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Abstract: Sepsis and septic shock are associated with acute and sustained impairment in the function
of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant
advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems
with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly
affecting cellular contractility, actin filament assembly and growing, cell motility and migration,
cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively
impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few
decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated
experimental models. The most frequently used experimental design included the exposure to
bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using
the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings
described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the
development of crucial sepsis-associated dysfunction in different systems and cells, including the
endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the
inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and
septic shock, accordingly with the cellular system evaluated. This review included the main findings,
relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated
experimental models.
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1. Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host
response to infection, as introduced by the Third International Consensus Definitions for
Sepsis and Septic Shock in 2016 [1]. The clinical management and criteria for the early
diagnosis of sepsis and septic shock have been systematically reviewed since the 1990s,
implementing significant advances in prevention, treatment, and survival rates associated
with these conditions. Nevertheless, sepsis remains a global health problem and a signifi-
cant cause of mortality, accounting for around 20% of worldwide deaths in 2017 [2]. The
knowledge regarding the onset and prognosis of sepsis remains under ongoing discussion,
but it depends on associated risk factors and underlying conditions. The elderly, young
children, and immunocompromised individuals are examples of people included in risk
groups, and serum levels of pro-inflammatory and anti-inflammatory cytokines have been
explored to predict fatal outcomes in septic patients [3]. Indeed, one of the primary reasons
sepsis is hard to be predicted and treated is its complex pathophysiology, which includes
almost all known inflammatory mediators, differentially found in distinct tissues and
stages of the disease. The acute or sustained impairment in vital systems can compromise
the kidneys, lungs, liver, coagulation, and central nervous system, among others. Notably,
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the cardiovascular system is affected from early to late stages of sepsis, and the dysfunction
in several organs may be at least partially resulted from reduced blood perfusion and
augmented vascular permeability, which are hallmarks with putative clinical value for
the prognosis of this condition [4]. In the vascular system, high levels of reactive oxygen
species (ROS), including nitric oxide (NO), are produced, beginning in the very early stages
of sepsis, triggering endothelial dysfunction. The unbalanced production of endothelial
mediators and exacerbated levels of inflammatory cytokines contribute to persistent hy-
potension, leading to the inadequate blood supply and poor tissue perfusion, reducing O2
distribution. Sepsis progresses to septic shock when physiological mechanisms and fluid
resuscitation are unable to restore blood pressure, the patient presents hyperlactatemia
(>2 mmol/L), and vasopressor drugs are required to maintain the minimum 65 mm Hg
mean arterial pressure. In more severe stages, the vascular system became hyporeactive
to vasoconstrictors, and the desired arterial pressure cannot be targeted even when high
doses of pressor agents are used [1]. For this, components of the cardiovascular system
may be considered crucial targets to prevent sepsis-associated organ dysfunction.

The discovery of small G proteins, followed by the description of their widespread dis-
tribution and biological properties, raised an unexplored field for drug targets with putative
importance in several diseases, including sepsis and septic shock. The Rho subfamily is part
of the Ras superfamily of small GTPases, and is composed of 20 members in mammalians,
further subdivided into eight different subclasses (i.e., Rho, Rac, Cdc42). Rho proteins have
been broadly studied in several areas, such as the regulation of cell migration [5], calcium
sensitization, and the maintenance of smooth muscle tone, i.e., [6,7], differentiation [8],
cell growth and apoptosis [9], regeneration [10], focal adhesion [11,12] and polarity [13,14],
cytokinesis [15,16], and membrane trafficking and ruffling [17,18], among others. Recent
studies have also suggested that Rho-GTPase signaling pathways crosstalk with each
other and are influenced by cellular mechanics, leading to the self-organization of several
dynamic cellular processes (for reviews, see [19–21]). The involvement of Rho proteins
in so many cellular functions explains why these small G proteins and their downstream
pathways have a pivotal role in both physiological and pathological conditions.

Rho proteins are small GTPases that switch between active and inactive stats, de-
pendent on GTP or GDP biding, respectively, a process regulated by guanine nucleotide
exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dis-
sociation inhibitors (GDIs). Similar to classical heterotrimeric G proteins, Rho proteins
are also subjected to activation by different subtypes of transmembrane receptors classi-
fied as G protein-coupled receptors (GPCRs). However, unlike heterotrimeric G proteins,
the mechanisms throughout GPCRs activate Rho proteins are indirect and dependent
on GEFs. Moreover, it mainly includes receptors coupled to G proteins containing the
αq and α12/13 subunits, i.e., [22,23]. Several receptors with key regulatory effects in the
vascular smooth muscle cells (i.e., α1-adrenoceptors and angiotensin II AT1 receptors),
endothelium (i.e., bradykinin B2 receptors), and platelets (i.e., protease-activated receptor-1,
PAR-1) are coupled to Gαq and Gα12/13 proteins. Importantly, these GPCRs have been
used or at least investigated as drug targets in the management of sepsis. Besides, Rho
proteins are also reached by other classes of receptors, such as integrin [24] and peroxi-
some proliferator-activated receptors [25], reinforcing their multiple regulatory roles in
cell signaling.

