). These models are highly desirable for 

understanding disease neuropathophysiology and for developing therapeutics. By culturing 

iPSCs from DS individuals, it is possible to achieve full expression of the human HSA21 

region. In addition, the use of isogenic control lines eliminates inter-individual variability, 

restricting genotype differences solely to HSA21 dosage.

Recent studies using Ts21-iPSC-derived DS models have revealed deficits in human neurons 

or astroglia associated with DS (Chen et al., 2014; Huo et al., 2018; Murray et al., 2015; Shi 

et al.,2012). Weick et al. (2013) established Ts21-iPSC lines from two sets of human 

fibroblasts and differentiated them into neurons. They found that Ts21-cortical neurons 

displayed reduced synaptic activity compared to control neurons, while maintaining the ratio 

of differentiated excitatory and inhibitory neurons. Furthermore, a recent follow-up study 

using similar model reported impaired migration of DS inhibitory neurons (Huo et al., 

2018). Chen et al. (2014), on the other hand, engineered Ts21 iPSCs from a different human 

fibroblast line and reported that conditioned medium from Ts21-iPSC-derived astroglia had 

a toxic effect on neuronal maturation and survival.

However, these studies only focus on morphological view of differentiated cells and 

examined neurons and astrocytes in isolation. Growing evidence suggests that astrocytes 

substantially contribute to neurological and psychiatric disorders by affecting neuronal 

function (Cao et al., 2013; Di Giorgio et al., 2008; Marchetto et al., 2008; Molofsky et al., 

2012; Tong et al., 2014). Indeed, astrocytes have been implicated in multiple rodent studies 

as playing an important role in DS (Ballestin et al., 2014; Bambrick et al., 2003). A number 

of genes involved in DS, including THBS1 and APP, have been shown to be expressed in 

astrocytes and have been implicated in Alzheimer’s disease (Garcia et al., 2010; Torres et al., 

2018). A complete mechanistic understanding of DS pathophysiology requires studying the 

communication between neurons and astrocytes at the network level.

Unlike neurons, whose excitable membranes allow action potentials to be transmitted cell-

wide within milliseconds, astrocyte-wide signaling occurs via intracellular calcium (Ca2+) 

transients lasting for seconds (Khakh and McCarthy, 2015). These intracellular Ca2+ 

transients can be triggered by neuronal activity (Wang et al., 2006) and are thought to induce 

release of gliotransmitters (Angulo et al., 2004; Lee et al., 2010; Mothet et al., 2005; 

Newman, 2001), which in turn modulate neural activity. Although gliotransmitter identity 

and release mechanisms are controversial (Ota et al., 2013; Sloan and Barres, 2014; 

Wolosker et al., 2016), intracellular Ca2+ dynamics are generally acknowledged to encode 
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astrocyte activity. More importantly, altered astrocyte calcium dynamics were reported in 

cultured cells from the rodent DS models (Busciglio et al., 2002; Garcia et al., 2010).

Based on these previous studies, we hypothesized that DS could affect neuronal excitability 

through altered astrocytic Ca2+ dynamics, leading to alterations in astrocyte-neuron 

signaling pathways. Therefore, we differentiated the Ts21-iPSC lines reported in Weick et 

al. (2013) to astrocytes and neurons to establish a Ts21-iPSC-derived neuron-astrocyte co-

culturing system to uncover functional deficits of neural networks. We focused on astrocytic 

Ca2+ dynamics and the specific interactions between astrocytes and neurons.

RESULTS

Generation and Differentiation of Astroglia from Human Ts21 iPSCs

Using established protocols (Krencik et al., 2011), we differentiated astroglia from 

previously reported iPSC lines by Weick et al. (2013), DS1 and DS4, which are trisomic for 

chromosome 21, and DS2U, a control isogenic line (Figures S1A and S1B). After 120 days, 

all three iPSC lines robustly expressed CD44, GFAP, and AQP4 (Figures S1D–S1F; Table 

S1). Karyotype analysis prior to and after experiments confirmed trisomy of DS1- and DS4-

derived astroglia (DS1A and DS4A) and disomy of DS2U-induced astroglia (DS2UA) 

(Figure S1B). Using qRT-PCR, we further observed global expression of a panel of 

astrocyte-specific markers, such as EAAT1, ALDOC, CX43, SOX9, and NFIA, in all three 

lines (Figure S1C; Table S1; Molofsky et al., 2012), indicating successful astroglia 

differentiation of the iPSCs. Consistent with previous reports, DS astroglia showed increased 

expression levels of HSA21 genes compared to control astroglia, including S100B (Esposito 

et al., 2008), APP (Busciglio et al., 2002), and ETS2 (Wolvetang et al., 2003), as well as 

higher levels of non-HSA21 genes associated with oxidative stress, such as CAT (Busciglio 

and Yankner, 1995) and CRYZ (Weick et al., 2013; Figure S1C; Table S1). Morphologically, 

DS astroglia occupied larger territories than DS2UA; the total arborization size of DS 

astrocytes was significantly greater than that of control isogenic astroglia (Figure S1G).

