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Measurement bias has been defined as a violation of measurement invariance. Potential
violators—variables that possibly violate measurement invariance—can be investigated
through restricted factor analysis (RFA). The purpose of the present paper is to investigate
a Bayesian approach to estimate RFA models with interaction effects, in order to detect
uniform and nonuniform measurement bias. Because modeling nonuniform bias requires
an interaction term, it is more complicated than modeling uniform bias. The Bayesian
approach seems especially suited for such complex models. In a simulation study we vary
the type of bias (uniform, nonuniform), the type of violator (observed continuous, observed
dichotomous, latent continuous), and the correlation between the trait and the violator
(0.0, 0.5). For each condition, 100 sets of data are generated and analyzed. We examine
the accuracy of the parameter estimates and the performance of two bias detection
procedures, based on the DIC fit statistic, in Bayesian RFA. Results show that the accuracy
of the estimated parameters is satisfactory. Bias detection rates are high in all conditions
with an observed violator, and still satisfactory in all other conditions.

Keywords: Bayesian structural equation modeling, measurement invariance, uniform bias, nonuniform bias,

interaction effects

1. INTRODUCTION
Measurement bias research examines whether different respon-
dents show differences in response behavior to test items. In the
presence of measurement bias, systematic differences between
observed test scores do not validly represent differences in the
trait(s) that the test is supposed to measure. Measurement bias is
formally defined as a violation of measurement invariance (Oort,
1992, after Mellenbergh, 1989). A test is measurement invari-
ant with respect to V , if the following conditional independence
holds:

f1(X|T = t, V = v) = f2(X|T = t), (1)

where X is a set of observed variables, T the trait(s) of interest
measured by X, and V a set of variable(s) other than T, which
possibly violates measurement invariance; function f1 is the con-
ditional distribution of X given values of t and v, and f2 is the
conditional distribution of X given t. If conditional independence
does not hold (i.e., f1 �= f2), the measurement of T by X is said to
be biased with respect to V . This is a general definition of mea-
surement bias in the sense that T and V may be measured on
any measurement level (i.e., nominal, ordinal, interval, or ratio),
and their mutual relationships may be linear or non-linear. In
addition, the violator V may be observed or latent.

Structural equation modeling (SEM) offers a flexible frame-
work to test for measurement bias. If the violator is an observed
discrete variable, e.g., indicating group membership, measure-
ment bias is typically investigated through multigroup factor
analysis (MGFA; Meredith, 1993). In MGFA, differences across
groups in intercepts indicate uniform bias (i.e., the size of bias

is constant across the trait levels) and differences across groups
in factor loadings indicate nonuniform bias (i.e., the size of bias
varies with the trait levels). Because MGFA requires an observed
discrete violator, its use is rather restricted. In the case of a contin-
uous violator, MGFA is sometimes applied using the categorized
version of the violator. However, this practice is to be discour-
aged, because of the known negative consequences of categorizing
variables (e.g., MacCallum et al., 2002; Barendse et al., 2012),
and because an attractive alternative is available. This very gener-
ally applicable alternative is restricted factor analysis (RFA; Oort,
1992, 1998). The advantages of RFA over MGFA are that RFA can
assess measurement bias with respect to any kind of violator (i.e.,
continuous or discrete, observed, or latent) and with respect to
multiple violators simultaneously.

In the linear model associated with RFA, the model for xi, a
vector with the observed scores for subject i on J variables X, with
a single violator and a single latent trait is defined as

xi = u + ati + bvi + ctivi + dei, (2)

where u is a vector of intercepts for the J observed variables,
ti and vi are the scores of subject i on the latent trait T and
the potential violator V , respectively, ei is a vector of subject i’s
scores on the standard residual factors E, and a, b, c, and d are
vectors of regression coefficients; the elements of a and d2 are
typically denoted as the loadings and residual variances, respec-
tively, and b and c express possible bias. In case V is a categorical
variable, dummy variables are used for V . If the relationships
between the potential violator and the observed variables are
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entirely explained by the indirect relationships through the latent
trait, then the observed variables are unbiased with respect to the
possible violator. A non-zero element in b indicates uniform bias,
and a non-zero element in c indicates nonuniform bias. Uniform
bias can thus be investigated by testing the direct effects of a vio-
lator on the observed variables (Oort, 1992, 1998). Non-uniform
bias can be investigated by testing the direct effect of the prod-
uct of the latent trait and the violator on the observed variables
(see Barendse et al., 2010, 2012), either by using latent moderated
structures (Klein and Moosbrugger, 2000) or by using a random
slope parametrization (Muthén and Asparouhov, 2003).

The RFA method is similar to the multiple indicator multiple
cause (MIMIC) method as described by Muthén (1989). They dif-
fer in that in the MIMIC model the violator has a causal effect on
the latent trait, whereas in RFA the two are correlated.