Rho proteins can interact with a considerable number of targets, regulating multiple
processes that are all subjected to pathological or adaptive changes with functional rele-
vance during inflammatory processes, such as the one that occurs in septic insults. We aim
to provide the readers with a comprehensive overview to allow the understanding of how
the study of Rho proteins and their downstream pathways, particularly the Rho-associated
coiled-coil-containing protein kinase (Rho-kinase or ROCK, further classified as subtypes I
and II), are directly or indirectly involved in different signs or symptoms of this disease,
and perhaps why it can be a source of innovative targets for the clinical management of
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sepsis and septic shock. As summarized in Figure 1 and explored ahead, Rho proteins and
Rho-associated targets are involved in the main signs of sepsis and septic shock.
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Figure 1. Main findings associated with the modulation of Rho proteins and downstream pathways in sepsis-associated
experimental models. Although different Rho proteins have been explored in in vitro experimental approaches, all
parameters presented inside each box were described in studies performed on animals subjected to sepsis models and
treated with selective inhibitors of ROCK. Findings associated with sepsis-induced organ dysfunction are shown next to the
up arrow. The main beneficial effects ascribed to inhibition of the RhoA/Rho-kinase pathway are included at the bottom of
each box.

2. Experimental Models Used to Study Sepsis-Associated Dysfunctions

Sepsis and septic shock are systemic conditions that gradually affect all vital functions
in humans and animals. The complexity of such effects, the intensive supporting care,
fluid replacement, and multiple drugs used, including but not limited to antibiotic therapy,
vasopressor, and inotropic agents, creates a scenario that is virtually impossible to be
entirely replicated in laboratory studies. Notably, our knowledge about how sepsis impairs
human physiology has been built under the light of approaches that attempt to reproduce
at least part of the infection or inflammatory process that occurs in this condition. For
instance, although it cannot be defined as experimental models of sepsis, proinflammatory
cytokines, mainly the tumor necrosis factor (TNF)-α and interleukin (IL)-1β have been
used to create the inflammatory environment in studies focused on sepsis.

Bacterial lipopolysaccharide (LPS) has been used in in vitro and in vivo studies. It
can reproduce much of the inflammation-associated responses found in cells, tissues, and
entire animals, such as the production of proinflammatory cytokines, impaired metabolism
or muscle contractility, hypotension, and low blood perfusion. The main limitations of
LPS as an experimental model for the study of sepsis-associated events are the lack of an
ongoing infection, the self-limited duration of the effect when used in in vivo studies, and
its action centered on the activation of the Toll-like receptor (TLR) 4. Although the status of
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LPS as a reliable experimental model of sepsis remains under discussion [26], the challenge
with LPS allows the investigation of sepsis-associated responses in cultured cells under
very controlled conditions. Indeed, it is widely used and can be considered an excellent
choice for the study of cell signaling intracellular processes putatively impaired by sepsis.

Additional models for the study of sepsis include the cecal ligation and puncture
(CLP), the intraabdominal injection of fecal pellets, and the administration of pathogenic
microorganisms [27–30]. Among these, the CLP model, which consists of a controlled
injury in the cecum that generates polymicrobial sepsis, has been described as the golden
model in terms of similarity with the temporal course and organ dysfunction that occurs in
septic shock in humans [26,28].

In this review, we discuss the results obtained from in vitro and in vivo studies that
explored the behavior of Rho proteins and related intracellular signaling pathways in
experimental conditions potentially associated with sepsis, mainly LPS challenge and
stimulation with proinflammatory cytokines. Whenever performed, studies using the
induced sepsis model were included in our description.

3. Rho Proteins and Their Impact on Endothelial Function in Sepsis-Related
Experimental Approaches

The relationship between changes in endothelial function and sepsis is narrow. The
exacerbated inflammation that occurs in sepsis leads to endothelial dysfunction, which
in this condition is characterized by the unbalanced production of endothelial factors
crucial for several physiological events, including the maintenance of the own endothelial
biology, preservation of the endothelial barrier function, prevention of blood clotting, and
the regulation of the vascular tone. As summarized in Table 1, the involvement of Rho
proteins in sepsis-associated endothelial dysfunction has been continuously investigated.

One of the first pieces of evidence that the RhoA/ROCK pathway could play a role in
the pathophysiology of sepsis was the demonstration of reduced activity of myosin light
chain phosphatases (MLCP) and enhanced myosin light chain (MLC) phosphorylation
in human endothelial cells incubated with LPS, which was counteracted by inhibitors
of ROCK and cAMP [31]. This augmented activation of Rho components can contribute
to endothelial contraction and vascular leakage in sepsis, as shown in both LPS-treated
and CLP-subjected animals [32–36]. Among the mechanisms associating Rho protein and
endothelial barrier disruption, the activation of RhoA and/or ROCK in response to LPS
were involved in in vivo leukocyte adhesion in femoral [32] and hepatic [37] arteries of
mice, the loss of VE-cadherin function in endothelial cells [38–40], increased expression of
adhesion molecules [40], and neutrophil–endothelial adhesion [41].