DS Astroglia Inhibit the Excitability of Co-cultured Neurons

We next studied the potential influence of DS astroglia on co-cultured neurons. Using 

established protocols (Chambers et al., 2009; Zhang et al., 2001), three lines of cortical 

TUJ1+ neurons were differentiated from the DS1 and DS2U iPSC lines and a control H9 

human embryonic stem cell (hESC) line (Figures S2A and S2B). Differentiated neurons 

were infected with lentivirus encoding synapsin-1 -GCaMP6m (Figure S2D). To establish a 

baseline of neuronal excitability, we monitored fluorescence changes in neurons in response 

to a series of electrically evoked field potentials (FPs) in the absence of astrocytes. The 

magnitude of evoked Ca2+ transients in neurons increased with the number of applied FPs 

(Figure 1A). Evoked signals were abolished by addition of 1 μM tetrodotoxin (TTX) (Figure 

1A), suggesting that Ca2+ signals in neurons were triggered by action potentials. The 

expression of multiple voltage-gated sodium-channel isoforms in differentiated neurons was 

confirmed by qRT-PCR (Figure S2E).
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After confirming the basis of neuronal excitability, we recorded neuronal activity when co-

cultured with DS1-, DS4-, or DS2U-derived astroglia, as well as human primary astrocytes 

(HA) (Figure S2C). H9 hESC-derived neurons co-cultured with DS astroglia (DS1A or 

DS4A) showed significantly decreased FP-evoked Ca2+ amplitudes relative to neurons 

cultured alone (normalized ΔF/F; DS1A: 0.63 ± 0.06, p < 0.01; DS4A: 0.57 ± 0.05, p < 

0.001), whereas neurons co-cultured with control isogenic astrocytes (DSU2A) or human 

primary astrocytes were not significantly affected (DS2UA: 1.00 ± 0.04, p = 0.93; HA: 0.88 

± 0.04, p = 0.059; Figure 1B).

Similar neuronal-activity suppression imposed by DS astroglia was also observed in neurons 

derived from the two other iPSC lines. DS2U-derived neurons co-cultured with DS astroglia 

(DS1A or DS4A) showed significantly decreased FP-evoked Ca2+ amplitudes relative to 

neurons cultured alone (normalized ΔF/F; DS1A: 0.57 ± 0.04, p < 0.001; DS4A: 0.51 

± 0.04, p < 0.001; DS2UA: 0.99 ± 0.03, p = 0.89; HA: 0.93 ± 0.04, p = 0.18; Figure 1C). 

Likewise, DS1-derived neurons cocultured with DS astroglia (DS1A or DS4A) showed 

significantly decreased FP-evoked Ca2+ amplitudes relative to neurons cultured alone 

(normalized ΔF/F; DS1A: 0.66 ± 0.07, p < 0.01; DS4A: 0.43 ± 0.05, p < 0.001; DS2UA: 

0.92 ± 0.04, p = 0.15; HA: 0.95 ± 0.03; p = 0.18; Figure 1D). Decreased neuronal activity in 

the presence of DS astroglia was observed under a variety of stimulation conditions but was 

most prominent during modest stimulation, such as 10FPs (Figure S2F). In addition, all co-

cultured astrocytes significantly accelerated decay to baseline of evoked neuronal Ca2+ 

transients (T0.5 = 1.62 ± 0.14 for neuron-alone; 1.25 ± 0.12, 1.11 ± 0.13, and 1.18 ± 0.1 for 

neurons co-cultured with DS2UA, DS1A, and DS4A, respectively; p < 0.01; Figure S2G). 

Taken together, DS astroglia inhibited neuronal excitability of neurons derived from either 

trisomy or disomy iPSC lines.

DS Astroglia Promote Synaptic Connectivity

As DS astroglia suppress neuronal activity, we next sought to determine whether DS 

astroglia influence synaptic function. DS astroglia were co-cultured with dissociated rat 

hippocampal neurons, and miniature excitatory postsynaptic currents (mEPSCs) were 

recorded in the presence of TTX, NMDA receptor antagonist D-AP5, and GABAA 

antagonist bicuculline (Figures 1E–1G, S2H, and S2I). Cumulative distribution plots showed 

that the mean amplitude of mEPSCs was significantly larger in neurons co-cultured with 

either DS4A or DS1A groups compared with control DS2UA (DS2UA: 14.21 ± 0.42; 

DS1A: 16.35 ± 0.78, p < 0.05; DS4A: 16.26 ± 0.73, p < 0.05; Figures 1F and S2H). mEPSC 

frequency was similar in all three groups, with a trend toward higher mEPSC frequencies in 

the neurons co-cultured with DS4A and DS1A groups (p = 0.204; DS2UA: 0.56 ± 0.06; 

DS1A: 1.29 ± 0.45; DS4A: 1.10 ± 0.36; Figures 1G and S2I). Next, using quantitative image 

analysis (Thomazeau et al., 2014), we found that synapse density significantly increased by 

1.5- and 1.3-fold in neurons co-cultured with DS astrocytes (DS1A, p < 0.01 and DS4A, p < 

0.05, respectively) compared with those co-cultured with isogenic control astrocytes (Figure 

1H). Taken together, these results suggest that DS astroglia are capable of modulating 

neuronal excitability as well as synaptic activity and density.
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Pharmacological Rescue of Suppressed Neuronal Excitability

We next examined whether pharmacological drugs that block astrocyte-neuron 

communication could rescue the suppressed neuronal excitability. We first examined a panel 

of small-molecule drugs that have been shown to rescue synaptic abnormalities in DS mouse 

models (Busciglio et al., 2013). These compounds, including purmorphamine (sonic 

hedgehog agonist), CGP52432 (GABABR antagonist), epigallocatechin-3-gallate (EGCG) 

(DYRK1A inhibitor), fluoxetine (serotonin reuptake inhibitor), and memantine (NMDA 

receptor antagonist), however, failed to rescue decreased neuronal activity associated with 

DS astroglia (normalized ΔF/F = 0.60 ± 0.04, 0.68 ± 0.03, 0.70 ± 0.02, 0.71 ± 0.03, and 0.68 

± 0.06 from purmorphamine to memantine; p = 0.22, 0.95, 0.73, 0.67, and 0.93; n = 3; 

Figure 1I).

