
1Scientific RepoRts | 5:16361 | DOI: 10.1038/srep16361

www.nature.com/scientificreports

Identifying robust communities 
and multi-community nodes 
by combining top-down and 
bottom-up approaches to 
clustering
Chris Gaiteri1,2,*, Mingming Chen3,*, Boleslaw Szymanski3,4, Konstantin Kuzmin3, 
Jierui Xie3,5,*, Changkyu Lee2, Timothy Blanche2, Elias Chaibub Neto6, Su-Chun Huang7, 
Thomas Grabowski7,8, Tara Madhyastha8 & Vitalina Komashko9

Biological functions are carried out by groups of interacting molecules, cells or tissues, known as 
communities. Membership in these communities may overlap when biological components are 
involved in multiple functions. However, traditional clustering methods detect non-overlapping 
communities. These detected communities may also be unstable and difficult to replicate, because 
traditional methods are sensitive to noise and parameter settings. These aspects of traditional 
clustering methods limit our ability to detect biological communities, and therefore our ability 
to understand biological functions. To address these limitations and detect robust overlapping 
biological communities, we propose an unorthodox clustering method called SpeakEasy which 
identifies communities using top-down and bottom-up approaches simultaneously. Specifically, 
nodes join communities based on their local connections, as well as global information about the 
network structure. This method can quantify the stability of each community, automatically identify 
the number of communities, and quickly cluster networks with hundreds of thousands of nodes. 
SpeakEasy shows top performance on synthetic clustering benchmarks and accurately identifies 
meaningful biological communities in a range of datasets, including: gene microarrays, protein 
interactions, sorted cell populations, electrophysiology and fMRI brain imaging.

Molecules, cells and tissues carry out biological processes through physical interaction networks1–3 and 
can enter disease states when those networks are disrupted4–7. Because the structure of networks is 
related to the functions they carry out8,9, it is possible to investigate biological functions by examining 
network structure3,10–14. Densely connected groups known as communities are prevalent in biological 
networks and may be related to specific molecular, cellular or tissue functions10,15–17. Therefore, biological 
community detection is a key first step in many network-based biological investigations. However, accu-
rately identifying biological communities is challenging, because network structures often have incorrect 
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or missing links, because traditional methods can produce unstable results18,19, and because biological 
communities tend to be highly overlapping20–22.

SpeakEasy: A new label propagation algorithm to detect overlapping clusters
We propose a label propagation clustering algorithm, “SpeakEasy”, to robustly detect both overlapping 
and non-overlapping (disjoint) clusters in biological networks. SpeakEasy is related to earlier label prop-
agation algorithms23–25 in the sense that nodes join communities based on exchange of “labels” between 
connected nodes. These “labels” do not refer to a priori community titles. In this context, labels are 
unique bits of information that are assigned randomly and used to track cluster membership. SpeakEasy 
differs from previous label propagation algorithms, because nodes update their labels on the basis of 
their neighbors’ labels, while subtracting the expected frequency of these labels, based on their pop-
ularity in the complete network. This process combines a bottom-up approach to clustering (using 
neighboring information) with a top-down approach (using information from the whole network). This 
dual approach facilitates accurate community detection in many types of biological networks (Table 1) 
because top-down information is used to ensure the bottom-up label propagation process identifies com-
munities that accurately represent the global network structure19,26–28.

In addition to accurate cluster detection (see Results section), community detection via SpeakEasy has 
several practical advantages for biological applications. For instance, since the number of communities in 
a dataset is rarely known in advance, SpeakEasy automatically predicts the number of communities and 
does not require manual tuning of clustering parameters for good results. Second, it can cluster networks 
with any type of links (weighted/unweighted, directed/undirected, positive/negative-valued edges) or 
any type of network structure (networks with several different degree distributions). SpeakEasy is highly 
scalable and can quickly cluster networks with hundreds of thousands of nodes. Third, because it is very 
efficient, the stochastic clustering process can be repeated many times to detect robust clusters that are 
not generated by data artifacts or noise. The repeated clustering process also allows SpeakEasy to identify 
multi-community nodes, whose membership tends to oscillate between different clusters. Finally, users 
can select overlapping or non-overlapping output, as is appropriate for their applications.

Visual example of SpeakEasy clustering
For an intuitive example of how SpeakEasy identifies communities, we illustrate the clustering process on 
a demonstration network (Fig. 1A). This network can represent any type of biological component, such 
as genes, proteins or tissues; network links could be derived from primary data or scientific literature. 

