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The ongoing coronavirus disease 2019 (COVID-19) pandemic has wreaked
havoc worldwide with millions of lives claimed, human travel restricted
and economic development halted. Leveraging city-level mobility and case
data, our analysis shows that the spatial dissemination of COVID-19 can
be well explained by a local diffusion process in the mobility network
rather than a global diffusion process, indicating the effectiveness of the
implemented disease prevention and control measures. Based on the con-
structed case prediction model, it is estimated that there could be distinct
social consequences if the COVID-19 outbreak happened in different areas.
During the epidemic control period, human mobility experienced substan-
tial reductions and the mobility network underwent remarkable local and
global structural changes toward containing the spread of COVID-19. Our
work has important implications for the mitigation of disease and the
evaluation of the socio-economic consequences of COVID-19 on society.
1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused
coronavirus disease 2019 (COVID-19), was identified in Wuhan (the provincial
capital of Hubei province) in December 2019 and then diffused across mainland
China, coinciding with mass human migration during the Spring Festival
period [1,2]. Given the migration scale and the position of Wuhan in the
national transportation network, combating the dissemination of SARS-CoV-2
became urgent but very challenging.

As the Lunar New Year approached, a series of disease prevention and con-
trol measures were implemented, which effectively contained the evolution of
the COVID-19 outbreak in early 2020 [2–5]. For example, people were encour-
aged to stay at home in a 14-day nationwide epidemic control period with the
coming of the Lunar New Year. After 9 February 2020, the orderly economic
reopening was enabled in most areas due to the notably positive momentum
in epidemic control.

Human movements are thought to play a crucial role in shaping the
spatio-temporal transmission of infectious diseases [6–19]. To this end, a
wealth of studies has been dedicated to investigating the relationship
between human mobility and COVID-19 spreading using statistical analysis
[9–11,14,18,20–23] and epidemiological modelling [3,16,17,24,25]. In this
paper, we complement these studies by addressing the spatial spread of
COVID-19 from the view of network diffusion. Specifically, using human
mobility and case data across more than 360 cities in mainland China, we
construct a national human mobility network and assess how the spatial disse-
mination of COVID-19 is associated with the mobility patterns and what could
it be if the COVID-19 outbreak had occurred in different areas. Our analysis

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0662&domain=pdf&date_stamp=2022-02-16
mailto:j.zhu@cityu.edu.hk
mailto:xfwang@sjtu.edu.cn
https://doi.org/10.6084/m9.figshare.c.5832971
https://doi.org/10.6084/m9.figshare.c.5832971
http://orcid.org/
http://orcid.org/0000-0002-3109-8077
https://orcid.org/0000-0001-6173-6941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210662

2
suggests that the spatial dissemination of COVID-19 in main-
land China can be well explained by the human flow from
Wuhan and the city population, which constitutes a local dif-
fusion process in the mobility network, rather than a global
diffusion process, where cities located at central positions
are likely to have more cases due to travels of the infected
people. This also indicates the effectiveness of the
implemented disease prevention and control measures,
where most of the infected people were quarantined or iso-
lated during the epidemic control period, thus largely
preventing further transmission to other areas. Based on the
gained insights, a simple case prediction model is then con-
structed to estimate potential social consequences if the
outbreak occurred in different areas. The estimation suggests
that the place that the outbreak occurred would play an
important role in shaping the spatial prevalence of
COVID-19.