We next tested whether suppressed neuronal excitability is caused by adenosine-mediated 

signaling that has been shown to inhibit synaptic activity (Adair, 2005; Delekate et al., 2014; 

Kawamura and Kawamura, 2011; Koizumi, 2010; Nam et al., 2012). We treated H9 neurons 

co-cultured with DS astroglia (DS4A) with a Gi-coupled A1 adenosine receptor antagonist, 

followed by imaging FP-evoked neuronal activity. In particular, the A1 receptor antagonist 

DPCPX fully rescued suppressed neuronal activity, especially at lower concentrations (100 

nM: normalized ΔF/F = 1.20 ± 0.09, p < 0.01; 1 μM: 0.98 ± 0.08, p < 0.05; n = 3; Figure 1I). 

We also treated H9 hESC derived with 100 μM adenosine, which resulted in suppressed 

neuronal activity after one hour incubation (normalized ΔF/F of 100 μM adenosine to 

without adenosine = 0.20 ± 0.06; p < 0.01; Figure S2J). Furthermore, astroglia-conditioned 

medium (ACM) from DS4A also showed a trend of suppressed neuronal excitability 

compared to no ACM (Figure S2K).

DS Astroglia Exhibit Abnormally Frequent Spontaneous Ca2+ Fluctuations

Astrocytic Ca2+ signaling has been proposed to modulate neural-circuit activity and 

structure (Anderson et al., 2016; Bazargani and Attwell, 2016); the suppressed excitability 

of neurons was specific to DS astroglia and could be rescued when astrocyteneuron 

communication was blocked by an adenosine receptor antagonist. This evidence led us to 

further investigate Ca2+ dynamics in astroglia. We focused on optical recordings of calcium 

dynamics in astroglia using GCaMP6m (Chen et al., 2013). We used the machine-learning 

software Functional Astrocyte Phenotyping (FASP) (Wang et al., 2016) to facilitate 

automated detection and analysis of complex Ca2+ dynamics in astroglia.

The differentiated astroglia indeed displayed prominent spontaneous Ca2+ transients, which 

were frequently periodic and especially apparent in DS astroglia (Figure 2A; Videos S1 and 

S2). DS astroglia exhibited significantly more (7- to 34-fold) Ca2+ transients than control 

isogenic astroglia (averaged number of calcium transients in a 5-min imaging session: 

DS1A: 58 ± 6, DS4A: 275 ± 34, DS2UA: 8 ± 2; mean ± SEM; p < 0.0001; unpaired t test; n 

= 9 imaging sessions; Figure 2B). The average amplitude (ΔF/F; DS1A: 1.45 ± 0.2, DS4A: 

0.98 ± 0.15; p < 0.01; Figure 2C) and frequency (transients/min; DS1A: 0.41 ± 0.10, DS4A: 

0.88 ± 0.16; p < 0.01; Figure 2D) of Ca2+ transients were significantly different between 

DS1A and DS4A, whereas the kinetics were similar (T1/2, s; DS1A: 8.59 ± 1.01; DS4A: 
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6.98 ± 0.90; p = 0.18; Figure 2E). These disparities are potentially due to epigenetic changes 

between the cell lines.

Inositol triphosphate (IP3)-triggered Ca2+ release from the endoplasmic reticulum (ER) is 

considered a primary mechanism responsible for intracellular global Ca2+ waves (Tong et 

al., 2013). Application of the IP3 receptor (IP3R) antagonist 2-aminoethoxydiphenyl borate 

(2-APB) abolished spontaneous Ca2+ fluctuations (Figures 2F–2I), as did depletion of 

intracellular stores by cyclopiazonic acid (CPA), suggesting that IP3-ER Ca2+ underlies both 

spontaneous and evoked events in DS astroglia.

Wavefront analysis of the spontaneous events revealed 33 clusters of cells (Figure S3A, left) 

with temporally correlated Ca2+ fluctuations (Figure S3A, right) that were spatially 

intermingled (Figure S3B), suggesting that Ca2+ fluctuations do not propagate to adjacent 

cells. To further examine whether spontaneous fluctuations travel between cells, we 

performed Ca2+ imaging in a mixed culture of GCaMP6m-expressing control isogenic 

astroglia with unlabeled DS4A in a variety of ratios. Culturing with DS astroglia did not 

significantly increase the number of Ca2+ transients in control isogenic astroglia, even with a 

10-fold excess of DS4A (Figure S3C), suggesting that spontaneous Ca2+ fluctuations were 

not induced in previously silent control isogenic cells. In addition, application of 10 μM n-

octanol, a gap junction blocker, showed no effect on Ca2+fluctuations (Figure S3D).

Acutely purified human astrocytes acquire sensitivity to extracellular cues, such as 

neurotransmitter ATP and glutamate (Zhang et al., 2016). To exclude the possibility that 

differences in functional maturation of differentiated astroglia contribute to suppressed 

neuronal excitability, we examined transmitter-evoked Ca2+ responses of DS astroglia and 

compared with isogenic controls. Only previously, silent astrocytes were selected for 

quantification of evoked responses in order to differentiate evoked from spontaneous 

activity. Both DS and control isogenic astroglia responded robustly to ATP (representative 

traces of evoked Ca2+ transients shown in Figures S3E and S3F) in terms of the number and 

amplitude of evoked intracellular Ca2+ transients. Similarly, both DS astroglia and control 

isogenic astroglia responded to glutamate at micromolar concentrations (Figures S3G 

andS3H). Thus, DS and control astroglia respond similarly to neurotransmitters, further 

suggesting that Ts21 does not influence functional maturation of differentiated astrocytes.