Dataset title
Network size 

(#nodes)
Biological 

scale Data type Cluster validation Output Conclusion

LFR benchmarks 1000–5000 NA unweighted symmetric networks known/synthetic clusters
benchmark clusters - 
comparable to other 
methods

Top recorded 
performance on 
LFR benchmarks 
to date

Various real networks 34–320000 NA unweighted symmetric networks modularity measures
cluster separation 
statistics - comparable to 
other methods

Predicted 
communities are 
well-separated

Human Brain Atlas (HBA); 
Cancer Cell Line Encyclope-
dia (CCLE)

8000–18000 gene gene expression Gene Ontology (GO) co-regulated gene sets
Possible to 
robustly detect 
overlapping gene 
clusters

Gavin et al.; Collins et al. 700–1100 protein AP-MS protein interactions small-scale experiments
protein complexes 
and multi-community 
proteins

Most accurate 
recovery of true 
protein complex-
es to date

Immunological Genome 
Project (Immgen) 212 cell-type cell type-specific gene expression cell-surface markers families of cell-types, at 

multiple resolutions

Cannonical cell 
type classification 
is mirrored in 
cluster results

Spike-sorting 9900 cell activity extracellular neuron recordings known/synthetic clusters spikes associated with 
specific neurons

SpeakEasy accu-
ratly associates 
spike waveforms 
with specific 
neurons

Parkinson disease rs-fMRI 264 tissue brain resting state fMRI permutation testing groups of synchronized 
brain regions

SpeakEasy iden-
tifies disease-re-
lated changes to 
co-active brain 
regions

Table 1.  Overview of datasets used in SpeakEasy community detection. We test community detection 
across a range of biological datasets to robustly characterize the ability to define practically useful biological 
communities.
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Initially, labels (represented by colored tags) are applied randomly to all nodes (Fig. 1A), with the total 
number of labels equal to the total number of nodes. Then, each node updates its label, based on the 
labels of neighboring nodes. Specifically, a node will adopt the label found most commonly on its neigh-
bors taking into account the global frequency of all labels (i.e., it will adopt the label that is most spe-
cific to its neighbors). For instance, the node shown in gray (Fig. 1B) is connected to orange-, blue- or 
green-labeled communities, so it must adopt one of these three labels. The gray node will update its label 
to the blue tag, because it has the strongest specific connection to the blue community, even though it 
has an equal number of links to the green community. Through this updating process, densely connected 
groups of nodes will acquire the same label. Multi-community nodes tend to oscillate their member-
ship between multiple communities, such as the node located between the red and orange communities 
(Fig. 1B). The complete algorithm is described in the methods and in the supplement via pseudocode.

Results
Summary. We use three approaches to determine the accuracy of SpeakEasy community detection. 
First, we test its performance on a large set of synthetic networks with carefully controlled characteristics, 
wherein the true clusters are known. Then we apply it to real-world networks, wherein the true clusters 
are unknown (Table 2). In this second context we can quantify community detection accuracy by using 
the statistical separation between clusters. Finally, we apply SpeakEasy to several types of common bio-
logical networks (Table 1). This collection of applications was selected because they have multiple of the 
following characteristics: 1) analysis of these datasets often utilizes clustering; 2) they have high levels of 
noise; 3) they are generated via different technologies measuring biological properties at several physical 
scales; 4) they can benefit from overlapping community detection, and 5) their true community structure 
is unknown or debated. In all cases, we make comparisons to alternate methods that have been applied 
to the same or similar datasets.

Synthetic clustering benchmarks. To generate networks with known community structure, we 
use the Lancichinetti-Fortunato-Radicchi (LFR) benchmarks, which are widely used to test overlapping 
and non-overlapping clustering methods29. These benchmarks contain a range of networks, some with 
well-separated clusters and other networks with clusters that are highly cross-linked and almost indis-
tinguishable. We track the accuracy of communities detected by SpeakEasy under increasing levels of 
cross-linking (μ ) (Fig. 2A), using average results from 10 replicate runs at each parameter setting. The 
effect of cross-linking (increasing μ ) is reflected by decreasing modularity (Q) and modularity density 
(Qds) (Fig.  2B). SpeakEasy shows the highest-yet accuracy in community detection, based on normal-
ized mutual information (NMI)25,30–33, especially for highly cross-linked clusters (μ  =  0.95) (Fig.  2A). 
Additional cluster recovery statistics such as the adjusted Rand index have varying inputs and sensitiv-
ity34, but also support this strong ability to detect true communities. While NMI is the most common 
way to report comparisons to known clusters, some of these additional metric may be relevant, as specific 
biological experiments may place different weight on false positive or false negative results. These results 
are not affected by various distributions of cluster size or intra-cluster degree distributions (Figure S1). 
Thus, SpeakEasy can accurately identify disjoint clusters in the most popular clustering benchmarks, 
even when these clusters are heavily obscured by cross-linking/noise.

Figure 1. Intuitive schematic of the core SpeakEasy clustering mechanism. (A) Clusters are determined 
by competition between nodes through “labels” (symbolized here by colored tags) that grow and spread 
through a network. (B) SpeakEasy groups nodes according to the communities to which they are most 
specifically connected. Thus, when nodes connected to the gray node broadcast their identities, it will join 
the “blue” community on the upper left, because its connectivity to more popular labels is expected at 
random. Nodes are classified as multi-community nodes if they fit equally well with multiple communities 
(for example, the node tagged with both orange and red labels, see methods for details). Technical details of 
the algorithm are provided in the methods section and pseudocode for the complete algorithm is provided 
in the Supplementary text.
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We also test community detection on LFR networks with overlapping communities. In this set-
ting, SpeakEasy also shows excellent community detection performance and the ability to identify 
multi-community nodes (Fig. 2C,D)35. As seen previously for disjoint networks (Fig. 2A), increasing the 
level of cluster cross-linking (μ ) makes community detection more challenging, resulting in lower NMI 
with the true set of clusters. Better community detection accuracy was achieved for networks with higher 
average connectivity (D). This can be explained by the greater cluster density of these networks (Fig. 2). 
Community detection is also affected by the number of communities that are tied to multi-community 
nodes (Om). When multi-community nodes are tied to many communities (high Om values), commu-
nity detection becomes more difficult (Fig. 2C,D). This response to highly overlapping communities is 
universal across overlapping clustering algorithms35. Community detection scores for most methods also 
tend to decrease on large networks35. This decrease in performance could be more severe for SpeakEasy, 
because it employs a diffusion process. However, SpeakEasy performs slightly better on networks of 5000 
nodes versus networks with 1000 nodes. This may be explained by the incorporation of global network 
information (label popularity) into the local clustering process26–28.