So far, the vast majority of the literature on testing measure-
ment bias concerns frequentist methods. Alternatively, a Bayesian
approach could be used, thereby offering the general advan-
tage that prior knowledge can be incorporated in the analysis.
Recently, the first steps were taken toward a Bayesian approach
in this context. A Bayesian MGA has been shown to prop-
erly detect bias (Lee, 2007). Further, Muthén and Asparouhov
(2012) motivate that the Bayesian approach is more suitable to
reflect substantive theories, because it allows for an approximate
parameter specification, rather than an exact one. As Muthén
and Asparouhov (2013) show, a Bayesian MGFA thus allows for
approximate measurement invariance testing. Because a Bayesian
MGFA is still restricted to cases with a single observed discrete
violator, we consider a Bayesian RFA method here. This method
is appealing, because it shares the general advantages of a Bayesian
approach, while being applicable to assess measurement bias with
respect to multiple violators simultaneously, and of any kind (i.e.,
continuous or discrete, observed or latent).

The purpose of the present paper is to examine the perfor-
mance of the Bayesian approach to estimate RFA models with
interaction effects, in order to detect uniform and nonuniform
measurement bias. An additional advantage of Bayesian RFA is
that it handles the estimation of the interaction term easier than
frequentist (maximum likelihood) RFA. In a simulation study,
we will examine the accuracy of the parameter estimates in the
Bayesian RFA, and we will compare the performance of two bias
detection procedures.

2. METHODS
Measurement bias in simulated data will be investigated with a
Bayesian version of the RFA method. In the data generation, we
vary the type of bias (none, only uniform, only nonuniform,
both uniform and nonuniform), the type of the continuous vio-
lator (observed, latent), and the correlation between the trait
and the violator (ρ(T,V) = 0.0, 0.5). In a fully crossed design
with 100 replications for each condition, this yields 4 × 2 ×
2 × 100 = 1600 simulated datasets. We additionally introduce
a dichotomized violator by performing a median split on the
observed continuous violator, and thus analyze 2400 datasets in
total. Each data set is analyzed using two different bias detection
procedures (to be explained in Section 2.4). The accuracy and effi-
ciency of the parameter estimates is assessed. The performance of

the two bias detection procedures is evaluated by examining the
proportions of true and false positives.

2.1. DATA GENERATION
Each data set consists of the observed scores of 500 subjects on 6
items with continuous response scales, and is generated accord-
ing to the linear model in Equation 2. We draw subject scores t,
v, and e from a multivariate standard normal distribution with
an identity covariance matrix in the condition with ρ = 0.0; in
the condition with ρ = 0.5, the element in the covariance matrix
associated with t and v is set to 0.500. We have chosen the value
of ρ = 0.0 as we presume that an absence of linear dependency
is the easiest condition in this respect; further we have chosen
the value of ρ = 0.5, as its corresponds to a “large correlation,”
according to Cohen’s rules of thumb (Cohen, 1988). The inter-
cepts u are set at zero, and the regression coefficients a and d
are set at 1.000, for all items. Bias is introduced in the first item
only, in such a way that the amount of bias is in line with other
bias detection studies (e.g., Oort, 1998). That is, we set param-
eter b = 0.400 to obtain uniform bias and parameter c = 0.400
to obtain nonuniform bias—the remaining elements of b and c
are fixed at zero. Table 1 gives an overview of the chosen param-
eter values for the first item. With these values, if T and V are
uncorrelated, the expected percentage of total observed item vari-
ance due to the bias is approximately 7% in conditions with only
uniform or nonuniform bias and approximately 14% in condi-
tions with both uniform and nonuniform bias. If T and V are
correlated, these percentages are 6% (in case of uniform bias),
7% (nonuniform bias), and 13% (both uniform and nonuniform
bias).

The violator can either be a continuous latent, a continuous
observed or a dichotomous observed variable. In conditions with
a continuous latent violator, we introduce three observed vari-
ables indicative of the latent violator, which follow a linear factor
model. We draw the scores on the latent violator and the residu-
als independently from a standard normal distribution, and use

Table 1 | Parameter values for 4 (type of bias) × 2 (correlation

between trait and violator) = 8 data generation conditions.

Unstandardized values of Item 1 parameters

a b c d σ 2(X )

ρ(T,V ) = 0.0

No bias 1.000 0.000 0.000 1.000 2.000
Uniform 1.000 0.400 0.000 1.000 2.160
Nonuniform 1.000 0.000 0.400 1.000 2.160
Both 1.000 0.400 0.400 1.000 2.320
ρ(T,V ) = 0.5

No bias 1.000 0.000 0.000 1.000 2.000
Uniform 1.000 0.400 0.000 1.000 2.560
Nonuniform 1.000 0.000 0.400 1.000 2.200
Both 1.000 0.400 0.400 1.000 2.760

u = 0, μ(T) = μ(V) = μ(E) = 0, σ 2(T) = σ 2(V) = σ 2(E) = 1; All values pertain to the

parameters of Item 1, which is biased in all conditions with bias; parameters of

all other items have a = 1, b = 0, c = 0, and d = 1 in all conditions. See Appendix

1 in Supplementary Material for the computation of σ 2(X).
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factor loadings equal to one. In conditions with a continuous
observed violator, we draw V from a standard normal distribu-
tion. In conditions with a dichotomous observed violator, we
perform a median split on the continuous observed violator and
conveniently choose V = −1 for one group and V = 1 for the
other group to model the interaction effects.