RhoA has previously been described as susceptible to inhibitory regulation by Rac [42].
Thus, the delicate balance between the antagonistic effects of Rac and RhoA activities is a
potential target for regulating the endothelium barrier function in sepsis, as suggested by
the anti-permeability effect of angiopoietin-1 in both endothelial cells and mice exposed to
LPS [43]. Nevertheless, this is a multicomplex process that involves the entire contractile
machinery in the endothelial cells, as explored by Bogatcheva and co-workers, who also
found that the inhibition of ROCK can either improve or worsen the barrier function of
human lung microvascular endothelial cells [44]. Accordingly, the activation of RhoA by
the active biolipid sphingosine-1-phosphate was suggested as an important way to coun-
teract pericyte loss and improve barrier function in endothelial cells subjected to LPS [45].
Moreover, both the activation and inactivation of endothelial Rho by Clostridium limosum
exoenzyme and Escherichia coli cytotoxic necrotizing factor CNF1, respectively, improved
the endothelial barrier, reducing leukocyte migration [46]. Additionally, Adamson and
co-workers described that the inhibition of ROCK reduced the basal unstimulated vascular
permeability in rat venular microvessels of the mesentery but failed to prevent the transient
permeability induced by bradykinin and platelet-activating factor [47]. Besides, augmented
levels of active Rac1 and Cdc43, and unaltered RhoA, were detected in CNF1-stimulated
myocardial endothelial cells [48].
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Despite the few studies detailing how LPS or sepsis modulate Rho proteins in en-
dothelial cells, the effects of endogenous molecules that are increased under LPS or septic
insults, such as thrombin [49], heparin-binding protein [50], and the heat-shock protein
90 [51], have been linked with Rho-dependent mechanisms. Additionally, there is sub-
stantial evidence that the engagement of Rho proteins in endothelial barrier regulation
can be dependent on the kind of vessel or cell evaluated [52–54]. For instance, the ac-
tivation of Rho was necessary for TNF-α-mediated barrier dysfunction in human lung
microvascular endothelial cells [55] and umbilical vein endothelial cells [56], but only Rac
accounts for this effect in human dermal microvascular endothelial cells [57]. Indeed, the
role of Rho proteins on endothelial hyperpermeability depends on both the inflammatory
mediator [58] or the time point evaluated [59]. In any case, endothelial dysfunction has a
putative causal relationship with infections and inflammatory processes, which also can
be modulated by Rho proteins [60,61]. In this way, the activation of the TLR 4 by LPS
upregulated the guanine–nucleotide exchange factor GEF-H1 and increased the activity
of RhoA in human umbilical vein endothelial cells, and this process was characterized
as an upstream step for nuclear factor kappa B (NF-κB) transactivation and interleukin
(IL)-8 expression [62]. Interestingly, the activation of GEF-H1 and NF-κB were also found
in Staphylococcus aureus-induced endothelial barrier dysfunction [63]. Furthermore, the
inhibition of ROCK significantly reduced LPS-increased inflammatory cytokines IL-1β and
IL-6 in human lung microvascular endothelial cells, at least partly via NF-κB inhibition [64].
Similar findings associating the RhoA pathway and the NF-κB activity with LPS-induced
endothelial hyperpermeability were also previously described in mouse brain-derived
microvascular endothelial cells [65].

Mediators produced by the endothelial cells, including NO, metabolites of arachidonic
acid, and ROS, are often involved in the control of vascular tone. However, they are
also crucial to regulate the endothelial barrier, platelet aggregation, and the expression of
adhesion molecules, among others. Transgenic mice expressing CYP2J2, the cytochrome
P450 epoxygenase 2J2 that produces epoxyeicosatrienoic acids, presented reduced mortality
rates when treated with lethal doses of LPS. This protection was explained by the ability of
epoxyeicosatrienoic acids to inhibit the generation of ROS and the subsequent activation
of the RhoA/ROCK pathway in endothelial cells, preventing MLC phosphorylation and
improving the endothelial barrier [66].

The widespread presence of the nitric oxide synthase (NOS) among mammalian cells
makes NO a key mediator in several systems. Notwithstanding the multiple physiological
roles of NO, the nature of its effects on cellular biology are entirely dependent on the
amounts produced. Along with inflammatory burst that occurs in sepsis, the overexpres-
sion of the inducible isoform of NOS (iNOS) exacerbates the vasodilatory and hypotensive
effects generated by NO, contributing to the reduced blood flow and the organ damage
seen in this condition. Although strategies capable of preventing or reversing the harmful
effects of NO remain desirable, maintaining the activity of endothelial NOS (eNOS) might
be essential for vascular recovery in sepsis. Notably, the administration of the ROCK
inhibitor fasudil prevented the overexpression of iNOS and increased the levels of eNOS
in mesenteric endothelial cells from rats treated with LPS, an effect accompanied by a
reduction in both macromolecular leak and leukocyte adhesion in mesenteric arteries [67].
The dependence of eNOS for the anti-inflammatory and antiapoptotic effects obtained after
the inhibition of the RhoA/ROCK pathway in LPS-treated endothelial cells was also de-
scribed [68]. Endothelium-derived mediators keep an orchestrated equilibrium to maintain
vascular functions. Under physiological conditions, endothelin-1, a potent vasoconstrictor,
also promotes the vascular release of NO [69,70]. This function can be disrupted under
inflammatory stimuli, such as LPS, but the pharmacological inhibition of the RhoA/ROCK
pathway was able to bring back endothelin-1-mediated eNOS activity [71]. Regarding ad-
vances into the molecular regulatory mechanisms on Rho proteins, peroxynitrite-mediated
RhoA and Rac1 nitration [72,73] were proposed as a key event driving the increment and
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inhibition of RhoA and Rac1 activities, respectively, which contributes to LPS-induced
endothelial barrier disruption.

Regardless of the missing points that would enhance our comprehension about how
the function of Rho proteins and its up or downstream targets are modulated in endothe-
lial cells during septic insults, these small G proteins have been consistently included in
the physiological regulation of endothelial structure and function in different vascular
systems [74–87]. In summary, the balanced activity of Rho proteins has been reported as
mandatory to maintain several aspects of endothelial biology, including F-actin stabiliza-
tion, contractility, and functional tight junctions (Figure 2A). This balance is disrupted
when endothelial cells are subjected to a proinflammatory environment such as the one
found in sepsis, resulting, for instance, in the reduced activity of Rac1 and augmented
activity of the RhoA pathway, which contribute to endothelial dysfunction (Figure 2B).
Notably, the direct or indirect modulation of these proteins by GEFs, i.e., [88,89], chemical
compounds, i.e., [90–92], endogenous mediators, i.e., [45,56,93,94], or even RNA manipula-
tion, i.e., [62,63,95], may provide additional insights about the putative role of Rho proteins
in the endothelial function in sepsis (see Table 1).

Table 1. The involvement of Rho proteins and downstream pathways in the endothelial function as found in sepsis-
associated experimental models.