Blocking Spontaneous Ca2+ Fluctuations in DS Astroglia Rescues Suppressed Neuronal 
Excitability

We tested whether the suppression of neuronal activity might be caused by the abnormally 

frequent spontaneous Ca2+ fluctuations observed in DS astroglia. Because pharmacological 

block of IP3 receptors abrogated spontaneous Ca2+ waves (Figures 2F–2I), we knocked 

down (KD) the expression of IP3R2 in DS astroglia DS4A alone, the main IP3R isoform in 

astrocytes, with short hairpin RNAs (shRNAs). IP3R2 KD in DS astroglia DS4A (Figure 3B) 

significantly reduced the number of active regions of interest (ROIs) showing spontaneous 

Ca2+ transients (scrambled shRNA: 61.0 ± 3.8; IP3R2 shRNA-1: 21.3 ± 2.4 [35%]; IP3R2 
shRNA-2: 14.3 ± 1.8 [24%]; p < 0.001; Figures 3A and 3C).
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We then imaged the activity of neurons co-cultured with DS4A astroglia with IP3R2 
knocked down, which rescued the reduced amplitude of evoked neuronal Ca2+ transients 

(measured as normalized ΔF/F; IP3R2 shRNA-1: 0.91 ± 0.0.4; shRNA-2: 0.93 ± 0.03) to the 

level of isogenic control astroglia (1.01 ± 0.04; p = 0.28). In contrast, DS4A with no shRNA 

(0.60 ± 0.05; p < 0.01) or control-scrambled shRNA (0.62 ± 0.04; p < 0.01) showed 

significantly decreased neural activity (Figure 3D). Therefore, elevated intracellular Ca2+ 

fluctuation mediated by IP3R2 is necessary to suppress neuronal excitability.

Spontaneous Ca2+ Fluctuations in DS Astroglia Are Not Driven by Extracellular Cues

As elevated spontaneous astroglia Ca2+ activity directly contributed to suppressed neuronal 

activity, we next sought to determine the factors driving elevated Ca2+ activity in DS 

astroglia. We first performed single-cell analysis of gene expression related to Ca2+ 

signaling pathways (Figure S4A) in DS astroglia. We also monitored the expression of a 

panel of astrocytic markers to account for the differentiation state of individual cells (Figures 

S4A and S4B). We then performed unsupervised clustering analysis of the cells by their 

gene expression patterns. We found that DS astroglia (DS4A) clustered into two groups 

(Figure S4C), distinguished by elevated expression of Ca2+ handling genes, such as 

ATP2B1, NCX1, RYR1/3, STIM1, NCLX, IP3R3, ORAI1, and chromosome 21 gene S100B 
(Table S1). This suggests that a subset of DS astroglia may display elevated spontaneous 

Ca2+ fluctuations. In DS astroglia, astrocytic markers, such as CD44, CX43, AQP4, NF1A, 
and ALDOC, were not differentially expressed between the two clusters. In contrast, we 

failed to identify significant clustering (Figure S4D) of genes related to the Ca2+-handling 

toolkit in control isogenic astroglia (DS2UA).

Moreover, from the single-cell gene analysis, we found that metabotropic glutamate 

receptors (GRM1/2/3/4/5/6/7/8) and purinergic receptors were elevated in a subset of 

DS4UA. We next investigated whether spontaneous fluctuations in DS astroglia could be 

modulated by pharmacological manipulation of these receptors. ATP treatment led to a 2-

fold increase in the frequency and a 1.4-fold increase in the amplitude of spontaneous Ca2+ 

fluctuations in ~40% of ROIs (Figure 4A). However, treatment with P2-isotype-specific ATP 

receptor antagonists (PPADS for P2X; MRS2179for P2Y; Figures 4B and S5A), non-

specific P2 antagonists (suramin; Figure 4C), or an adenosine A1-receptor antagonist 

(DPCPX; Figure 4D) had no significant effect on spontaneous Ca2+ fluctuations, suggesting 

that, although ATP can modulate spontaneous Ca2+ events in DS astroglia, it is not necessary 

to evoke them. CHPG (a selective mGluR5 agonist) showed no significant effects on 

amplitude, frequency, or kinetics of spontaneous Ca2+ fluctuations (Figure S5B). Similarly, 

mGluR5-selective (MPEP), non-selective mGluR (MCPG), and mGluR2/3-selective 

(LY341495) antagonists, as well as a glutamate transporter inhibitor (TFB-TBOA), also had 

no effect (Figures 4E and S5C–S5E). The TRPA1 channel antagonist HC030031 also had no 

significant effect on spontaneous Ca2+ fluctuations (Figure 4F), consistent with the lack of 

microdomain Ca2+ activity observed (Shigetomi et al., 2011). In summary, whereas both 

intrinsically and extrinsically driven calcium transients depend on IP3-mediated release from 

ER stores, our results suggest that spontaneous fluctuations are unlikely to be driven, though 

can be modified, by extracellular cues.
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S100B Regulates Spontaneous Ca2+ Fluctuations in DS Astroglia

From gene analysis, we also noticed that S100B, a Ca2+-binding protein located on HSA21 

and primarily expressed in astrocytes, was one of the top genes differentially expressed 

across DS4A cells. S100B elicits neurotrophic effects and regulates synaptic plasticity and 

rhythmic neuronal activity by chelating extracellular calcium (Morquette et al., 2015; 

Nishiyama et al., 2002). Given the particular interest in the context of Ts21 DS, we thus 

asked whether elevated S100B might contribute to the spontaneous intracellular Ca2+ 

fluctuations in DS astroglia.

We first quantified the expression level of S100B in Ts21-derived astroglia. qRT-PCR 

analysis showed an averaged 11-fold greater expression of S100B in DS astroglia (DS1A 

and DS4A) compared with control isogenic DS2UA cells (Figure S1C). Expression of 

S100B protein was enriched in DS astroglia compared to DS2UA (Figures 5A and 5B; 9.9- 

and 10.7-fold increased expression S100B for DS1A and DS4A, respectively, compared to 

DS2UA).