2.2. BAYESIAN STRUCTURAL EQUATION MODELING AND BIAS
DETECTION

Bayesian SEM to detect bias is embedded in Bayesian theory
and the associated computational procedures. Bayesian theory
combines prior information about the distributions of param-
eters (called the prior distributions) and the distributions of
the data under any SEM model (M). Let θ denote a vector of
unknown parameters that are considered to be random. As the
observed data and the parameters are random, we model the
joint probability (called the posterior distribution) as a function
of the conditional distribution of the data given the parame-
ters p(X|θ, M) and the prior distribution of the parameters p(θ).
More formally this is defined in Bayes’ rule:

p(X, θ |M) = p(X|θ, M)p(θ)

p(X)
, (3)

where p(X) normalizes the conditional distribution. As normal-
izing does not involve any model parameters, Equation 3 can be
rewritten as

p(X, θ |M) ∝ p(X|θ, M)p(θ). (4)

Equations 3 and 4 show that the posterior density function
includes sample information and prior information. If the prior
distribution of θ is so-called uninformative, the posterior density
function is proportional to the log-likelihood function. Ideally, a
closed form solution of the posterior can be obtained via inte-
gration. In practice, one simulates a sufficiently large number of
observations from the posterior distribution with Markov Chain
Monte Carlo sampling to approximate statistics such as the mean
or mode of parameters. Tanner and Wong (1987) introduced
the idea to analyze latent variables in a Bayesian context, which
is particularly useful for SEM. Latent variables are then treated
as hypothetical missing data and the posterior distribution is
analyzed on the basis of the complete data.

2.3. BAYESIAN MODEL SELECTION
In Bayesian bias detection we aim at identifying the biased item(s)
and the nature of the bias. We therefore compare competing mod-
els (i.e., models with and without parameters to account for bias)
and select the best fitting model using the deviance information
criterion (DIC; see Spiegelhalter et al., 2002). The DIC is a mea-
sure of model fit that penalizes for complexity. Under a competing
model Mk, the DIC is defined as

DICk = − 2

L

L∑

l = 1

log p(Y |θ (l)
k , Mk) + 2dk (5)

where θk is a vector of unknown parameters of dimension dk, and
{θ (l) : l = 1, . . . , L} is a sample of observations simulated from

the posterior distribution. The model with the smallest DIC has
the highest chance to predict a replicate data set.

Lee (2007) already concluded that a very small difference in
DIC values of competing models could be misleading. Also, Lunn
et al. (2009) outlines a variety of reasons that could distort the
DIC values. We therefore compare our reference model—to be
defined later—with competing models and apply two different
cut-off values, namely a strict cut-off and a liberal cut-off, to be
defined later.

2.4. MEASUREMENT BIAS DETECTION
In a model accounting for bias, we include a direct effect of the
violator on the item score to account for uniform bias and a direct
effect of the product of the trait and the violator on the item
score to account for nonuniform bias. We consider three types of
violators (latent continuous, observed continuous, and observed
dichotomous), and therefore define three related Bayesian RFA
models to model both uniform and nonuniform bias. A bias
detection model with respect to a continuous latent violator
is graphically displayed in Figure 1. To evaluate the approach,
we will examine the accuracy and efficiency of the parameter
estimates, and the performance in detecting bias with two bias
detection procedures.

2.4.1. Parameter estimates
To evaluate the accuracy and the efficiency of the parameter esti-
mates expressing uniform and nonuniform bias, we estimate for
each simulated data set the model according to Equation 2; here-
with, we fix the elements of b and c associated with items 2–6
(which are non-biased) at zero. Of each converged estimated
model, we consider for the first item the posterior distribution
of b (indicating uniform bias) and the posterior distribution of c
(indicating nonuniform bias). For each posterior distribution, we
compute its mean (denoted as θb for b and θc for c) and the Monte
Carlo standard error (denoted as se(θb) and se(θc), respectively)
using the time series standard error as implemented in CODA
(Roberts, 1996; Plummer et al., 2006).

As the accuracy measure, we compute for each condition the
estimation bias, as the average of the means of the posterior distri-
bution minus the chosen population values [i.e., (m(θb) − b) and
(m(θc) − c)]. (Throughout this paper, we shall use the notation

FIGURE 1 | Bias detection with respect to a continuous latent violator

V , TV ∗ indicates the interaction between T and V .
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m( · ) to denote a mean.) As the efficiency measure, we com-
pute for each condition the standard deviation of the means of
the posterior distribution (i.e., sd(θb) and sd(θc)). To evaluate the
Monte Carlo sampling accuracy, we compute the mean of the
time-series standard errors across the replicates [i.e., m(se(θb))
and m(se(θc))].

2.4.2. Two procedures to detect bias
In the single run procedure, we consider for each of the j (j =
1, . . . , 6) items indicative of the trait, a reference model and
compare that model to five ((j′ = 1, . . . , 6), j′ �= j) competing
models. Both the reference and competing models have parame-
ters accounting for both uniform and nonuniform bias. For each
item j, we consider the model with bias parameters for that item
as the reference model. We compare each reference model to each
of the five competing models ((j′ = 1, . . . , 6), j′ �= j), by consider-
ing each of five DIC differences, as the DIC value of the reference
model minus the DIC value of the competing models. With the
strict cut-off value, the item with bias parameters in the reference
model is indicated as biased if the associated DIC difference is
negative. With the liberal cut-off value, the DIC difference should
be smaller than −10, to flag item j as biased. The value of 10 was
chosen, as it is thought to reflect a substantial difference in model
fit (MRC Biostatistics Unit, 2006).