System and Model Component(s) Evaluated Experimental Setup Impact on the System and Main Findings a Ref.

HLMVEC;
LPS

Rac1, RhoA Indirect modulation + siRNA
(includes in vivo evaluation)

Activation of Rac1 and inhibition of RhoA
prevents vascular leakage; stabilizes

VE-cadherin.

[43]

ROCK Direct inhibition + siRNA ROCK can prevent or enhance vascular
leakage.

[44]

RhoA Direct inhibition + siRNA
(includes in vivo evaluation)

Inhibition of RhoA nitration prevents
vascular leakage.

[72]

RhoA, ROCK Indirect modulation + direct
inhibition

Inhibition of RhoA/ROCK prevents vascular
leakage.

[51]

Rac1 Direct modulation
(includes in vivo evaluation)

Prevention of Rac1 nitration limits vascular
leakage.

[73]

HLMVEC;
LTA + PepG

MCLP, MLC Direct inhibition
(includes in vivo evaluation)

Inhibition of ROCK prevents vascular
leakage.

[53]

HLMVEC;
TNF-α

RhoA, ROCK Direct inhibition Inhibition of RhoA/ROCK pathway prevents
vascular leakage.

[55]

HUVEC;
LPS

MLC, pMLC Direct inhibition Inhibition of ROCK prevents vascular
leakage.

[31]

RhoA, GEF-H1 iRNA Reduction in RhoA activation disfavor
inflammatory pathway.

[62]

RhoA, MLCP siRNA RhoA inhibition prevents vascular leakage
and stabilizes VE-cadherin.

[39]

ROCK, RhoA, MLCP Direct inhibition
(includes in vivo evaluation)

Inhibition of ROCK prevents vascular
leakage.

[66]

ROCK, GEF-H1 Direct inhibition + siRNA Inhibition of ROCK and GEF-H1 prevents
vascular leakage, stabilizes adherens and

tight junctions.

[89]

RhoA, Rac, Cdc42 Indirect modulation + siRNA Inhibition of RhoA and Rac prevents vascular
leakage, stabilizes junctions, and disfavors

inflammation.

[92]

RhoA Direct inhibition Inhibition of ROCK prevents vascular
leakage and stabilizes VE-cadherin.

[40]

ROCK Indirect modulation + direct
inhibition

Downregulation of ROCK disfavor
inflammatory pathway.

[90]

RhoA, ROCK Direct inhibition + siRNA Inhibition of ROCK reduces stress fiber
formation.

[91]

HUVEC;
TNF-α

RhoA, ROCK, MLCP Indirect modulation Inhibition of ROCK prevents vascular
leakage and stabilizes VE-cadherin.

[56]

HUVEC;
HBP

ROCK Indirect modulation + direct
inhibition

Inhibition of ROCK prevents vascular
leakage.

[50]

HVEC;
thrombin

RhoA, ROCK Indirect modulation + siRNA Inhibition of ROCK prevents vascular
leakage, stabilizes VE-cadherin, reduces

stress fiber formation.

[49]
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Table 1. Cont.

System and Model Component(s) Evaluated Experimental Setup Impact on the System and Main Findings a Ref.

HPMEC; ROCK Direct inhibition Inhibition of ROCK disfavor inflammatory
and coagulation pathways.

[64]

LPS ROCK Direct inhibition Inhibition of ROCK reduces vascular leakage
and apoptosis.

[35]

Rho-GTP Indirect modulation Downregulation of ROCK prevents vascular
leakage, stabilizes protein junctions (i.e.,

VE-cadherin).

[94]

HPAEC;
LPS

Rac, Cdc42, MLC Indirect modulation Rac1 and Cdc42 activation prevents vascular
leakage, stabilizes VE-cadherin.

[93]

HPAEC;
IL-6

ROCK Direct inhibition + siRNA
(includes in vivo evaluation)

Inhibition of ROCK prevents vascular
leakage, stabilizes VE-cadherin, avoids

leucocyte adhesion.

[58]

HPAEC;
Sthaphyloccocus
aureus

Rho-GEF-H1 siRNA Inhibition of GEF-H1 prevents vascular
leakage, disfavor inflammatory pathway.

[63]

HDMEC;
LPS

RhoA, Rac1 Direct inhibition Downregulation of Rac1 worse vascular
leakage.

[57]

HDMEC; RhoA Indirect modulation Inhibition of RhoA reduces leukocyte
migration.

[46]

TNF-α ROCK, MLC Direct inhibition + siRNA Inhibition of ROCK prevents vascular
leakage.

[59]

HDMEC;
CNF-1

RhoA, Rac1, Cdc42 Direct inhibition or activation ROCK enhances and Rac1/Cdc42 reduce
vascular leakage; Rac1/Cdc42 inactivation

worse junction stability.

[52]

MPVEC;
LPS

ROCK miRNA Inhibition of ROCK prevents apoptosis and
inflammation.

[95]

PAEC;
CNF-1

RhoA, Rac1, Cdc42, ROCK Direct inhibition or activation ROCK enhances and Rac1/Cdc42 reduce
vascular leakage; Rac1/Cdc42 inactivation

worse junction stability.

[52]

ROCK, pMLC RNAi
(includes in vivo evaluation)

Inhibition of ROCK prevents vascular
leakage, stabilizes connexin 43.

[33]

MyEnd;
CNF-1

Rac1, Cdc42 Indirect modulation
(includes in vivo evaluation)

Upregulation of Rac1 and Cdc42 improves
the endothelial barrier.

[48]

RhoA, Rac1, Cdc42, ROCK Direct inhibition or activation ROCK enhances and Rac1/Cdc42 reduce
vascular leakage; Rac1/Cdc42 inactivation

worse junction stability.