We next selectively knocked down S100B in DS4A and performed Ca2+ imaging. Using 

mCherry as a proxy for the extent of S100B KD, we used fluorescence-activated cell sorting 

(FACS) to select the top 15% of cells showing potent S100B KD and use the bottom 15% of 

cells as a control group showing normal S100B levels (Figures 5C–5F). The S100B KD 

population showed a 3.5-fold decrease in spontaneous Ca2+ transients during a 5-min 

window (p < 0.001; Figures 5D and 5F), which corresponds to ~10-fold lower S100B levels 

compared to the control group (p < 0.001; Figure 5E). These data suggest that S100B 

modulates spontaneous Ca2+ fluctuations in DS astroglia.

Given the reported role of secreted S100B protein in modulating neural activity, we 

incubated the cultures with antibodies against S100B or Tuj1 (without permeabilization). 

After 10 min incubation, there was no effect on spontaneous Ca2+ events of either antibody 

(Figure 5G), suggesting that the spontaneous Ca2+ events are mediated by intracellular 

S100B.

We then asked whether overexpression of S100B protein would also modulate spontaneous 

Ca2+ fluctuations. We observed 2-fold increase in the number of Ca2+ transients when 

S100B was overexpressed in DS1A (Figures 5H and 5I; p < 0.01), in which the number of 

spontaneous Ca2+ transients is less abundant than DS4A.

Finally, we examined whether DS astroglia with spontaneous Ca2+ fluctuations alleviated by 

S100B KD still suppressed neuronal excitability. We recorded evoked Ca2+ events in 

response to FP stimuli in H9 neurons co-cultured with DS4A with or without S100B KD. 

H9 neurons co-cultured with DS4A with potent S100B KD displayed significantly larger 

(1.7-fold; p < 0.01) neural activity than those without S100B KD (Figure 5J) suggesting that 

S100B KD successfully rescued neuronal activity suppressed by DS4A. Thus, we conclude 

that blocking Ca2+ fluctuations in DS astroglia by genetic ablation of either IP3R2 oi S100B 
is sufficient to rescue the excitability decreases o co-cultured neurons.
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DISCUSSION

Combining human stem cell technology with Ca2+ imaging and quantitative analysis tools 

provides a powerful platform to study neuron-astrocyte interaction in both physiological and 

pathological conditions, especially at early developmental stages. Using this platform, we 

imaged and characterized the effect of Ts21-iPSC-derived astroglia on neuronal networks. 

DS astroglia produced structural and functional deficits in co-cultured neurons Specifically, 

neurons co-cultured with DS astroglia displayed decreased global excitability. Such 

decreased global excitability of neurons corresponded with increased amplitudes of post-

synaptic activity and synaptic density, consistent with accepted mechanisms of homeostatic 

synaptic plasticity and synaptic scaling (Turrigiano, 2012). Our data are in line with a rodent 

DS model study, in which the dendritic spine density and mEPSC amplitude increased 

although frequency of mEPSCs remained unchanged in prefrontal cortical pyramidal 

neurons (Thomazeau et al., 2014). Though abnormal synaptic morphology, such as reduced 

synaptic density, has been reported in other iPSC-derived DS models and in Ts65Dn adult 

mice, none of these studies have examined the function of astrocytes and potential effect 

imposed by astrocytes at early stages of brain development. Therefore, the effect of DS 

astrocytes on synaptic properties is worth further investigating across the whole spectrum of 

neuronal differentiation and development in iPSC-based DS models. In addition, 

transplantation of DS astrocytes into rodent models can be performed to directly examine 

the effect imposed by astrocytes on synaptic properties at early stages of brain development.

We further showed functional differences between DS astroglia and control isogenic 

astroglia in terms of intracellular Ca2+ dynamics. We observed elevated spontaneous Ca2+ 

fluctuations that are frequent and periodic only in DS-derived astroglia, but not in an 

isogenic control cell. These aberrant Ca2+ fluctuations in DS astroglia are necessary to drive 

suppression of global excitability in co-cultured neurons, as evidenced by rescue by genetic 

or pharmacological block.

What causes aberrant Ca2+ fluctuations in DS astroglia? Here, we demonstrate that 

overexpression of cellular S100B in DS astroglia mediates elevated spontaneous Ca2+ 

fluctuations (Figures 5H and 5I), which subsequently regulate neuronal excitability (Figure 

5J). This finding is of particular interest, as S100B is a Ca2+-binding protein. Previous 

research (Barger et al., 1992) has shown that secreted S100B stimulates a rise in intracellular 

Ca2+ concentration in both neurons and glia. Furthermore, extracellular S100B regulates the 

firing patterns of neurons by reducing extracellular Ca2+ concentrations (Morquette et al., 

2015). In our studies, extracellular S100B did not influence spontaneous Ca2+ fluctuations in 

DS astroglia, whereas cytosolic of S100B did. Further investigation is necessary to parse the 

various functions of secreted and cytosolic S100B in healthy and disease model astrocytes 

and neurons.