‘The COVID-19 pandemic is far more than a health crisis:
it is affecting societies and economies at their core’ [26]. The
implemented disease prevention and control measures not
only significantly changed the course of COVID-19 spread-
ing, but also triggered substantial changes in human
mobility and forced re-evaluation of social and economic
development [26–30]. Although several valuable attempts
have been devoted to this field [27–29,31–37], there is still
an immense shortage of empirical evaluation of the socio-
economic impacts of COVID-19 on society. Based on the col-
lected human mobility data, this paper further presents an
empirical assessment of the social changes in response to
COVID-19. Specifically, we observe a long-lasting reduction
of mass migration, where human movements were reduced
substantially during the epidemic control period and steadily
resumed after the reopening. The human mobility network
experienced striking structural changes as well, with the aver-
age path length increasing drastically while the average
degree decreased substantially during the epidemic control
period. As the human mobility network provides the primary
pathway along which infectious diseases were transmitted
from one city to another, these significant social changes
would in turn contribute a lot to combating the spread of
COVID-19 [24,28,38]. Our study helps to understand the
spatial dissemination of COVID-19 and could shed light on
the modelling of disease spread and the evaluation of
socio-economic consequences in the post-epidemic period.
2. Results
2.1. Human mobility network
The humanmobility datawere collected fromBaiduMigration
platform [39], which is curated by the Chinese search engine
Baidu based on its location-based services. This platform pre-
sents relative daily human movements (depicted by the Baidu
Migration Index) rather than the exact number of travellers
across cities and provinces in mainland China. We collected
the human flow data of 366 cities at the municipal level,
which cover most of the areas inmainland China. The national
human mobility network is then constructed based on the
human movements across cities (see Methods and electronic
supplementary material for details).

Figure 1a illustrates the aggregated human mobility net-
work from 1 January 2020 to 23 January 2020, with nodes
representing cities and edges representing human flows
among them. Cities are placed according to their geographi-
cal coordinates, and node and label sizes are proportional to
the weighted degree of each city in the constructed mobility
network. Cities in Hubei province and the human migration
from them are highlighted in colour. The corresponding
human migration data are further presented in figure 1b,
where cities in the same province are placed together and
darker colours indicate larger flow values of human
migration. For ease of visualization, only province names
are shown, and the provincial capitals appear first in each
provincial block. As shown in the figure, most of the large
values are condensed around the diagonal in the migration
matrix, which may suggest a clustered structure of human
mobility where human movements primarily circulate from
one city to another in the same province.

To contain the spread of COVID-19, Wuhan was put on
lockdown on 23 January 2020 (2 days before the upcoming
Lunar New Year). Shortly, similar epidemic control measures
were also implemented in many other cities in Hubei province.
As shown in figure 1e, the lockdown drastically reduced popu-
lation flow fromWuhan to other areas. For example, compared
with last year (2019 in lunar calendar) human migration from
Wuhan dropped about 75% on the first day (25 January 2020)
and 90% on the third day (27 January 2020) of the Lunar New
Year. Figure 1c,d presents two snapshots of the daily human
mobility network before (16 January 2020) and after (26 January
2020) the lockdown. Clearly, the implemented epidemic control
measures had effectively cut off the social connections between
Hubei and other areas.
2.2. The spatial dissemination of COVID-19
Catalysed by the annual Spring Festival Travel Rush (which
involves as many as three billion trips in a 40-day period in
2019) and the improved clinical testing capacity, the number
of confirmed COVID-19 cases was escalating with the arrival
of the Lunar New Year (figure 2a). Consistent with some
previous studies [9–11,18,23], we find that the spatial
prevalence of COVID-19 in mainland China can be well
explained (measured by R2) by the human flow from
Wuhan (1–23 January 2020) (figure 2b). For a given date, the
R2-value is obtained by a univariate ordinary least squares
(OLS) regression using the number of cumulative cases (log-
transformed) on that day as a function of human flow from
Wuhan (log-transformed) (see electronic supplementary
material, Note 2 for further details). Specially, we achieve a
R2-value of approximately 0.8 since 31 January 2020.

We further adopt a multivariate regression model
and incorporate more city-specific factors in the analysis,
including the global centrality of a city in the mobility network
(measured by Pagerank [40,41]), city population, the spatial
distance to Wuhan, intra-city activity intensity (provided by
Baidu) and city tier. From a network perspective, human
flow from Wuhan captures a local diffusion process of
COVID-19 from Wuhan to neighbouring areas in the mobility
network, while Pagerank would denote a global network
diffusion process that involves multi-step transmissions
across areas (electronic supplementary material, Note 2,
figure S3). Therefore, the direct comparison between human
flow fromWuhan and the global centrality of a city (Pagerank)
would be able to answer the following question: which
diffusion process dominates the spatial dissemination of
COVID-19, local or global network diffusion? Using the
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Figure 1. Human mobility network. (a) Human mobility network depicted by Baidu Migration. Node and label sizes are proportional to the weighted degree of each city in
the mobility network, and edge width is proportional to the volume of human movements. (b) Heat map of the human mobility data corresponding to (a), with cities in the
same province (shown in green) placed together. For ease of visualization, the raw Baidu Migration Index is multiplied by 100 and then log-transformed by ln(x + 1).
(c) Human mobility network of Hubei (coloured in orange with Wuhan highlighted in red) and nearby regions on 16 January 2020. (d ) Same as (c) but on 26 January
2020. (e) Outflow index of Wuhan in January 2020 compared with that in 2019, aligned by the Lunar New Year (which is 25 January in 2020).
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variables described above, both OLS and negative binomial
regression models are adopted in the analysis (see electronic
supplementary material for further details).