In the model difference procedure, we consider for each of the j
(j = 1, . . . , 6) items indicative of the trait, a reference model with
bias parameters for item j, and compare that to a nested model,
namely without any bias parameters. We apply a strict cut-off
value, considering item j to be biased whenever the DIC of the
reference model is lower than that of the nested model. With the
liberal cut-off value, item j is indicated as biased when the value
of the DIC of the reference model of item j is at least 10 lower than
that of the nested model.

For each of the two procedures, we calculate proportions of
true and false positives. A true positive is a biased item that is
correctly detected; a false positive is an unbiased item that is
incorrectly detected as biased. Proportions of true positives and
false positives are interpreted similar to power and Type I error,
respectively.

2.5. ANALYSIS
The Bayesian RFA was implemented in R (version 3.02; R Core
Team, 2013), using the packages R2OpenBUGS, BRugs, CODA
(Plummer et al., 2006) and in BUGS (version 3.2.2; Lunn et al.,
2009). All models are fitted to raw data. To estimate non-linear
effects, we employ the approach described by Lee (2007), which
partitions the latent variables into a linear and a non-linear part
with appropriate identification conditions. BUGS uses the Gibbs
sampler and the Metropolis-Hastings algorithm for efficient esti-
mation of the Bayesian RFA.

Measurement bias is detected with respect to a continuous
latent, a continuous observed and a dichotomous observed viola-
tor. Where possible, we use conjugate priors. Conjugate priors are
such that the posterior distribution is of the same family as the
prior, usually lowering the computational demands of the algo-
rithms drastically. The conjugate priors that we use for each of
these models are the normal (for the unknown mean), gamma

(for the variance), and the inverse Wishart (for the correlation
between latent variables) distributions, as these distributions lead
to good results in Bayesian SEM (Lee, 2007; Lee and Song, 2012).
We use informative priors that are based on the chosen popu-
lation values (see Table 1). The software cannot work with an
observed violator directly. As a workaround, we introduce the vio-
lator V as a latent variable with a variance very close to zero, thus
making it “practically observed.” In conditions with a dichoto-
mous observed violator, we use a prior with a strongly peaked
hyperprior for the variance of the violator. Details about the
prior elicitation are provided in Appendix 2 in Supplementary
Material. All scripts used in this paper are available from http://
www.casperalbers.nl.

The number of iterations has been decided upon using the
Raftery and Lewis diagnostic (Raftery and Lewis, 1992, 1995).
We used 4000 iterations for the burn-in phase and 8000 itera-
tions for the model estimation. For models with a latent violator
we used 21000 iterations for the model estimation, as conver-
gence appeared to be slower in these instances in a small pilot
study. For each model, we simulated three chains with differ-
ent initial values for each of the parameters. To decide on the
convergence we inspect the Gelman and Rubin’s convergence
diagnostic (Gelman and Rubin, 1992). This diagnostic compares
the within-chain and between-chain variance and a value above
1.1 is an indication of lack of convergence (Gelman et al., 2013).
Additionally, we inspected the Geweke convergence diagnostic
(Geweke, 1992), which is based on a test for equality of first
and the last part of a single Markov chain with the difference
between sample means devided by the standard errors expressed
in Z-scores.

In addition to the analysis described, we also perform a sen-
sitivity analysis in conditions with a correlated trait and vio-
lator (i.e., ρ(T,V) = 0.5), and both uniform and nonuniform
bias (i.e., Conditions 8, 16, and 24, see Table 2), to examine
to what extent our choice of the priors influences the param-
eter estimates. To study the impact of the prior inputs in the
Bayesian method, we consider the priors associated with param-
eters in the absence of bias as inaccurate priors for the bias
parameters.

3. RESULTS
After applying the Bayesian RFA to each of the 2400 data sets,
we find that the algorithm does not always converge, as indicated
by a value exceeding one on Gelman and Rubin’s convergence
diagnostic (Gelman and Rubin, 1992). Geweke’s convergence
diagnostic (Geweke, 1992) is much more conservative: it has val-
ues larger than the standard threshold value of 2 for at least one
chain (out of three) in the vast majority of the simulated data
sets, in all conditions. We therefore report convergence according
to the Gelman-Rubin diagnostic.

As shown in Tables 2–4, we encounter convergence problems
especially in conditions that contain uniform bias and a latent
violator without a correlation between the trait and the violator
and in conditions with an observed violator with a correlation
between the trait and the violator.

Non-convergence results are not further analyzed and ignored
when assessing the parameter estimates and detecting bias.
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Table 2 | Accuracy and efficiency in the Bayesian RFA.