Abstract clustering performance on diverse real-world networks. The LFR benchmarks accu-
rately represent certain aspects of social and biological networks, but are limited in other aspects. For 
example, networks in the LFR benchmarks have low transitivity and null assortativity (propensity for 
hubs to connect to hubs)36. Therefore we apply SpeakEasy to fifteen real networks that are often used to 
test clustering methods. Unlike the LFR benchmarks, the true community memberships in these net-
works are unknown. However, the quality of clusters detected by various methods can be compared by 
using modularity (Q)37 and modularity density scores (Qds)38, which quantify how well a given network 
is segmented into dense clusters.

We compare modularity values from SpeakEasy to those from another label propagation algo-
rithm, GANXiS, because that method showed the best overlapping clustering performance in a recent 

Network n m
GANXiS 

(Q)
SpeakEasy 

(Q)
Percentage 

difference (Q)
GANXiS 

(Qds)
SpeakEasy 

(Qds)
Percentage dif-

ference (Qds)

karate 34 78 0.3924 0.4198 6.75 0.2116 0.2302 8.42

dolphins 62 159 0.4408 0.5017 12.92 0.1664 0.2378 35.33

Les. Mis. 77 254 0.5224 0.5480 4.78 0.2808 0.3438 20.17

pol. books 105 441 0.4831 0.4973 2.90 0.1634 0.2396 37.82

football 115 613 0.5878 0.5811 − 1.15 0.3792 0.4856 24.61

Santa Fe 118 200 0.7166 0.4792 − 39.69 0.2099 0.2963 34.13

jazz 198 2742 0.2816 0.4443 44.83 0.1917 0.2134 10.71

railway 297 1213 0.6989 0.6098 − 13.61 0.2632 0.3756 35.20

c. elegans 453 2525 0.1706 0.3883 77.90 0.05151 0.1079 70.75

email 1133 5254 0.5035 0.4916 − 2.39 0.05366 0.1025 62.55

pol. blogs 1224 19022 0.4177 0.3533 − 16.71 0.0230 0.0426 59.78

net science 1461 2742 0.9039 0.7657 − 16.55 0.5797 0.3600 − 46.76

PGP 10680 24316 0.8039 0.7315 − 9.43 0.1595 0.1906 17.77

DBLP 260998 950059 0.6622 0.6066 − 8.76 0.2018 0.2628 26.29

Amazon 319948 880215 0.7659 0.7094 − 7.66 0.2007 0.2556 24.04

Table 2.  Comparison of the abstract goodness of clustering results using modularity (Q and Qds) 
on many types of networks between SpeakEasy and a top-performing overlapping clustering method 
(GANXiS). By testing community detection in many types of networks we can assess the quality of 
SpeakEasy community detection across networks with different topologies. Top modularity scores are shown 
in bold. “Karate” is a network of friendships between college club participants from the 1970’s. “Pol books” 
is a co-purchasing network of books on political topics that were published in 2004. “Netscience” is a co-
citation network among network science authors. “Dolphins” is a social interaction network of a bottlenose 
dolphin pod from New Zealand. “Les Miserables” is a network of character interactions in the novel by 
Victor Hugo. “Football” is a network of American Division 1A college football teams, linked by matches. 
“Sante Fe” is a co-authorship network of members at the Santa Fe Institute. Links in the “Jazz” network 
denote musical collaborations between the years 1912 and 1940. “Pol blogs” is a network of hyperlinks 
among political-oriented blogs in 2005. “Email” is a network of emails linking various Enron employees. The 
PGP network describes Pretty Good Privacy key signing. “DBLP” is a co-authorship network in computer 
science, whose communities tend to be related to specific conferences or journals. “Amazon” is a network of 
item co-purchases.
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Figure 2. Disjoint cluster detection performance. (A) The LFR benchmarks track cluster recovery as 
networks become increasingly cross-linked (as μ  increases) for γ  (cluster size distribution parameter) equal 
to 2 and β  (within-cluster degree distribution parameter) equal to 1. Several metrics characterize cluster 
recovery with varying levels of sensitivity. For the following measures (min =  0), lower values indicate 
better alignment between the true partition and partition generated by SpeakEasy: NVD - Normalized Van 
Dongen metric. For the following measures, larger values (max =  1) indicate better alignment between the 
true and SpeakEasy partitions: NMI - Normalized Mutual Information; F-measure; RI- Rand Index; ARI - 
Adjusted Rand Index; JI - Jaccard Index. See Chen et al.34 for additional details on these statistical measures. 
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comparison of clustering methods35. In this comparison, SpeakEasy shows improved performance on 6 
out of 15 networks using the modularity (Q) metric, with a mean percent difference in performance of 
2% over GANXiS (Table 2). Using density based Qds metric that was shown to be more consistent with 
other metrics than original Q metric38,39, SpeakEasy performs better than GANXiS on 14 out of 15 net-
works with a mean percent difference of 28% over GANXiS (see Supplementary Materials). The consist-
ently high Qds values from SpeakEasy (compared to Q-values) indicate that it tends to detect more small 
and highly dense clusters than GANXiS38. SpeakEasy shows both higher Q and Qds scores for the two 
biological networks in this test set (‘dolphins’ and ‘c.elegans’). These modularity values are approach those 
of methods that directly attempt to maximize modularity34. Consistently high modularity on networks of 
diverse origin indicates that a simultaneous top-down and bottom-up approach to clustering functions 
will succeed on a wide range of topologies. However, high modularity is still not a proof of real utility 
in clustering biological networks. Therefore, we apply SpeakEasy to several types of biological networks, 
and compare the output clusters to gold-standards or to literature-based ontologies.