Figure 2c illustrates the estimated coefficients for each vari-
able in predicting the spatial distribution of cumulative
COVID-19 cases on 9 February 2020. Specifically, we find con-
sistent evidence that both human flow from Wuhan and the
city population act as significant and positive predictors (p <
0.001) in the case prediction (figure 2c). In other words, cities
with larger volumes of human migration from Wuhan and
more of the population are likely to have more confirmed
cases. More importantly, classic complex network spreading
theory would hypothesize that cities located at central pos-
itions in the mobility network are generally vulnerable to
infectious diseases. However, our study reveals that although
the global network centrality of a city (measured by Pagerank)
is positively correlated with the number of confirmed cases
(Spearman’s rs = 0.6698, p < 0.001), once the human flow from
Wuhanand the city population are controlled in the regression,
the positive role of the global network centrality in the predic-
tion of cumulative COVID-19 cases disappears (figure 2c and
electronic supplementary material, Note 2).
The finding suggests that the spatial dissemination of
COVID-19 in mainland China can be well explained by a
local network diffusion process, which goes only one step
further from the outbreak area in the mobility network,
rather than a global network diffusion process. It also implies
the effectiveness of the implemented control measures where
most of the infected people were quarantined and isolated
during the epidemic control period, thereby largely prevent-
ing further transmission to other areas. In other words,
without effective control measures, a global network
diffusion process of COVID-19 may be uncovered, and cities
located at central positions may have many more people
infected due to the migration of the infected across areas.
2.3. COVID-19 outbreak in different areas
Based on the insights gained above, we estimate what would
have happened if the COVID-19 outbreak had occurred in
different areas. We focus on several key factors that help to
predict the prevalence of COVID-19, including human flow
from and the distance to the outbreak city, city population
and intra-city activity intensity. Figure 3a presents the



(a) (c)

(b)

human flow from
Wuhan (log)

Pagerank (log)

population (log)

distance to
Wuhan (log)

intra-city activity

first-tier city

second-tier city

third-tier city

fourth-tier city

–0.5 0.5 1.00
coefficient1–24 1–29 2–3 2–132–8 2–18 2–23 2–28 3–4 3–143–9

OLS moodel
negative binomial model

cities outside Hubei

cities in Hubei\Wuhan

Wuhan

80 K

60 K

40 K

20 K

0

co
nf

ir
m

ed
 c

as
es

R
2  

(b
y 

hu
m

an
 f

lo
w

)

0.9

0.8

0.7

0.6

0.5

0.4

0

Figure 2. Spatial spread of COVID-19. (a) Daily cumulative COVID-19 cases. Cities outside of Hubei province are shown in dark blue, cities inside Hubei province
(excluding Wuhan) are shown in light blue, and the city of Wuhan is shown in grey. (b) Human flow from Wuhan explains the spatial distribution of COVID-19 cases.
The R2-value in each day is obtained by a univariate OLS regression using the number of cumulative cases (log-transformed) of each city on that day as a function of
the human flow from Wuhan (log-transformed). (c) Estimated coefficients from multiple OLS regression (shown in circles) and negative binomial regression (shown
in squares) are plotted, with error bars indicating 95% confidence intervals. Estimates whose 95% confidence intervals do not cross 0 are coloured.