[52]

MesEnd;
CNF-1

RhoA, Rac1, Cdc42, ROCK Direct inhibition or activation ROCK enhances and Rac1/Cdc42 reduce
vascular leakage; Rac1/Cdc42 inactivation

worse junction stability.

[52]

bEnd.3;
LPS

RhoA; GEF Direct inhibition + siRNA Inhibition of RhoA and GEF prevents
vascular leakage, stabilizes zonnula
occludent 1 and reduces stress fiber

formation.

[88]

Pericytes;
LPS

RhoA Indirect modulation Activation of RhoA prevents vascular
leakage.

[45]

LSEC;
LPS

ROCK Direct inhibition Inhibition of ROCK and its nitration prevents
vascular leakage.

[71]

Mice lung;
LPS

Rho-GTP, ROCK, MLCP Indirect modulation Downregulation of Rho-GTP, ROCK, and
MLCP prevents vascular leakage.

[34]

Rat mesenteric
artery; LPS

ROCK Direct inhibition Inhibition of ROCK prevents vascular
leakage and avoids leucocyte adhesion.

[67]

Guinea pig skin;
LPS

ROCK Direct inhibition Inhibition of ROCK prevents vascular
leakage.

[36]

a: only those conclusions directly associated with Rho proteins were included. Abbreviations: bEnd.3, mouse brain endothelial cells; CLP,
cecal ligation and puncture; CNF-1, Escherichia coli cytotoxic necrotizing factor 1; HBP, heparin-binding protein; HDMEC, human dermal
microvascular endothelial cells; HLMVEC, human lung microvascular endothelial cells; HPAEC, human pulmonary artery endothelial cells;
HPMEC, human pulmonary microvascular endothelial cells; HUVEC, human umbilical vascular endothelial cells; LSEC, liver sinusoidal
endothelial cells; LPS, lipopolysaccharide; LTA, lipoteichoic acid; MesEnd, microvascular mesenteric endothelial cells; MLC, myosin light
chain; MCLP, myosin light chain phosphatase; MPVEC, murine pulmonary microvascular endothelial cells; MyEnd, mouse myocardial
endothelial cells; PAEC, porcine aorta endothelial cells; PAF: platelet-activating factor; PepG: Staphylococcus aureus-derived peptidoglycan;
pMLC, phosphorylated myosin light chain.



Cells 2021, 10, 1844 8 of 25

Cells 2021, 10, x FOR PEER REVIEW 8 of 26 
 

 

HPAEC, human pulmonary artery endothelial cells; HPMEC, human pulmonary microvascular endothelial cells; HUVEC, 

human umbilical vascular endothelial cells; LSEC, liver sinusoidal endothelial cells; LPS, lipopolysaccharide; LTA, lipo-

teichoic acid; MesEnd, microvascular mesenteric endothelial cells; MLC, myosin light chain; MCLP, myosin light chain 

phosphatase; MPVEC, murine pulmonary microvascular endothelial cells; MyEnd, mouse myocardial endothelial cells; 

PAEC, porcine aorta endothelial cells; PAF: platelet-activating factor; PepG: Staphylococcus aureus-derived peptidoglycan; 

pMLC, phosphorylated myosin light chain. 

 

Figure 2. The influence of Rho proteins on the endothelial function in sepsis-associated experimental models. Rho proteins 

have been involved in several physiological responses. In healthy endothelial cells (A), these responses include Rac1-

mediated F-actin stabilization and the regulatory effect of the RhoA/ROCK pathway on the activity of enzymes such as 

the myosin light chain phosphatase (MLCP) and the endothelial nitric oxide synthase (eNOS). The balanced activity of 

Rho proteins contributes to the maintenance of the endothelial barrier function. Under experimental models of sepsis (B), 

systemic or locally produced mediators (i.e., ONNO, cytokines) reduce the activity of Rac1 (light gray arrow), contributing 

to F-actin destabilization, and the activity of the RhoA/ROCK pathway is increased (see the enhanced colors and ticker 

red arrows), resulting in reduced inhibition of MLCP and augmented levels of phosphorylated myosin (Myosin-P). This 

unbalanced Rho signaling contributes to exacerbating inflammatory responses, endothelial contraction, loss of junction 

proteins (i.e., VE-cadherin), endothelial barrier dysfunction, leukocyte infiltration, and vascular leakage, among others. 

The question mark coming from iNOS in panel B indicates that it remains unclear whether the high amounts of NO pro-

duced during septic insults significantly influence the activity of the RhoA/ROCK pathway in endothelial cells. PLC, phos-

pholipase C; DAG, diacylglycerol; IP3, phosphatidylinositol 1,4,5-trisphosphate; MLCK, myosin light chain kinase; TNFR, 

tumor necrosis factor α receptor; TLR, Toll-like receptor 4; IL-1βR, interleukin 1β receptor. 
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have been involved in several physiological responses. In healthy endothelial cells (A), these responses include Rac1-
mediated F-actin stabilization and the regulatory effect of the RhoA/ROCK pathway on the activity of enzymes such as
the myosin light chain phosphatase (MLCP) and the endothelial nitric oxide synthase (eNOS). The balanced activity of
Rho proteins contributes to the maintenance of the endothelial barrier function. Under experimental models of sepsis (B),
systemic or locally produced mediators (i.e., ONNO, cytokines) reduce the activity of Rac1 (light gray arrow), contributing
to F-actin destabilization, and the activity of the RhoA/ROCK pathway is increased (see the enhanced colors and ticker
red arrows), resulting in reduced inhibition of MLCP and augmented levels of phosphorylated myosin (Myosin-P). This
unbalanced Rho signaling contributes to exacerbating inflammatory responses, endothelial contraction, loss of junction
proteins (i.e., VE-cadherin), endothelial barrier dysfunction, leukocyte infiltration, and vascular leakage, among others.
The question mark coming from iNOS in panel B indicates that it remains unclear whether the high amounts of NO
produced during septic insults significantly influence the activity of the RhoA/ROCK pathway in endothelial cells. PLC,
phospholipase C; DAG, diacylglycerol; IP3, phosphatidylinositol 1,4,5-trisphosphate; MLCK, myosin light chain kinase;
TNFR, tumor necrosis factor α receptor; TLR, Toll-like receptor 4; IL-1βR, interleukin 1β receptor.