Application to protein-protein interaction datasets. Because a single protein may be part 
of more than one protein complex (set of bound proteins that work as a unit), Discovery of protein 
complexes directly benefits from development of methods which detect overlapping communities. 
We test SpeakEasy community detection of overlapping protein complexes, using two well-studied 
high-throughput protein interaction networks (Gavin et al.40 and Collins et al.41) derived from affinity 
purification and mass spectrometry (AP-MS) techniques. We then compare the predicted clusters against 
three gold-standards for protein complexes42–44 (Fig. 3). NMI scores between the predicted and the true 
protein complexes indicate that SpeakEasy produces the most accurate recovery of protein complexes 
to date32,33,45 (Table  3). We also examine precision and recall statistics specifically for the detection of 
multi-community nodes. SpeakEasy identifies a smaller number of multi-community nodes than are 
listed in various gold-standards, although the multi-community nodes it does detect are often in agree-
ment with the gold-standards (Table  3). However, there may be upper limits on using the Collins and 
Gavin datasets to measure multi-community node detection, because there is frequently no evidence 
(links) in these networks in support of canonical multi-community nodes (Fig. 3 inset).

Application to cell-type clustering. Identifying robust cell populations that constitute a true cell 
type is a challenging problem, due to ever-increasing levels of detail on cellular diversity. To explore how 
traditional clustering methods and SpeakEasy can be used to identify robust cell-types, we use a collec-
tion of sorted cell populations from the Immunologic Genome Project (Immgen)46,47. The immune sys-
tem contains many populations of cells that can be distinguished by specific combinations of cell surface 
markers as well as broader functional families, such as dendritic cells, macrophages and natural killer 
cells. We apply SpeakEasy to a matrix of expression similarity from cells from 212 cell types, as defined in 
Immgen. We then compare our results with the primary classification of the sorted cells. There is a strong 
correspondence between the identified clusters and the tissue origin of these cells. (Fig. 4, Table 4).

We find that applying SpeakEasy once again, to each of these broad categories of cell types, identifies 
sub-communities with higher correspondence to the tissue of origin and cell type, considered together 
(Table  4). Thus, successive applications of SpeakEasy clustering results may reflect successive tiers of 
biological organization. In comparison to standard hierarchical clustering methods, even when those 
methods are supplied with the true number of clusters, SpeakEasy still shows the highest correspond-
ences with canonical cell types (see Supplementary Materials). These results indicate SpeakEasy will be 
useful in future applications, where the number of communities (in this case, cell types) is unknown.

Application to finding coexpressed gene sets. Several cellular or molecular processes can gener-
ate correlated gene expression (called coexpression), including cell-type variation, transcription factors, 
epigenetic or chromosome configuration48. Identifying genes which are coexpressed in microarray or 
RNAseq datasets is useful because these gene sets may carry out some collective functions related to 
disease or other phenotypes. This task is challenging because coexpressed genes may be context-specific 
and therefore lack gold-standards, gene expression data tends to be noisy, and these gene sets are gener-
ated by overlapping mechanisms21,49.

(B) These modularity values provide a statistical estimate of the separation between clusters. For both Q 
(modularity) and Qds (modularity density), larger values (max =  1) indicate better community separation. 
(C) Recovery of true clusters quantified by NMI as a function of μ  (cross-linking between clusters) and Om 
(number of communities associated with each multi-community node). (D) F(multi)-score is the standard 
F-score, but specifically applied for detection of correct community associations of multi-community nodes, 
calculated at various values of Om and different average connectivity levels (D =  10,20). NMI metric used for 
overlapping communities (panels C,D) does not reduce to disjoint NMI, so NMI scores for Om =  1, cannot 
be directly compared to panel A.
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Therefore, we use SpeakEasy to detect overlapping and non-overlapping coexpressed gene sets in 
two datasets that are commonly used to address many biological questions: The Human Brain Atlas 
(HBA)50, comprised of 3584 microarrays measured in 232 brain regions and the Cancer Cell Line 
Encyclopedia (CCLE)51, comprised of 1037 microarrays from tumors found in all major organs. We 
find 40 non-overlapping clusters in HBA containing more than 30 genes (a practical threshold to assess 
functional enrichment), with a median membership of 384 (see Supplementary Materials). In CCLE we 
find 43 clusters with more than 30 gene members, with a median community size of 265. Coexpressed 
gene sets tend to be involved in certain biological functions; therefore, these gene sets tend to have high 
functional enrichment scores based on ontology databases such as Gene Ontology (GO) and Biocarta 
[50]. Of these 40 large clusters we detect in HBA, 27 have an average Bonferroni-adjusted p-value of 
< 0.01 for one or more biological processes. Of the 43 large clusters we detect in CCLE, 35 have a 
Bonferronni-adjusted p-value of < 0.01.