A major open question in DS research is the mechanism by which the overdose of hundreds 

of genes on HSA21 disrupts brain function. To date, several candidate genes have been 

identified, including DYRK1A, SIM2, DSCAM, KCNJ6, NKCC1, and miR-155 (Deidda et 

al., 2015; Dierssen, 2012; Wang et al., 2013; Table S1). Overexpression of S100B, at the 

distal end of the HSA21 long arm, has been shown to generate reactive oxygen species 
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(ROS) (Esposito et al., 2008) in human induced pluripotent stem cells (hiPSC)-derived DS 

astroglia, leading to neuronal apoptosis (Chen et al., 2014). Previous research reported that 

ROS induce lipid peroxidation, activate the PLC-IP3R pathway, and cause Ca2+ increases in 

astrocytes (Vaarmann et al., 2010). Indeed, we found that spontaneous Ca2+ activity was 

mediated by IP3R2-regulated ER stores. Though we do not have direct evidence to link 

S100B, ROS, and PLC-IP3R, S100B might mediate perturbed Ca2+ dynamics via ROS in 

DS astroglia.

Our study provides additional evidence to support the hypothesis that astrocytic Ca2+ 

signaling modulates neural activity, critical for brain function during development. A grand 

challenge is to elucidate the pathways regulating astrocyte-neuron interplay during 

development. In the present study, our results indicate that astrocyte-neuron interaction via 

purinergic signaling might be a significant contributor linking aberrant astrocytic Ca2+ to 

neuronal functional deficits in DS. We showed that treatment with 100 μM adenosine in H9 

hESC-derived neurons without the presence of astrocytes suppressed neuronal activity. 

Furthermore, treatment with DPCPX, an adenosine A1 receptor antagonist, rescued the 

suppressed Ca2+ activity of H9 hESC-derived neurons co-cultured with DS astroglia (Figure 

1I). Previous research has shown that adenosine predominantly inhibits synaptic activity via 

A1 receptors (Delekate et al., 2014; Koizumi, 2010; Nam et al., 2012). However, future 

efforts should focus on further elucidating the source of release and other co-factors involved 

in the neuronal inhibition.

In conclusion, the combination of a human iPSC DS model with functional imaging and 

pharmacological and genetic manipulation provides a platform for quantitative measurement 

of human cellular physiology and for mechanistic studies of disease pathophysiology. 

Though animal models of neurological disorders play an important role in studying the 

effects of specific genetic and experimental perturbations and in testing potential treatments, 

they often fail to faithfully recapitulate the full spectrum of human phenotypes, which can 

lead to false conclusions owing to molecular and cellular differences between the systems. 

Future improvements to iPSC models will include 3-dimensional culture (Paşca et al., 2015), 

multi-color imaging, and incorporating genetically encoded indicators for other molecules 

and cellular states (e.g., glutamate; Marvin et al., 2013). Our imaging platform can be 

applied to the study of other neurological diseases as well, even to the level of testing 

specific drug combinations on neuron-astrocyte co-cultures developed from single healthy or 

diseased individuals.

EXPERIMENTAL PROCEDURES

Neural Differentiation of Human ESCs and iPSCs

H9 human ESCs were obtained from WiCell (Madison, WI). Control isogenic trisomy 21 

and euploid iPSCs, DS1, DS2U, and DS4, were engineered in Dr. Anita Bhattacharyya’s lab, 

as previously described (Weick et al., 2013). H9 ESCs and iPSCs were maintained on 

Matrigel (Becton Dickinson; 356234) in mTeSR1 medium (StemCell Technologies; 05850). 

Mycoplasma contamination was routinely tested. We used previously described protocols for 

neural differentiation (Zhang et al., 2001), with minor modifications. Briefly, following 

detachment of neuroepithelia from adherent conditions at day 14, neurospheres were 
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expanded in fibroblast growth factor (FGF)/epidermal growth factor (EGF) (10 ng/mL). 

Large spheres were disaggregated into smaller clusters approximately every two weeks until 

day 90. 20–25 neurospheres or 2.5 × 104 cells/cm2 were seeded on 35-mm Matrigel-coated 

glass-bottom dishes (MatTek; P35G-1.0-14-C), and once confluent, neurospheres were 

cultured in neuronal medium (neurobasal medium, 21103-049; 1% N-2 supplement, 

17502-048, 2% B-27 supplement, 17504-044; 10 ng/mL BDNF [450-02]; and GDNF 

[450-10]) for 40 days. Medium components were purchased from Thermo Fisher Scientific 

and cytokines from Peprotech. Inhibitors of SMAD signaling (10 μM SB431542 and 100 

nM LDN193189; Tocris Bioscience) were added for the first 6 days to promote neural 

induction (Chambers et al., 2009).

Derivation and Culture of Astrocytes

Control isogenic and DS iPSCs were differentiated into neural progenitors and cultured 

similar to neural differentiation with the following modifications. Astrospheres were then 

plated at a concentration of 500,000 cells/mL in 12 mL of media in T75 flasks and allowed 

to adhere to fibronectin-coated dishes (Sigma; F0895). After confluent, astrospheres were 

dissociated into single cells and cultured in an optimized commercial medium for human 

primary astrocytes (ScienCell Research Laboratories; 1801). HAs were from ScienCell 

Research Laboratories (1800). We performed karyotype analysis on DS1-, DS4-, and DS2U-

derived astroglia, prior to and after the Ca2+ experiments (Cell Line Genetics). The cell size 

was analyzed by randomly selecting 5 cells from 3 bright field images (ImageJ).