Bias Cond. Conv. b c

m(θb) − b sd(θb) m(se(θb)) m(θc) − c sd(θc) m(se(θc))

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 0.95 0.010 0.066 0.001 −0.005 0.073 0.001

Uniform 2 0.59 0.009 0.062 0.001 0.000 0.078 0.001

Nonuniform 3 0.93 0.007 0.065 0.001 0.035 0.079 0.001

Both 4 0.65 0.024 0.065 0.001 0.031 0.087 0.001

ρ(T ,V ) = 0.5 No bias 5 0.97 −0.011 0.081 0.001 −0.004 0.059 0.001

Uniform 6 0.93 0.005 0.082 0.001 0.000 0.059 0.001

Nonuniform 7 0.96 −0.014 0.083 0.001 0.021 0.072 0.001

Both 8 0.92 0.002 0.083 0.001 0.022 0.070 0.001

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 1.00 0.006 0.054 0.001 −0.002 0.054 0.001

Uniform 10 0.91 −0.003 0.047 0.001 0.005 0.057 0.001

Nonuniform 11 0.92 0.000 0.056 0.001 0.008 0.057 0.001

Both 12 0.92 −0.008 0.059 0.001 0.015 0.051 0.001

ρ(T ,V ) = 0.5 No bias 13 0.80 −0.008 0.054 0.001 −0.006 0.047 0.001

Uniform 14 0.55 −0.006 0.068 0.001 0.008 0.053 0.001

Nonuniform 15 0.75 −0.002 0.068 0.001 0.013 0.055 0.001

Both 16 0.52 −0.004 0.063 0.001 0.006 0.046 0.001

DICHOTOMIZED OBSERVED VIOLATOR (AFTER MEDIAN SPLIT OF THE CONTINUOUS OBSERVED VIOLATOR)

ρ(T ,V ) = 0.0 No bias 17 1.00 −0.002 0.041 0.001 −0.004 0.054 0.001

Uniform 18 0.99 −0.089 0.046 0.001 0.003 0.055 0.001

Nonuniform 19 1.00 0.004 0.051 0.001 −0.071 0.063 0.001

Both 20 0.98 0.087 0.063 0.001 −0.062 0.058 0.001

ρ(T ,V ) = 0.5 No bias 21 0.94 −0.009 0.051 0.001 0.006 0.056 0.001

Uniform 22 0.71 −0.112 0.056 0.001 −0.002 0.051 0.001

Nonuniform 23 0.93 −0.004 0.055 0.001 −0.022 0.071 0.001

Both 24 0.68 −0.131 0.054 0.001 0.021 0.067 0.001

Cond., Condition; Conv., proportion of converged solutions (of 100 replicates); All summary measures of the parameter estimates are calculated over the converged

solutions only.

3.1. PARAMETER ESTIMATES
Table 2 gives the measures of accuracy and efficiency of the esti-
mated parameters that are associated with the parameters that
express uniform (i.e., parameter b) and nonuniform (i.e., param-
eter c) bias in the first item: the estimation bias (i.e., (m(θb) − b)
and (m(θc) − c), the efficiency (i.e., sd(θb) and sd(θc)), and the
Monte Carlo accuracy (i.e., m(se(θb)) and m(se(θc))).

As can be seen in Table 2, the estimation bias appears rather
low in the conditions with a continuous latent violator, both for
the parameter expressing uniform bias (i.e., b), and nonuniform
bias (i.e., c), with a maximum observed estimation bias across all
conditions of 0.035. The conditions with a continuous observed
violator show a similar pattern, with the largest estimation bias
being 0.015.

In the conditions with a dichotomized observed violator, we
observe relatively large estimation bias for, firstly, the parameter
expressing uniform bias in those conditions that include uni-
form bias (with a maximum absolute estimation bias of 0.131)
and, secondly, but to a lesser extent, the parameter expressing

nonuniform bias in those conditions that include nonuniform
bias (with a maximum absolute estimation bias of 0.071). With
a dichotomized violator, the parameters that represent bias are
underestimated.

Across all conditions, the efficiency of the parameters related to
uniform and nonuniform bias in the Bayesian RFA is reasonably
good, as indicated by the small values of the efficiency parameters
(sd(θb) and sd(θc)) (ranging from from 0.041 to 0.087). We fur-
ther note that the means of time-series standard errors are small.
We therefore conclude that the Monte Carlo accuracy is high.

3.1.1. Single run procedure to detect bias
Table 3 gives the single run procedure results; the convergence
rates, the quantile (i.e., 5, 50, and 95) values of the DIC differ-
ence between the reference model and the competing model with
the most deviating DIC value, and the proportions of true pos-
itives and false positives at the strict and the liberal DIC cut-off
values. The convergence rates in the single run procedure show
considerable variability across conditions (ranging from 0.07 to
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Table 3 | Bias detection with the single run procedure.