Wuhan
Beijing
Shanghai
Guangzhou
Shenzhen

Guangzhou
Beijing

Shanghai
Shenzhen

Suzhou
Chengdu

Hangzhou
Zhengzhou

Xi'an
Nanjing

Changsha
Tianjin

Chongqing
Hefei

Shenyang
Nanchang

Zhengzhou
Nanjing
Changsha
Shenyang

Wuhan
lockdown

Lunar
New Year

estimated cases

+88.60%
+88.15%

+75.32%
+73.71%

+43.10%
+31.24%

+18.06%
+12.98%

–2.46%
–7.49%
–8.90%
–10.88%

–30.48%
–22.47%

–47.79%
–52.12%

30

25

20

15

10

5

0
1–1 1–6 1–11 1–16 1–21 1–26 1–31

0 10 K 20 K 30 K 40 K 50 K 60 K

ou
tf

lo
w

 in
de

x

(a) (b)

ci
ty

 o
f 

C
O

V
ID

-1
9 

ou
tb

re
ak

Figure 3. COVID-19 outbreak in different areas. (a) Outflow index of nine example cities. (b) Estimated cumulative COVID-19 cases if the outbreak happened in
different areas. The vertical dashed line indicates the actual number of confirmed cases (excluding Wuhan) on 9 February 2020 (serves as the baseline), and the
number after each bar indicates the estimated relative change of confirmed cases compared with the baseline.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210662

4

outflow index of nine example cities in January 2020, where
some cities (e.g. Beijing, Shanghai and Guangzhou) had
higher population outflow than Wuhan while some
others (e.g. Changsha and Shenyang) had relatively
lower population outflow. For the outbreak in Wuhan, we
construct a negative binomial regression model with the
cumulative number of cases on 9 February 2020 set as the
dependent variable and the above key factors set as the inde-
pendent variables. After that, we obtain the spatial spread
pattern of COVID-19 depicted by these factors. Suppose
that the control measures and the spatial spread pattern
remain the same. Based on the constructed model, the spatial
prevalence of COVID-19 can be roughly estimated when
the outbreak area changes (see electronic supplementary
material, Note 3 for further details).

Figure 3b illustrates the estimated cumulative cases
(excluding the outbreak area) as of 9 February 2020, varying
with the outbreak area. The vertical dashed line indicates the
actual cumulative number of confirmed cases in cities other
than Wuhan on 9 February 2020 (which is 23 236) and
serves as the baseline. Compared with the baseline, the rela-
tive change of cumulative cases for each outbreak area is
shown as a percentage. As shown in the figure, if the
COVID-19 outbreak happened in cities like Beijing and
Guangzhou, the number of confirmed cases could be nearly
doubled, but if the outbreak occurred in cities like Shenyang
and Nanchang, the number of confirmed cases could be
reduced by nearly half. This also suggests that the place
that the outbreak occurred could play an important role in
the spatial dissemination of COVID-19, which may have
meaningful implications for the prevention of infectious dis-
eases in the future.
2.4. Social changes
After the implementation of a series of epidemic control
measures, human mobility underwent striking changes.
Usually, we would expect a recovery of human movements
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from the second day of the Lunar New Year. However, due to
the outbreak of COVID-19, the national migration witnessed
drastic and long-lasting shrinkage from the Lunar New Year
(figure 4a). For example, on the sixth day of the Lunar New
Year (30 January 2020), the national migration scale dropped
by nearly three quarters compared with last year. Specifically,
instead of a travel surge immediately after the Lunar New
Year, we observe that the national migration scale gradually
decreased until the coming of the Lantern Festival (close to
the reopening). After the economic reopening was put in
force orderly, the national migration steadily resumed
afterwards.