We also generate overlapping clusters from both the HBA and CCLE datasets. Overlapping coex-
pressed gene sets may be useful in biological studies because gene coexpression is driven by overlapping 
mechanisms21. Furthermore, assigning truly multi-community nodes to only a single community will 
produce inherently inaccurate communities. When multi-community SpeakEasy output is enabled, we 
still detect 40 clusters in HBA data, but the median size increases from 384 to 544, with 4510 genes hold-
ing overlapping community membership. Overlapping results from CCLE show an increase in median 
module size from 265 (non-overlapping) to 702, with ~10,000 genes found in more than one community. 
Functional enrichment scores for overlapping HBA gene sets are equivalent to non-overlapping results, 
while enrichment scores for gene sets from CCLE were several orders of magnitude more significant. We 
conduct a comparison of these results to the WGCNA method commonly used to identify coexpressed 
genes (see Supplementary Material), which shows practical benefits of SpeakEasy, including higher func-
tional enrichment and avoiding of arbitrary filters and complex parameter settings.

Application to neuronal spike sorting. Extracellular neuronal recording with single electrodes, tet-
rodes, or high density multichannel electrode arrays can detect the activity of multiple nearby neurons. 
However, these combined responses must be separated into responses of specific neurons. This blind 
source separation process is known as “spike sorting”, because each spike is assigned to a particular 
theorized neuron. Single neurons often generate relatively unique signatures (i.e. spike waveform shapes 
and amplitude distributions on multiple adjacent electrodes), and emerge as clusters in the matrix of 
waveform correlations.

To realistically test spike sorting, it is important to match noise levels in real brain recordings. 
Therefore, we use real depth-electrode recordings generate a simulated time-series of spikes in which 
the true spike times and unique neuronal sources are known (see Supplementary Materials). Comparison 
of the inferred clusters (represent the activity of a single neuron) to the true associations between spikes 
and neurons indicates that SpeakEasy can reliably sort spikes from multielectrode recordings (Table S1). 

Figure 3. Contrasting protein complex membership, estimated by small-scale experiments and high-
throughput clustering. (A) The high throughput interaction dataset from Gavin et al.40 has nodes colored 
according to complexes found in the Saccharomyces Genome Database (SGD) database. Nodes found in 
multiple protein complexes are shown as gray squares. (B) The clusters identified by SpeakEasy are color-
coded. Nodes found in multiple communities are depicted as gray squares. Inset: network fragments show 
example positions of actual versus inferred multi-community nodes in a portion of the network, showing 
how some canonical multi-community nodes have very little support for that classification, based on the 
network structure.
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The waveforms associated with each cluster can then be used in template-matching to detect additional 
spikes from the same neuronal origin.

Application to resting-state fMRI data. Functional magnetic resonance imaging (fMRI), obtained 
while a subject is at rest (rs-fMRI), is a valuable tool in understanding of systems-level changes in a 
variety of domains, including neurodegenerative disease52. Correlations between the rs-fMRI signals in 
different regions of interest (ROIs) may indicate which regions are functionally related. Brain networks 
composed of functionally-related ROI’s tend to be noisy and overlapping because ROIs perform func-
tions for multiple networks or because the low temporal resolution of the blood oxygen level-dependent 
signal causes temporal smearing of brain networks. The ability to robustly identify functional networks 
(communities), and changes to this structure that occur with disease, is critical to understanding the 
physiological changes that may be early indicators of disrupted cognitive function.

Ground truth 
definition source

Network 
dataset

SpeakEasy 
output type NMI Omega Precision Recall F-score

Precision  
(overlapping)

Recall  
(overlapping)

F-score  
(overlapping)

CYC2008 Collins et al. Disjoint 0.7237 0.6382 0.9844 0.8259 0.8982 NA NA NA

CYC2008 Collins et al. Overlapping 0.7120 0.5961 0.9845 0.8055 0.8860 0.2151 0.1170 0.1515

CYC2008 Gavin et al. Disjoint 0.4502 0.4530 0.8915 0.5395 0.6722 NA NA NA

CYC2008 Gavin et al. Overlapping 0.4498 0.4265 0.8837 0.5292 0.6620 0.2105 0.0958 0.1317

MIPS Collins et al. Disjoint 0.6669 0.3740 0.9208 0.8701 0.8947 NA NA NA

MIPS Collins et al. Overlapping 0.6665 0.3880 0.9118 0.8588 0.8845 0.7821 0.1227 0.2122