Cond. Conv. Biased itemsa Unbiased itemsb

� DIC TP � DIC FP

Q05 Q50 Q95 Strict Liberal Q05 Q50 Q95 Strict Liberal

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 0.73 – – – – – −10 0 0 0.304 0.014
Uniform 2 0.45 −100 −70 −42 1.000 1.000 −20 0 0 0.387 0.093
Nonuniform 3 0.67 −110 −70 −40 1.000 1.000 −20 0 0 0.382 0.063
Both 4 0.52 −185 −125 −86 1.000 1.000 −20 0 0 0.423 0.096

ρ(T ,V ) = 0.5 No bias 5 0.75 – – – – – −10 0 0 0.282 0.020
Uniform 6 0.74 −80 −50 −27 1.000 1.000 −20 0 0 0.432 0.081
Nonuniform 7 0.78 −140 −85 −40 1.000 1.000 −20 0 0 0.426 0.079
Both 8 0.75 −193 −130 −70 1.000 1.000 −20 −10 0 0.528 0.157

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 0.96 – – – – – −8 −2 0 0.776 0.016
Uniform 10 0.88 −103 −71 −50 1.000 1.000 −13 −3 0 0.748 0.093
Nonuniform 11 0.89 −110 −71 −44 1.000 1.000 −12 −3 0 0.742 0.079
Both 12 0.88 −175 −138 −93 1.000 1.000 −14 −4 0 0.764 0.143

ρ(T ,V ) = 0.5 No bias 13 0.28 – – – – – −8 −2 0 0.756 0.030
Uniform 14 0.07 −68 −52 −34 1.000 1.000 −14 −2 0 0.657 0.171
Nonuniform 15 0.18 −106 −77 −46 1.000 1.000 −12 −3 0 0.722 0.100
Both 16 0.08 −147 −124 −96 1.000 1.000 −18 −7 0 0.750 0.300

DICHOTOMIZED OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 17 0.99 – – – – – −9 −2 0 0.791 0.022
Uniform 18 0.99 −70 −45 −28 1.000 1.000 −12 −2 0 0.739 0.089
Nonuniform 19 0.99 −73 −45 −22 1.000 1.000 −11 −3 0 0.737 0.057
Both 20 0.96 −119 −88 −55 1.000 1.000 −13 −3 0 0.760 0.104

ρ(T ,V ) = 0.5 No bias 21 0.69 – – – – – −8 −2 0 0.775 0.017
Uniform 22 0.38 −56 −28 −14 1.000 0.974 −11 −3 0 0.758 0.058
Nonuniform 23 0.62 −78 −50 26 1.000 1.000 −11 −3 0 0.745 0.055
Both 24 0.32 −118 −84 −54 1.000 1.000 −16 −4 0 0.756 0.131

Cond., Condition; Conv., proportion of converged solutions; � DIC denotes the difference in DIC between the reference model and the competing model; aQuantile

DIC difference values (i.e., 05, 50, 95), and proportions of true positives (TP) are calculated over the converged solutions [of 1 (biased item) × 100 (replicates) =
100 solutions]; bQuantile DIC values (i.e., 05, 50, 95), and proportions of false positives (FP) are calculated over the converged solutions, which are 6 (non-biased

items) × 100 (replicates) = 600 solutions in Conditions 1, 5, 9, 13, 17 and 21, and 5 (non-biased items) × 100 (replicates) = 500 solutions in all other conditions.

0.99), with particular low values for the models with a continu-
ous latent violator with a substantially correlated latent trait and
violator.

As can be seen in Table 3, the proportions of true positives (i.e.,
indicating the bias whenever it is present) are 1.000 in all con-
ditions with the strict criterion, and ranges from 0.974 to 1.000
with the liberal criterion. Thus, both criteria are very successful
in detecting the bias. The quantiles of the DIC difference val-
ues give an indication of the power to identify items with bias.
These DIC difference values are highly negative in conditions with
both uniform and nonuniform bias, but also substantial in condi-
tions with only uniform or nonuniform bias. In conditions with a
dichotomous observed violator, we observe smaller negative DIC
difference values, suggesting a lower power.

The proportions of false positives with the strict cut-off value
are very high (ranging from 0.304 to 0.791). With a liberal cut-off
value, the proportions of false positives were reasonably low (from
0.014, with a maximum of 0.300); they appear somewhat higher

in conditions with both uniform and nonuniform bias and a
correlated trait and violator. Considering the performance in
terms of both true positives and false positives, the liberal cut-
off value seems best suited for bias detection with the single run
procedure.

3.1.2. Model difference procedure to detect bias
Table 4 shows the results of the model difference procedure: the
convergence proportions, the quantile (i.e., 5, 50, and 95) val-
ues of the DIC difference between the reference model (i.e., with
parameters to represent bias) and the nested model (i.e., without
parameters to represent bias), and the proportions of true posi-
tives and false positives at the strict and the liberal cut-off values.
The convergence rates show considerable variability across con-
ditions (ranging from 0.49 to 1.00). Overall, the convergence rate
is higher in the model difference procedure than in the single run
procedure, because the former requires only two, and the latter
J = 6 models to be estimated.
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Table 4 | Bias detection with the model difference procedure.