Ca2+ Imaging and Analysis in Astrocytes

Primary astrocytes or iPSC-derived astrocytes were seeded onto 8-well slides (Ibidi; 80826), 

coated with fibronectin, and infected with lentiviruses encoding EF1α-GCaMP6m and then 

subjected to Ca2+ imaging. For IP3R2 KD, DS4A cells were infected with lentiviruses 

encoding shRNA and GCaMP6m; Ca2+ imaging followed. For S100B KD, DS4A cells were 

infected with lentiviruses encoding shRNA, sorted into 2 populations by FACS according to 

mCherry intensity, and infected with GCaMP6m for each population; Ca2+ imaging 

followed. For each cell line, 3 Ca2+-imaging sessions (each session contains 3 fields of 

view) were collected from independent samples. For mixed cultures of control isogenic and 

DS astrocytes, control isogenic DS2UA were first infected with lentiviruses expressing 

EF1α-GCaMP6m and then seeded with DS4A, followed by Ca2+ imaging. Three days post-

infection, frame scans were acquired at 2 Hz (512 × 512 pixels) for a period of 300 s. All 

imaging was done using a Zeiss LSM 710 confocal microscope (20x magnification; 

numerical aperture [N.A.] = 0.8 objective). Agonists or antagonists (Tocris) were added at 

frame 10 during continuous imaging. For quantification of ATP and glutamate-evoked 

activity, to eliminate the confound of spontaneous activity, only ROIs that were silent during 

the initial imaging period were analyzed for a response to added ATP or glutamate. 

Furthermore, we ensured that these evoked responses were time locked to agonist 

application.

Because of these complex spatiotemporal patterns of Ca2+ dynamics in astrocytes, we 

developed a computational tool (FASP; Wang et al., 2016) to quantitatively and 

automatically analyze the large-scale imaging datasets to ensure that the analysis is identical 
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and objective for all cells and across experiments. Additional details are in the Supplemental 

Information.

Neuron-Astrocyte Co-culture and Astrocyte-Conditioned Media Incubation

Differentiated neurons were infected with lentiviruses expressing Synapsin-1-GCaMP6m. 

Two days post-infection, astrocytes were seeded on top of neurons to establish co-culture. 

Neurons were seeded with astrocytes at 1:1 at 5 × 104 in 35 mm on glass bottom dishes in 2 

mL of medium or with 100 μg/mL of astrocyte-conditioned media in 8-well μ-slide dishes in 

250 μL of media. After 3–7 days, infected neurons were stimulated using a custombuilt field 

stimulator with platinum wires or 50 μM glutamate. Field stimuli were delivered as 40 V, 30 

Hz, 1 ms pulses for the following trains: 10, 20, 40, and 80 field stimuli in Hank’s balanced 

salt solution (HBSS) with 2 mmol CaCl2 and MgCl2. When chemicals were used, they were 

applied 3 days prior to imaging, except DPCPX and adenosine, which was acutely applied 1 

hr prior to imaging. All chemicals were purchased from Tocris or Sigma.

Single-Cell Expression

DS astrocytes were digested and sorted by FACS to get rid of cell debris and dead cells. The 

cell suspension was loaded onto a C1 Single-Cell Auto Prep Array for mRNA Seq (10–17 

μm; Fluidigm; 100-5760), and single cells were captured and lysed to get cDNA on 

Fluidigm’s C1 platform. Gene expression patterns of single cells (n = 46) were studied using 

the 48.48 Dynamic Array Chip for Gene Expression following the manufacturer’s 

instructions (Fluidigm; BMK-M48.48).

Animals

Animal studies were conducted in compliance with the Guide for the Care and Use of 

Laboratory Animals of the National Institutes of Health and approved by the Institutional 

Animal Care and Use Committee (IACUC) at the University of California, Davis or the 

relevant institutional regulatory body.

Statistical Analysis

All values are shown as mean ± SEM. To determine significant differences between groups, 

comparisons were made using a two-tailed unpaired t test. For mEPSC analysis, a one-way 

ANOVA was used to compare mEPSC amplitude and frequency among groups, followed by 

Fisher’s least significant difference (LSD) pairwise comparison when appropriate. For 

single-cell expression analysis, a permutation test was applied for unsupervised clustering, 

and the differences of each gene between the two clusters were determined using two-

sample unpaired Wilcoxon rank-sum test. A p value smaller than 0.05 was accepted for 

statistical significance p < 0.01 (**) or 0.05 (*). The sample size for each experiment was 

determined either by power analysis (2-sample, 2-sided equality) or by referring to the 

sample size in similar studies (Chen et al., 2014; Zhang et al., 2016). For Ca2+-imaging 

experiments, imaging sessions were collected from at least 3 batches of cells, and ROIs were 

selected either automatically by FASP for astrocyte Ca2+ imaging or manually for neuronal 

Ca2+ imaging. For gene expression, RNA samples from three batches of cells were used. For 

immunostaining analysis, three batches of cells were fixed and five fields of view from each 
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sample were selected for imaging and analyzed blinded. No randomization was used. No 

data were excluded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neuron-astrocyte interactions in a human DS stem cell model

• DS astroglia exhibited more frequent spontaneous Ca2+ fluctuations

• Spontaneous DS astroglia Ca2+ reduced excitability of co-cultured neurons

• Abolishing astrocytic spontaneous Ca2+ rescued suppressed neuronal activity

Mizuno et al. Page 18

Cell Rep. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. DS Astroglia Inhibit Neuronal Excitability during Co-culture
(A) The fluorescence changes (ΔF/F) of H9 hESC-derived neurons in response to a variety 

of FP stimuli; ΔF/F at 10 FPs, 40 FPs, and 40 FPs in the presence of 1 μM TTX were 

normalized to ΔF/F at 80 FPs.

(B–D) The responses of H9 hESC- (B), isogenic DS2U- (C), and DS1-iPSC- (D) derived 

neurons to FP stimuli (40 FPs at 30 Hz) when co-cultured with or without astroglia. ΔF/F 

induced by FP stimuli in the presence of astrocytes was normalized to that of neurons alone 

(red dotted lines). Representative traces showing Ca2+ transients triggered by FPs in neurons 

are shown (right panel).

(E) Example recordings of mEPSCs from 1 neuron from each group.

(F) Cumulative probability of the mEPSC amplitude shifted rightward in both DS4A and 

DS1A groups compared with the DS2UA group.