MIPS Gavin et al. Disjoint 0.5155 0.2001 0.8889 0.7238 0.7979 NA NA NA

MIPS Gavin et al. Overlapping 0.4929 0.2259 0.9053 0.7127 0.7975 0.7143 0.2092 0.3236

SGD Collins et al. Disjoint 0.7147 0.5652 0.9597 0.7510 0.8426 NA NA NA

SGD Collins et al. Overlapping 0.7058 0.5106 0.9733 0.7470 0.8453 0.4766 0.2048 0.2865

SGD Gavin et al. Disjoint 0.5474 0.5215 0.9907 0.6255 0.7668 NA NA NA

SGD Gavin et al. Overlapping 0.5460 0.5130 0.9722 0.6175 0.7553 0.3659 0.0652 0.1107

Table 3.  Comparison between protein complexes defined by small-scale experiments versus those 
inferred from high-throughput interaction datasets. Table values consist of normalized mutual 
information (NMI) between predicted and canonical protein complexes.

Figure 4. Primary and secondary biological classifications of immune cell types are reflected in primary 
and secondary clusters. The clustered correlation matrix of similarity of cell expression vectors is ordered 
according to primary clusters, which correspond to large-scale cell families such as B-cells, and secondary 
clusters, which correspond more closely to a more detailed classification of the intersection of cell-type and 
tissue of origin (see also Table 4).
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Figure  5A shows the relatively small inter-regional correlations characteristic of rs-fMRI functional 
connectivity graphs in control subjects (n =  21) and subjects with Parkinson disease (PD, n =  27)53 (Table 
S2). Due to high levels of noise and weak community structure (Fig. 5A), apparent communities of brain 
regions may easily be driven by clustering parameters or data artifacts. Therefore, we apply SpeakEasy to 
the average control and PD rs-fMRI connectivity matrices 1000 times, to quantify the stability of each 
cluster through co-occurrence matrices (Fig.  5B). For instance, in control subjects, the community of 
temporal areas is very stable (has high average co-occurrence) while the cluster of parietal areas is less 
stable. We then use a permutation test to identify communities of brain regions that change their mem-
bership between control and PD groups (see Supplementary Materials).

SLH-
C,w/
pre-

dicted 
cluster 
# (2)

ALH-
C,w/
pre-

dicted 
cluster 
# (2)

CLH-
C,w/
pre-

dicted 
cluster 
# (2)

SLHC, 
w/true 
# tier-1 
clusters 

(15)

ALHC, 
w/true 
# tier-1 
clusters 

(15)

CLHC, 
w/true 
# tier-1 
clusters 

(15)

SLHC, 
w/true 
# tier-2 
clusters 

(23)

ALHC, 
w/true 
# tier-2 
clusters 

(23)

CLHC, 
w/true # 
of tier-2 
clusters 

(23)

Speak-
Easy 

primary 
clusters

Speak-
Easy 
sec-

ondary 
clusters

cell 
class (T 
cell, B 

cell etc)

tissue 
of 

origin

cell 
type+−
tissue of 

origin

SLHC,w/
predicted 
cluster # 
(2)

1 0.0305 0.0573 0.3463 0.2075 0.0992 0.2133 0.1877 0.1764 0.264 0.0676 0.0698 0.0466 0.0829

ALHC,w/
predicted 
cluster # 
(2)

0.0305 1 0.4087 0.193 0.5373 0.4803 0.5522 0.486 0.4436 0.4769 0.3075 0.4158 0.2802 0.3813

CLHC,w/
predicted 
cluster # 
(2)

0.0573 0.4087 1 0.1402 0.4871 0.5189 0.4162 0.5101 0.4792 0.2844 0.2328 0.3291 0.2049 0.3153

SLHC, w/
true # of 
tier-1 clus-
ters (15)

0.3463 0.193 0.1402 1 0.4809 0.3305 0.6158 0.4862 0.3765 0.2494 0.3262 0.343 0.3147 0.3888

ALHC, w/
true # of 
tier-1 clus-
ters (15)

0.2075 0.5373 0.4871 0.4809 1 0.7836 0.7859 0.9045 0.7798 0.6381 0.5993 0.6752 0.4893 0.6733

CLHC, w/
true # of 
tier-1 clus-
ters (15)

0.0992 0.4803 0.5189 0.3305 0.7836 1 0.6724 0.8258 0.9236 0.5455 0.5914 0.6712 0.5094 0.678

SLHC, w/
true # of 
tier-2 clus-
ters (23)

0.2133 0.5522 0.4162 0.6158 0.7859 0.6724 1 0.8056 0.6808 0.5608 0.5709 0.6156 0.5554 0.6635

ALHC, w/
true # of 
tier-2 clus-
ters (23)

0.1877 0.486 0.5101 0.4862 0.9045 0.8258 0.8056 1 0.8316 0.5921 0.6259 0.6979 0.5575 0.7255

CLHC, w/
true # of 
tier-2 clus-
ters (23)

0.1764 0.4436 0.4792 0.3765 0.7798 0.9236 0.6808 0.8316 1 0.5602 0.6422 0.7312 0.5459 0.73

SpeakEasy 
primary 
clusters

0.264 0.4769 0.2844 0.2494 0.6381 0.5455 0.5608 0.5921 0.5602 1 0.4012 0.4867 0.3169 0.4885