4. Rho Proteins and Their Impact on the Vascular Function in Sepsis-Related
Experimental Approaches

The RhoA pathway is particularly important in vascular tone regulation. Briefly, the
stimulation of several GPCRs in smooth muscle cells leads to phospholipase C activation,
the production of phosphatidylinositol 1,4,5-trisphosphate, and Ca2+ release from the
sarcoplasmic reticulum. The augmentation of cytosolic Ca2+ free levels enables calmodulin
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to interact with myosin light chain kinase (MLCK), triggering its activity. The more MLCK
is active, the more it phosphorylates the myosin light chain (MLC), which increases its
interaction with actin, leading to greater contractility. This process is physiologically
contained by myosin light chain phosphatase (MLCP), which dephosphorylates the MLC,
reducing the contractile tone. The receptor-mediated activation of RhoA proteins increases
the activity of ROCK, which in turn inhibits MLCP. It maintains the cell more susceptible to
calcium-mediated MLCK activation. For this, the RhoA/ROCK pathway is defined as a pro-
contraction system and a calcium sensitization route in cell signaling. This physiological
role of Rho proteins in vascular muscle cells and its relevance for the maintenance of
systemic arterial pressure is illustrated in Figure 3A. It is important to note that tone
regulation is not the only physiological function directly modulated by Rho proteins in
vascular smooth muscle cells. However, perhaps because the augmented activation of
this pathway plays a role in developing hypertensive disorders [7], the most investigated
aspect of Rho components in the septic vascular smooth muscle has been its involvement
in vascular contractile dysfunction, as can be seen in Table 2.

The incubation of LPS in vascular preparations maintained in organ baths for assessing
contractile responses usually results in a pattern of vascular hyporeactivity to vasoactive
drugs that resemble the vasoplegia found in septic patients. Using rat pulmonary arteries,
Boer and co-workers demonstrated that LPS-induced vascular dysfunction is also charac-
terized by augmented compliance, as evaluated by the diameter of arteries subjected to
cumulative stretch, a condition accompanied by a disordered distribution of F-actin in the
smooth vascular cells. This disassembly of the F-actin fiber was reproduced by the pharma-
cological inhibition of ROCK in control vessels (not exposed to LPS) and, most importantly,
was preventable by the activation of RhoA in LPS-exposed pulmonary arteries [96].

LPS was found as a negative modulator of the RhoA/ROCK pathway in several
studies, i.e., [97]. However, augmented levels of ROCK were also found in endotoxemia,
simultaneously to the potentiated contractile responses to endothelin-1, as described in the
superior mesenteric artery of rats at 6 h after LPS administration [98]. Despite the vascular
system being treated as a unit, each vascular bed behaves differently depending on the
organ evaluated. These differences seem to be particularly important for experimental
models of sepsis since the pattern of responses evoked by vasoactive agents depends on
the vasculature and time of evaluation [99]. Accordingly, endothelin-1-induced contractile
responses and the phosphorylation of MLC were reduced in rat aortic rings at 20 h after
incubation with LPS, but these changes were independent of changes in the RhoA/ROCK
pathway [100]. Additionally, the expression levels of Rho pathway components were
increased in resistance mesenteric arteries from LPS-treated rats at both early (6 h) and late
(24 h) periods of endotoxemia, although the vessels were hyporeactive to phenylephrine
and more sensitive to ROCK inhibition [101]. Similar findings were described in rat aortic
rings at 6 h after LPS administration [102].
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Figure 3. The involvement of Rho proteins in sepsis-associated reduced vascular dysfunction. In healthy vessels (A),
activation of the RhoA/ROCK pathway functions as a calcium sensitization mechanism, crucial for regulating vascular
tone. Once activated by RhoA, ROCK inhibits the myosin light chain phosphatase (MLCP) activity, maintaining balanced
levels of phosphorylated myosin and the vascular tone. Under physiological conditions, there is an equilibrium between
contracting and relaxing events, resulting in normal vascular contractility and normal blood pressure. In septic vessels (B),
the proinflammatory environment and high levels of nitric oxide, among other factors, reduce the effectivity of Rho-
mediated calcium sensitization, as illustrated by the grayscale of RhoA/ROCK pathway components and arrows. The final
result is an augmented MLCP activity and less phosphorylated myosin (Myosin-P), contributing to the loss of vascular
tone and relaxation of vessels. Under septic conditions, the relaxing events are enhanced, and the reduced vascular
contractility in resistance arteries is one of the main causes of hypotension. Importantly, the absence of changes in other
components included in the scheme (i.e., membrane receptors, calcium levels) does not mean that they are not compromised
in sepsis. PLC, phospholipase C; DAG, diacylglycerol; IP3, phosphatidylinositol 1,4,5-trisphosphate; MLCK, myosin light
chain kinase.