Cond. Biased itemsa Unbiased itemsb

Conv. � DIC TP Conv. � DIC FP

Q05 Q50 Q95 Strict Liberal Q05 Q50 Q95 Strict Liberal

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 – – – – – – 0.93 −10 0 10 0.102 0.007
Uniform 2 0.59 −100 −60 −40 1.000 1.000 0.86 −10 0 10 0.255 0.042
Nonuniform 3 0.93 −110 −70 −30 1.000 0.989 0.92 −10 0 10 0.219 0.032
Both 4 0.65 −188 −120 −82 1.000 1.000 0.88 −20 0 10 0.305 0.068

ρ(T ,V ) = 0.5 No bias 5 – – – – – – 0.94 −10 0 10 0.115 0.012
Uniform 6 0.93 −80 −40 −20 1.000 0.978 0.93 −10 0 10 0.263 0.045
Nonuniform 7 0.96 −140 −80 −40 1.000 1.000 0.95 −10 0 10 0.213 0.023
Both 8 0.92 −190 −120 −70 1.000 1.000 0.94 −20 0 10 0.383 0.097

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 – – – – – – 0.99 −4 1 5 0.232 0.002
Uniform 10 0.91 −100 −67 −47 1.000 1.000 0.99 −9 0 5 0.485 0.028
Nonuniform 11 0.92 −107 −67 −40 1.000 1.000 0.99 −9 0 4 0.451 0.032
Both 12 0.92 −173 −137 −92 1.000 1.000 0.99 −12 −1 4 0.578 0.073

ρ(T ,V ) = 0.5 No bias 13 – – – – – – 0.77 −5 2 5 0.274 0.009
Uniform 14 0.52 −90 −50 −27 1.000 1.000 0.61 −13 −1 4 0.529 0.082
Nonuniform 15 0.73 −121 −81 −47 1.000 1.000 0.76 −10 0 4 0.479 0.037
Both 16 0.49 −167 −125 −94 1.000 1.000 0.64 −16 −3 4 0.672 0.172

DICHOTOMIZED OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 17 – – – – – – 1.00 −4 1 5 0.239 0.008
Uniform 18 0.99 −66 −42 −23 1.000 1.000 1.00 −9 0 4 0.390 0.032
Nonuniform 19 1.00 −71 −43 −20 1.000 0.980 0.99 −7 0 4 0.401 0.028
Both 20 0.98 −115 −84 −51 1.000 1.000 0.99 −10 0 4 0.462 0.044

ρ(T ,V ) = 0.5 No bias 21 – – – – – – 0.94 −5 1 5 0.266 0.005
Uniform 22 0.70 −53 −25 −10 1.000 0.943 0.86 −8 0 4 0.456 0.019
Nonuniform 23 0.93 −79 −47 −21 1.000 1.000 0.93 −8 1 4 0.392 0.017
Both 24 0.66 −116 −81 −55 1.000 1.000 0.83 −13 −1 4 0.550 0.099

Cond., Condition; Conv., proportion of converged solutions; � DIC denotes the difference in DIC between the reference model and the competing model; aQuantile

DIC difference values (i.e., 05, 50, 95), and proportions of true positives (TP) are calculated over the converged solutions [of 1 (biased item) × 100 (replicates) = 100

solutions]; bQuantile DIC values (i.e., 05, 50, 95), and proportions of false positives (FP) are calculated over the converged solutions, which are 6 (non-biased items)

× 100 (replicates) = 600 solutions in Conditions 1, 5, 9, 13, 17, and 21, and 5 (non-biased items) × 100 (replicates) = 500 solutions in all other conditions.

As can be seen in Table 4, the proportions of true positives
(i.e., indicating bias when it is present) are very high in all condi-
tions; both using the strict criterion (all 1.000) as using the liberal
criterion (ranging from 0.943 to 1.000).

The quantiles of the DIC difference values give an indication
of the power to identify items with bias. These DIC difference
values are highly negative in conditions with both uniform and
nonuniform bias, for all conditions with a continuous violator.
In conditions with a dichotomous violator, we observe smaller
negative DIC difference values, suggesting a lower power.

In all conditions with a continuous violator, the proportions of
false positives with the strict cut-off value are high (ranging from
0.102 to 0.672), and with the liberal cut-off value reasonably low
(maximally 0.172). For the dichotomized violator a similar pat-
tern is observed. When applying the model difference procedure,
the liberal cut-off value appears to perform better than the strict
cut-off value, in terms of a proper balance between true positives
and false negatives.

3.1.3. Sensitivity analyses
To assess the sensitivity to the choice of the priors for those
parameters that express uniform and nonuniform bias, we rean-
alyzed the simulated data sets in the “most difficult” conditions:
with both uniform and nonuniform bias and a correlated trait
and violator (i.e., Conditions 8, 16, and 24) using clearly incor-
rect priors. That is, for the parameters expressing the bias, we use
priors that reflect an absence of bias (i.e., a normal distribution
with a mean of zero, for b and c). Table 5 shows the measures of
accuracy and efficiency of the estimated parameters, in a similar
way as reported in Table 2. Comparing the results of Tables 2, 5
shows that, in case of a continuous violator, the estimation bias
is still remarkably low when faced with clearly incorrect priors
(all absolute values lower than 0.016). Also the efficiency and
MCM standard errors and the convergence rates of these two
conditions are comparable to those in Table 2. Also in case of a
dichotomized violator, the estimation bias (with values −0.130
and 0.016) is very similar to the corresponding values in Table 2.
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Table 5 | Estimation bias of the sensitivity analysis.