SpeakEasy 
secondary 
clusters

0.0676 0.3075 0.2328 0.3262 0.5993 0.5914 0.5709 0.6259 0.6422 0.4012 1 0.7607 0.5485 0.7765

cell class (T 
cell, B cell 
etc)

0.0698 0.4158 0.3291 0.343 0.6752 0.6712 0.6156 0.6979 0.7312 0.4867 0.7607 1 0.5192 0.8334

tissue of 
origin 0.0466 0.2802 0.2049 0.3147 0.4893 0.5094 0.5554 0.5575 0.5459 0.3169 0.5485 0.5192 1 0.8099

cell 
type+ tissue 
of origin

0.0829 0.3813 0.3153 0.3888 0.6733 0.678 0.6635 0.7255 0.73 0.4885 0.7765 0.8334 0.8099 1

Table 4.  Comparison of clusters and subclusters of gene expression vectors from sorted cell populations 
to canonical families of mouse immune cell-types. Table values consist of normalized mutual information 
(NMI) between predicted and canonical protein complexes, for hierarchical clustering methods with various 
levels of linkage and numbers of clusters. SLHC: single-linkage hierarchical clustering; ALHC: average-
linkage hierarchical clustering; CLHC: complete-linkage hierarchical clustering.
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Communities identified in control and PD groups contain biologically similar sets of brain regions 
(quantified in Table S3), but specific communities alter their membership significantly in PD. Using 
clusters from control subjects as a frame of reference, we observe both significant changes in community 
size and inter-community connectivity (see Supplementary Materials). A cluster comprised of (predom-
inantly) temporal cortex ROIs showed the largest drop (− 27%) in average co-occurrence among its 
members in PD (p< 0.001). Specifically, the temporal cluster disintegrated in PD, with its area-members 
joining different communities (Fig.  5B). In PD subjects, the putamen and thalamus regions form an 
independent cluster in PD that is not observed in the control subjects, wherein those regions are part of 
the third largest cluster that is composed of temporal and occipital locations regions. Comparing these 
results to the alternative clustering method, Infomap54, which has been used previously with fMRI data55, 
show that method is sensitive to arbitrary link thresholds that it requires (see Supplementary Materials 
and Table S3). This sensitivity to parameter settings observed for InfoMap, is especially deleterious for 
noisy networks, such as those extracted from fMRI data. This situation, which likely leads to unstable 
or irreproducible clusters, can be avoided by using SpeakEasy to both generate robust results and to 
quantify the stability of each cluster, as we have demonstrated (Fig. 5).

Figure 5. Shifts within and between resting-state brain communities in Parkinson disease. (A) Raw 
correlation matrices between resting state brain activity from control and Parkinson disease cohorts. Dashed 
lines indicate clusters identified by SpeakEasy from control-state data. Order of brain regions is identical in 
all matrices (reflects control-state clusters). (B) Co-occurrence matrices for controls and Parkinson disease 
cohorts. Entries in co-occurrence matrices count the number of times nodes (i,j) are found together in 100 
replicated clustering results. (Inset) Semi-circles are scaled by volume to cluster size in control data. The 
difference in size of the corresponding lower semi-circles illustrates the change in average co-occurrence for 
each control-state cluster. Thus smaller semi-circles in disease (lower half) denote loss of coherence among 
members of a particular cluster. Text in semi-circles summarizes the most common regional characteristic of 
each cluster.
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Discussion
Biological communities are a common feature of biological networks9,10 and are associated with execu-
tion of various cellular and molecular functions12,14,15,56. Therefore, identifying these communities with 
clustering methods is often the first step in understanding biological datasets. An ideal clustering algo-
rithm should identify correct clusters in a synthetic setting and have excellent modularity results when 
true communities are unknown. Moreover, it should run in a reasonable time on large networks using 
standard hardware and without the need to manually “tune” method parameters for good results. When 
applied to biological networks, it should function well regardless of the type of data or particular net-
work properties of the dataset. Finally these results should be robust and not driven by noise or method 
parameters. The performance of SpeakEasy on comprehensive biological tests indicates is fulfills these 
criteria.

Using a wide range of networks (Table 2) SpeakEasy produces higher modularity density scores than 
the best performing overlapping clustering method to date25,35. It has excellent absolute and relative 
performance on the LFR benchmarks (Fig.  2), scales well and can quickly cluster networks with hun-
dreds of thousands of nodes on a typical laptop (Table 1 and Supplementary Materials). When applied 
to biological networks generated by distinct experimental methods, SpeakEasy detects robust, plausible, 
well-validated clusters (Figs 3–5, Tables 3–4, Supplementary Materials). Collectively these results point 
to future potential for robust disjoint and overlapping clustering in related applications.