Although precise mechanisms remain undefined, inflammatory cytokines, high lev-
els of NO, produced mainly by the iNOS isoform, the impaired balance of ROS, and
the modulation of downstream targets, such as the soluble guanylate cyclase, potassium
and calcium channels, have been described as the main factors responsible for the car-
diovascular dysfunction in sepsis. The exposure to either IL-1β and TNF-α caused a
concentration-dependent reduction in calcium-induced contraction and decreased the
levels of the phosphorylated MLCP in the superior mesenteric artery of rabbits, suggesting
that both cytokines can lead to reduced ROCK activity [103,104]. We have previously
demonstrated that the blocking of NO production and the inhibition of the soluble guany-
late cyclase can restore the vascular reactivity and increase the phosphorylation of the
MLCP in resistance mesenteric arteries from endotoxemic rats [101]. In fact, at least part of
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the relaxation induced by NO in both vascular and non-vascular smooth muscles might
be due to its inhibitory action on the RhoA/ROCK pathway [105,106]. On the other hand,
Rho proteins can also regulate the expression of iNOS in vascular smooth muscle cells
stimulated by IL-1β [97].

Table 2. The involvement of Rho proteins and downstream pathways in the cardiovascular function as found in sepsis-
associated experimental models.

System and Model Component(s)
Evaluated

Experimental Setup Impact on the System and Main
Findings a

Ref.

SM artery;
Rats;
LPS b

ROCK Direct inhibition +
functional + molecular

approaches

Upregulation of ROCK enhances
contractile responses.

[98]

RhoA, ROCK Indirect modulation +
direct inhibition +

functional + molecular
approaches

RhoA is reduced; activation of the
pathway improves contractile

responses.

[110]

SM artery;
Rabbits;
IL-1β c/TNF-α c

ROCK, MLCP Direct inhibition +
functional + molecular

approaches

Inhibition of ROCK contributes to
IL-1β-induced vascular

hyporeactivity.

[103]

ROCK, MLCP Functional + molecular
approaches

Downregulation of ROCK contributes
to TNF-α-induced vascular

hyporeactivity.

[104]

RM artery;
Rats;
LPSb

RhoA, ROCK, MLCP Direct inhibition +
functional + molecular

approaches

Upregulation of Rho components fails
to trigger contractile responses;

RhoA/ROCK is inhibited by the nitric
oxide/guanylate cyclase pathway.

[101]

Aorta;
Rats;
LPS b

MLC, ROCK Functional + molecular
approaches

Hyporeactivity to ET-1 does not
involve the RhoA/ROCK pathway.

[100]

RhoA, ROCK, MLCP Direct inhibition +
functional + molecular

approaches

The activity of RhoA increases
increases (1–2 h) and reduces (4–6 h)
after LPS. Norepinephrine-induced
vasoconstriction is more sensitive to

ROCK inhibition.

[102]

Aorta;
Rats;
CLP

RhoA, ROCK, MLCP Direct inhibition +
functional + molecular

approaches

Upregulation of RhoA and ROCK at
60 days after CLP; augmented

activation of RhoA/ROCK pathway
accounts for enhanced contractile

responses to angiotensin II.

[108]

Renal vascular bed and
blood pressure;
Rats;
LPS b

RhoA, ROCK, MLCP Direct inhibition +
functional + molecular

approaches
(includes in vivo

treatment/evaluation)

Increased RhoA/ROCK in the renal
vascular bed accounts for enhanced

pressor responses to vasopressin.

[109]

Femoral artery;
Mice;
CLP

MLCP Functional + molecular
approaches

Thromboxane A2-induced
vasoconstriction and phosphorylation

of MLCP were reduced 5 days after
CLP.

[107]

Pulmonary artery;
Rats;
LPS c

RhoA Direct activation +
molecular approaches

RhoA activation prevents vascular
damage/F-actin rearrangement.

[96]

VSMC;
Rats;
LPS/IL-1β c

RhoA, ROCK, Rac1,
MLCP

Direct inhibition +
molecular approaches

LPS reduces RhoA activity. IL-1β
increases RhoA activity. ROCK
negatively modulates NF-κB.

[97]

Blood pressure;
Rats;
CLP

RhoA, ROCK Direct inhibition +
systemic effects +

molecular approaches
(includes in vivo

treatment/evaluation)

RhoA/ROCK pathway is
up-regulated; inhibition of ROCK

improves blood pressure.

[35]
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Table 2. Cont.

System and Model Component(s)
Evaluated

Experimental Setup Impact on the System and Main
Findings a

Ref.

Cardiomyocytes;
Rats;
LPS c

RhoA Molecular approaches RhoA expression and activity are
further increased by LPS and nitric

oxide in tissues from diabetic animals.

[111]

Heart;
Mice;
LPS b

Rac1 Molecular approaches Lack of Rac1 reduces inflammatory
markers, including TNF.

[112]

ROCK Direct inhibition +
functional + molecular

approaches
(includes in vivo

treatment)

Inhibition of ROCK improved
contractile function and mitochondrial

respiration.

[113]

Cardiomyocytes and
heart;
Mice;
LPS b,c

Rac1 Functional + molecular
approaches

Rac1 expression and activity are
increased; lack of Rac1 reduces TNF

and improves cardiac function.

[114]

H9C2;
TNF-α c

RhoA, Cdc42, Rac1 Direct inhibition +
molecular approaches

TNF-α increases RhoA, and ROCK
inhibition attenuates mitochondrial

fragmentation.

[115]

Heart and H9C2;
Rats;
LPS

RhoA, ROCK Indirect modulation +
molecular approaches

(includes in vivo
treatment)

RhoA/ROCK proteins are increased,
and the reduction is associated with

improved cardiac function and
reduced apoptosis.

[116]

Papillary muscle;
Rats;
CLP

ROCK Indirect modulation +
functional + molecular

approaches
(includes in vivo

treatment)

Block of ROCK avoids intermedin
1-53-mediated cardiac troponin I

phosphorylation.