Violator Cond. Conv. m(θb) − b sd(θb) m(se(θb)) m(θc) − c sd(θc) m(se(θc))

Continuous latent 8 0.95 −0.002 0.081 0.001 0.016 0.070 0.001

Continuous observed 16 0.48 0.014 0.058 0.001 0.006 0.058 0.001

Dichtomized observed 24 0.75 −0.130 0.056 0.001 0.016 0.061 0.001

Cond., Condition; Conv., proportion of converged solutions; All summary measures are calculated over the converged solutions only and are using the same notation

as in Table 2.

Proportions of true and false positives hardly change when using
the clearly incorrect prior, as has been verified (but not reported).
We conclude that inadequate priors hardly influence the param-
eter estimates in all conditions, at least with the iteration length
used in this simulation study.

4. DISCUSSION
In this article, we consider a Bayesian RFA approach for the detec-
tion of uniform and nonuniform bias. Results of a simulation
study show that the parameter estimates of this proposed Bayesian
RFA are reasonably accurate and efficient. With a dichotomized
observed violator we find less accurate results, which is due to
a loss of information and a reduction of the effect size. Our
results thus support the validity of the well-know criticism on the
median split (see, e.g., MacCallum et al., 2002). This suggests that
the use of MGFA in cases with a continuous observed violator,
with its associated necessity to dichotomize, should be discour-
aged. We used informative priors to obtain accurate and efficient
results for the parameter estimates. Our sensitivity analysis shows
that clearly inaccurate priors for the parameters expressing the
bias also yield accurate and efficient estimates. This result might
be different when working with a smaller sample than the n = 500
used in this paper. The smaller the sample size, the larger the
influence of the prior distribution. In practice, to obtain priors
we have to utilize prior information from different sources avail-
able (e.g., knowledge of experts or analyses of similar data), or
perform an auxiliary estimation on a part of the data.

Results show that the Bayesian RFA is hindered by conver-
gence problems, particularly in conditions with uniform bias. We
used the Raftery and Lewis diagnostic to determine the number
of iterations, but noticed in small experiments that doubling the
number of iterations still decreased the number of convergence
problems, according to the Gelman and Rubin diagnostic and
Geweke diagnostics, substantially. For example, for condition 16
in Table 2, doubling the number of iterations increased the con-
vergence rate from 52 to 69%. Thus there are indications that
several of the convergence and estimation problems encountered
in this simulation study, can be overcome in an empirical con-
text through solutions such as choosing more chains, performing
more iterations, and changing the initial values of the chains.
Studying convergence properties for a variety of settings, includ-
ing a variety of sample sizes, would be an interesting topic for
future research.

The bias detection rates of both the single run procedure and
the model difference procedure, calculated with either a strict
or a liberal cut-off value, are very good. In both bias detection
procedures, the distribution of the DIC difference values in the
various conditions shows that the power to detect bias is the

highest in conditions with a continuous observed violator. In con-
ditions with a dichotomous observed violator there is a reduction
of power, indicated by lower DIC difference values. In general,
nonuniform bias is detected about as well as uniform bias is.
However, if we focus on the DIC difference values, conditions
with a independent trait and violator and nonuniform bias have
smaller DIC difference values than conditions with uniform bias.
In conditions with a dependent trait and violator, it is the other
way round. This might be related to the fact that both the depen-
dency between the trait and the violator and the bias are positive
which may amplify each other.

Overall, the false positive rates are too large with a strict DIC
cut-off value. Given the fact that a liberal cut-off value yields satis-
factory bias detection results, we recommend a liberal DIC cut-off
value (see also Lee, 2007). The false positive rates of the lib-
eral DIC cut-off value are acceptable in all conditions and clearly
lower in the model difference procedure. This might be due to a
more precise estimation of the DIC difference procedure, as the
model difference procedure directly compares a model with and
without parameters to assess bias.

As an alternative to a liberal cut-off value, it might be helpful
to detect bias in an iterative procedure. In this iterative procedure,
the item associated with the largest DIC difference value is con-
sidered biased. In a second run, this bias is taken into account by
allowing parameters that express bias in the model, and the bias
test is conducted on the remaining items. As none of the remain-
ing items is considered biased or half of the items are detected as
biased, the iterative procedure stops (see Barendse et al., 2012, for
an implementation in the frequentist framework).

Overall, for bias detection with the Bayesian RFA, both pro-
cedures with a liberal cut-off value are successful under the
conditions studied. The model difference procedure appears to be
more powerful in detecting bias and is therefore preferable over
the single run procedure. The results presented indicate that the
Bayesian RFA method is promising to assess measurement bias.
It can be used to assess measurement bias with respect to multi-
ple violators simultaneously, and of any kind (i.e., continuous or
discrete, observed or latent).

For further research on the Bayesian RFA, it is useful to investi-
gate model performance under other conditions, including larger
numbers of observed items and varying the size of the bias. The
size of the bias can be varied both in terms of severity and num-
ber of biased items. Additionally, more complicated models, with
more than one item with bias, could be investigated. Further,
extending the model with a latent categorical violator might be
a useful extension. It may also be useful to consider alterna-
tive, promising, criteria for bias detection, such as Bayes factors
and path sampling which both can deal with non-linearity (Lee,
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2007). Finally, it would be highly interesting to see whether to the-
oretical advantages of Bayesian RFA are of use in empirical prac-
tice, by applying the methodology of this paper to empirical data.
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