The extent to which the performance of SpeakEasy has a practical effect on biological results can be 
observed by comparisons to popular methods, in situations where the true biological communities are 
known or when they can be estimated. For instance, in the application of identifying groups of similar 
cell types, standard hierarchical methods generally have lower concordance with the true groups than 
does SpeakEasy (Table 4). This is the case even when hierarchical methods are provided with the correct 
number of clusters – which is rarely known in advance. InfoMap has previously been used to identify 
clusters of brain regions in fMRI data, but application to a similar dataset here indicates such results can 
be sensitive to clustering parameter settings (Table S3). Sometimes the stability of a specific cluster, rather 
than the overall clustering, is a practical concern in designing biological experiments. It is possible to 
estimate the stability of each cluster provided by SpeakEasy (Fig. 5B). Orthogonal data sources can also 
be used to quantify the goodness of specific clusters. For instance, we apply gene ontology enrichment 
tests to each cluster detected by SpeakEasy and an alternative algorithm (WGCNA), when applied to 
several coexpression datasets. The overall extent and significance of the enriched clusters is greater than 
or equal to those for the alternative WGCNA. Across all comparisons to popular methods applied to 
real biological datasets, SpeakEasy shows practically relevant advantages in cluster detection, due to a 
stable consensus approach.

The SpeakEasy algorithm could potentially be improved by changing how node labels are updated. 
Currently, nodes are updated to reflect the single most unexpected label among their neighbors. However, 
each node could be simultaneously characterized by multiple unexpected labels. This might aid in the 
identification of multi-community nodes or completely nested networks. In addition, binomial or mul-
tinomial tests may provide more accurate metrics for the unexpectedness of a given label. However, 
this altered label selection would not extend easily to weighted networks or networks with negative link 
weights. Selecting an updated label from a randomly chosen subset of inputs could improve results, as 
analogous improvements have been observed in Bayesian network inference when nodes have greater 
freedom to reconfigure their local network57. With these potential modifications, care must be taken to 
ensure that the network still converges to a clustered solution and does not become chaotic. SpeakEasy 
could also be improved by altering the consensus clustering routine used to identify the final partition 
and multi-community nodes. This consensus clustering step is completely separable from the label prop-
agation process. Therefore, improvements to consensus clustering method could improve the overall 
results of SpeakEasy. An ideal consensus clustering method would quickly refine the structure of all 
of the clusters, using all partitions and output disjoint or overlapping clusters. However, few available 
techniques meet these criteria and consensus cluster methods are often slower than primary clustering 
methods18,58,59.

While SpeakEasy shows top performance among other available methods on multiple benchmarks 
and biological datasets, some alternative algorithms produce more accurate results for high Om values 
on the LFR benchmarks35. However, the exact structure of a network is typically unknown in advance of 
clustering. Therefore, the generally excellent performance of SpeakEasy across many simulated and real 
networks indicates it will likely produce useful results on many datasets in the future.

Methods
Synthetic network benchmarks. To robustly measure the ability of SpeakEasy to recover true clus-
ters from a range of network structures in the LFR benchmarks, we vary network characteristics (Fig. 2, 
Figure S1) including number of nodes, density of connections, distribution of cluster sizes, cluster sepa-
ration and number of overlapping communities (see Supplementary Materials).

Algorithm overview. An implementation of the SpeakEasy algorithm is provided free for 
non-commercial use here: http://www.cs.rpi.edu/~szymansk/SpeakEasy and it is also presented in 

http://www.cs.rpi.edu/~szymansk/SpeakEasy
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pseudo-code (see Supplementary Materials). In summary, initially each node is assigned a random 
unique label. Then for some small number of iterations (usually less than 30), each node updates its 
status to the label found among nodes connected to it which has the greatest specificity, i.e. the label 
with the greatest difference between the actual and the expected frequency (Fig. 1 and Supplementary 
Materials). Positively or negatively-weighted links between nodes (often produced when clustering 
correlation-based networks) are easily incorporated into SpeakEasy, as they provide relative increases 
or decreases in the popularity of a particular label. The label updating step is performed simultaneously 
for all nodes. Although there is the potential for oscillating states to emerge with a simultaneous update 
step, in practice this is not observed in SpeakEasy. Cluster accuracy improves when labels from the last 
several time-steps are included in the calculation of expected and actual labels. However, initially the 
network has no history of labels, so we create an artificial buffer of random neighboring labels. This 
buffer prevents the algorithm from becoming trapped in an early equilibrium, and also provides unique 
initial conditions, which are useful when clustering the same dataset multiple times.

Defining disjoint and overlapping communities. Stochastic clustering algorithms such as 
SpeakEasy can generate many partitions (sets of clusters) from repeated runs with different initial con-
ditions. The ability to generate many partitions is useful because it can quantify the stability of each 
cluster (Fig. 5B). It is also useful in identifying multi-community nodes. We identify such nodes as those 
which alternate between two stable communities, when looking across many partitions (example shown 
in Fig. 1: node tagged with red and orange labels). However, combining multiple partitions to identify 
stable final clusters (consensus clustering) and to identify multi-community nodes is a challenging math-
ematical process, potentially even more difficult and computationally intensive than clustering individual 
elements18,58,59. While many consensus clustering techniques attempt to identify the optimal partition, 
and to use that as the consensus clustering result, we choose to define a final set of clusters in a way 
that is representative of the distribution of partitions. Specifically, the partition with the highest average 
adjusted Rand index (ARI) among all other partitions is selected as the representative partition. Clusters 
identified in this way are likely to be robust, because spurious partitions will have lower ARI scores with 
most other partitions. Multi-community nodes are selected as nodes which co-occur with more than one 
of the final clusters with greater than a user-selected frequency (see Supplementary Materials).
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