(G) No change was seen in the cumulative probability of the mEPSC inter-event interval.

(H) Representative images and quantification of puncta density expressing both synapsin 

and PSD95 (n = 3 images of immunostaining).

(I) The fluorescence changes of H9 hESC-derived neurons in response to 40 FPs stimuli 

when co-cultured with DS4A in the presence of DMSO or a series of drugs are shown and 

normalized to changes when co-cultured with DS2UA. For each cell line, n = 3 Ca2+-

imaging sessions (each session contains 3 fields of view). Error bars are shown as mean ± 

SEM, *p < 0.05, **p < 0.01.
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Figure 2. Imaging Ca2+ Events in Human-iPSC-Derived Isogenic and DS Astroglia
(A) Spontaneous Ca2+ responses in isogenic DS2UA and two DS astroglia (DS1A and 

DS4A). Representative ROIs (n = 20) in the field of view showing Ca2+ fluctuations in 

DS2UA, DS1A, and DS4A. All ROIs were detected using FASP and marked with magenta 

outlines. The scale bar represents 100 μm.

(B) DS1A and DS4A displayed a significantly increased number of Ca2+ fluctuations in 5 

min of imaging sessions compared with DS2UA (9 independent imaging sessions).

(C–E) Features of Ca2+ fluctuations in DS astroglia: averaged kinetics (C), frequency (D), 

and propagation speed (E) of DS astroglia. Data were collected from 81 cells of DS1A and 

188 cells of DS4A.

(F–I) The Ca2+ fluctuations in DS4A could be abolished by incubation with IP3R antagonist 

(500 μM 2-APB; 17 ROIs; F and H) ordepleting ER Ca2+ store (20 μM CPA; 23 ROIs; G 

and I).

Error bars are shown as mean ± SEM, *p < 0.05, **p < 0.01.
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Figure 3. DS Astroglial Ca2+ Fluctuations Are Regulated by IP3R-ER Pathway
(A–C) The Ca2+ events in DS4A were significantly decreased by knocking down the 

expression of IP3R. Representative ROIs (n = 20) showing Ca2+ fluctuations in DS4A 

expressing scrambled shRNA (ctrl shRNA) and two shRNAs for IP3R (IP3R shRNA-1/2; A). 

Real-time PCR confirmed the decreased expression of IP3R in the presence of IP3R shRNAs 

(3 RNA samples; B), corresponding to a decreased number of Ca2+ events in 5 min (3 

imaging sessions; C).

(D) Normalized fluorescence changes of H9 hESC-derived neurons in responseto 40 FPs co-

cultured with DS4A or DS4A expressing scrambled or IP3R shRNAs to those of neurons 

alone (dotted red line).

Error bars are shown as mean ± SEM, *p < 0.05, **p < 0.01.
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Figure 4. Spontaneous Fluctuations in DS Astroglia Could Not Be Modulated by 
Pharmacological Manipulation
(A) ATP increased the frequency and amplitude of Ca2+ events in previously active cells (20 

ROIs; p < 0.01).

(B and C) Purinergic receptor antagonist (20 μM PPADS; 25 ROIs, B; and 20 μM suramin; 

18 ROIs, C) failed to modulate the Ca2+ fluctuations in DS4A.

(D–F) A1 adenosine receptor antagonist (DPCPX 20 μM; 18 ROIs; D), mGluR5 antagonist 

(10 μM MPEP; 42 ROIs; E), and TRPA inhibitor (50 μM HC030031; 20 ROIs; F) failed to 

modulate the Ca2+ fluctuations in DS4A. (Left) Representative traces are shown. (Right) 

Quantification of amplitude, frequency, and kinetics is shown.

*p < 0.01, **p < 0.01.
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Figure 5. S100B Regulates Spontaneous Ca2+ Fluctuations in DS Astroglia
(A and B) Immunostaining of S100B in iPSC-derived astroglia (A) revealed increased 

expression in DS astroglia normalized to isogenic DS2UA (three images of immunostaining; 

12.5% ± 1.0% for DS2UA; 80.4% ± 1.8% for DS1A; 75.3% ± 2.9% for DS4A; p < 0.01; B). 

Scale bar: 10 μm.

(C) Schematic representation of lentiviral construct encoding S100B shRNA-nls-mCherry. 

Scale bar: 50 μm.

(D) Representative ROIs (n = 20) highlighted in (C) showing spontaneous Ca2+ fluctuations 

in populations of DS4A without (left) and with S100B KD (right). The scale bars represent 

50 μm.

(E and F) The S100B expression levels normalized to without S100B KD (3 RNA samples; 

E) and the number of Ca2+ events (3 imaging sessions of 5 min; F) with and without S100B 
KD are shown.

(G) Extracellular application of anti-S100B antibody did not influence the number of 

spontaneous Ca 2+ fluctuations in DS4A (3 imaging sessions).

(H and I) Overexpression of S100B increased the number of Ca2+ events in DS1A. qPCR 

analysis confirmed elevated expression of S100B in DS1A when S100B was overexpressed 

(3 RNA samples; 4.8- ± 0.2-fold normalized to empty vector group; p < 0.01; H). 2-fold 

more Ca2+ events in 5 min were detected in DS1A when S100B was overexpressed 

normalized to control (3 imaging sessions; I).

(J) Blocking intracellular Ca2+ events by S100B KD increased activity of H9 hESC-derived 

neurons co-cultured with DS4A. The fluorescence changes of H9 hESC-derived neurons in 
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response to 40 FPs stimuli co-cultured with DS4A with S100B shRNA normalized to DS4A 

with control shRNA are shown. Error bars are shown as mean ± σEM, *p < 0.05, **p < 

0.01.
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