We also observe remarkable local and global structural
changes of the mobility network (figure 4b). Firstly, after
the implementation of a series of epidemic control measures,
the average degree of the mobility network endured notable
reductions before the economic reopening. This local struc-
tural change would reduce the connectivity of the mobility
network and was able to prevent the spread of virus across
areas. Secondly, the average path length of the mobility net-
work experienced substantial increases during the epidemic
control period. This global structural change would largely
reduce the reachability of each area in the mobility network
and was able to delay the spread of virus from one place to
another. Taken together, these mobility changes during the
control period would, in turn, contribute to the mitigation
of infectious diseases [28,42]. After the reopening, especially
after 15 February 2020, we observe a steady recovery of the
network connectivity and reachability, which indicates the
lifting of travel restrictions across the country.
3. Discussion
The COVID-19 pandemic is a serious crisis and a daunting
challenge for the entire world. In this paper, our analysis
shows that the spatial dissemination of COVID-19 in main-
land China can be well explained by a local network
diffusion process rather than a global network diffusion pro-
cess, which implies the effectiveness of the implemented
epidemic control measures. It is estimated that there could
be very different social consequences if the COVID-19 out-
break area varies, which may have meaningful implications
for future epidemic prevention and control. We also note a
remarkable reduction in human movements during the epi-
demic control period, with significant structural changes
to the human mobility network toward containing the
spread of COVID-19. In summary, our work contributes to
a further understanding of how human mobility data and
network analysis can be used to address the spread of infec-
tious diseases and paves a way for the application of data
analytics in preventing and containing an epidemic.

Our work has several limitations. First, we emphasize
that most of our conclusions are drawn upon correlation
studies based on observational data, thereby not reflecting
causality sufficiently. Second, the mobility data we adopted
here are collected from Baidu based on its location-based ser-
vices, but we are not able to incorporate the movements of
those without such services in the current study. Other
sources of mobility data are thus needed to enhance the
analysis. Third, due to the lack of accurate timestamps of
human movements, we do not exactly know the departure
and arrival time of each travel trajectory. Therefore, there
may exist travel delay issues in the human mobility data.
For example, some people may depart from a city in 1 day
but arrive at the destination in the following day. In addition,
this paper mainly investigates the spatial dissemination of
COVID-19 in mainland China, but whether the proposed
approach applies in other areas or other kinds of infectious
diseases still needs further exploration in the future.
4. Methods
4.1. Data
The human mobility data were sourced from the Baidu
Migration platform [39] based on Baidu’s location-based services.
As the dominant search engine in China, Baidu has nearly 189
million daily active users and responses to more than 120 billion
daily location service requests. Similar to previous studies [3,10],
the mobility data do not indicate the absolute number of
recorded trips but reflect the relative movements of people
using Baidu’s location-based services. We collected daily inter-
and intra-city mobility data across 366 cities from 1 January
to 15 March in 2020 and the corresponding period in 2019
(aligned by the Lunar New Year). For inter-city activity in
2019, only aggregated inflow and outflow data were provided
for each city. The COVID-19 data were obtained from the daily
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case report released by the Health Commission of each province
and NetEase News [43], a professional media platform that pro-
vides timely updates and serves as a supplementary source in
our study. The population of each city was collected from the
National Economic and Social Development Statistical Bulletin
2019. The spatial distance between two cities was obtained by
their geodesic distance based on their latitude and longitude
geographical coordinates.

4.2. Network analysis
We adopt Pagerank [40,41], a classic global network centrality
measure, to quantify how important a city is located in the
mobility network. In practice, the human flow volume between
two cities is used as the weight in the calculation of Pagerank.
The average degree measures the local connectivity of the mobi-
lity network and can be simply calculated using the average
number of incoming and outgoing edges of each node in the
mobility network. In the context of human migration, two
cities are said to be close to each other if they share a large
volume of human flow [28]. As such, we use the inverse of the
human flow volume to denote the ‘network distance’ of two
cities along each edge, based on which the shortest path length
from one city to another is calculated. The average path length
of the mobility network is obtained by averaging the shortest
path length of all pairs of nodes. In practice, these network
metrics were computed using Python package networkx. In
addition, given a vector V comprising a list of quantities, the
element of V is normalized as Vi = (Vi−Vmin)/(Vmax−Vmin),
where Vmax and Vmin are the maximum and minimum values
of V, respectively.
4.3. Statistical analysis
Most of the data processing was done by Python package
pandas and R package dplyr. Spearman rank correlation was
performed by Python package scipy; OLS regression analysis
was performed by Python package statsmodel and R function
lm; negative binomial regression was performed by R package
MASS and Python package statsmodel. Further details on
statistical analysis can be found in electronic supplementary
material.
Data accessibility. The raw human mobility data can be obtained from
Baidu Migration: https://qianxi.baidu.com/2020/. The processed
data as well as the developed codes in the study can be found in
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spatial_COVID_19.
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