[117]

a: only those conclusions directly associated with Rho proteins were included. b: LPS was administered in vivo (the time for in vitro
evaluation varied between studies). c: LPS, IL-1β or TNF-α were incubated in vitro. VSMC, vascular smooth muscle cells. Abbreviations:
CLP, cecal ligation and puncture; H9C2, rat cardiomyoblast cells; LPS, lipopolysaccharide; MLC, myosin light chain; MCLP, myosin light
chain phosphatase; RM, resistance mesenteric (artery); SM, superior mesenteric (artery).

Rho-associated signaling pathways were also evaluated in animals subjected to the
CLP model, and the studies reinforce the idea that the role of Rho proteins and its down-
stream targets in the pathogenesis of the vascular dysfunction in sepsis also depends on
the time, the vascular system, and the vasoactive agents evaluated. For instance, at five
days after the septic insult induced by CLP, mice femoral arteries presented unaltered
contractile responses to phenylephrine and norepinephrine, but these arteries were less
reactive to the thromboxane receptor agonist U46619 and displayed reduced levels of
ROCK-dependent phosphorylation of MLCP [107]. On the other hand, aortas obtained
from rats at 60 days after the CLP surgery showed augmented expression levels of RhoA
and ROCK and presented enhanced contractile responses to angiotensin II [108], suggesting
that Rho proteins and calcium sensitization can be involved in the development of late
cardiovascular diseases among patients who survive sepsis. The vasoconstrictor effects
of arginine vasopressin and terlipressin, two selective agonists of V1a receptors, a GPCR
that stimulates both phospholipase C and RhoA proteins, were also potentiated in the
superior mesenteric arteries of both LPS-treated rabbits and CLP-subjected rats, in a way
entirely dependent on ROCK-mediated MLCP phosphorylation [104]. Interestingly, we
did previously demonstrate that the enhanced activation of Rho-kinase by vasopressin in
the renal vascular bed contributes to the maintenance of the pressor effects mediated by
V1a receptors during endotoxemic shock in rats [109].

Understanding the pathophysiological aspects involved in the vascular component
during septic shock may allow the development of efficient clinical strategies for the
management of severe hypotension and poor blood perfusion, which end up triggering
multiple organ failure and high rates of lethality in this syndrome. Unlike endothelial cells,
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from the prism of vascular contractility, most of the experimental studies indicate that
sepsis is associated with a depressed functionality of the RhoA/ROCK pathway (Figure 3B),
making Rho proteins valuable target candidates (see Table 2 for an overview of the main
findings in this topic). For instance, the indirect pharmacological modulation of ROCK
by the flavonoid oroxylin-A proved to be able to restore the LPS-induced suppression of
RhoA activity in arteries from rats [110]. Nonetheless, the administration of the selective
ROCK inhibitor fasudil to rats subjected to the CLP surgery ameliorated acute lung injury,
improving several systemic biochemical and inflammatory markers of sepsis severity,
including the systemic arterial pressure [35].

5. Rho Proteins and Their Impact on the Heart Function in Sepsis-Related
Experimental Approaches

The pump heart function is crucial for cardiovascular homeostasis and is also impaired
in sepsis, as characterized by reduced left ventricular contractility and deficient relaxation
in humans [118,119] and animals, i.e., [120,121]. Decreased responsiveness to sympathetic
regulation, increased levels of proinflammatory substances, oxidative stress, impaired
endothelial function, augmented migration of leukocytes, and mitochondrial dysfunction,
among others, have been associated with impaired myocardial contractility, impaired
coronary perfusion, and heart arrhythmia in sepsis and septic shock (for review see [122]).
Notwithstanding, the detailed interplay between these multiple events remains to be
elucidated. Small G proteins are also present in the healthy and diseased hearts, and
their multiple functions include the regulation of apoptosis, gene expression, intercellular
communication, hypertrophy, and cardiac remodeling, i.e., [123–131].

In recent years, Rho proteins, mainly RhoA and Rac1, have also been involved in sepsis-
induced cardiac dysfunction. Soliman and co-workers showed that the levels of RhoA
increased in rat ventricular cardiomyocytes after LPS-induced iNOS expression, a process
fully reproducible when the cells were incubated with a NO donor, without LPS, indicating
that high amounts of NO, such as the amount that occurs in sepsis, can upregulate the
RhoA protein in isolated cardiomyocytes [111]. The systemic administration or in vitro
incubation of LPS also modulated the activity of Rac1 in the heart and cardiomyocytes of
mice [112,114]. Moreover, the use of knockout mice indicated that Rac1 is directly involved
in LPS-induced TNF-α expression, the activation of NADPH oxidase, ROS production, and
the stimulation of ERK1/2 and p38 MAPK pathways [112,114]. Importantly, the absence
of Rac1 also reduced the loss of cardiac contractility found in endotoxemic animals [114].
Interestingly, at 4 h after the administration of LPS, Rac1 activity was higher in the heart of
males than in cardiac samples from female mice, and this difference was abolished when
the male mice were pretreated with 17β-estradiol [112]. If, on the one hand, the activity of
Rac1 appears to explain at least part of the cardiac dysfunction in sepsis, on the other hand,
the activation of Ras proteins and downstream ERK signaling pathways were described as
the putative mechanism of cardioprotection promoted by TLR 9 in mice subjected to the
CLP surgery [132].

Even though RhoA and ROCK appear to have minor effects on calcium sensitization
processes in the cardiac muscle, this pathway has also been directly and indirectly involved
in the pathophysiology of sepsis-induced cardiac dysfunction. For instance, the admin-
istration of fasudil reduced biochemical markers of inflammation and oxidative stress,
improved the mitochondrial dynamics limiting mitochondrial fission and the phosphory-
lation of dynamin-related protein-1 (Drp1), and ameliorated the left ventricular function
of hearts from endotoxemic mice [113]. Interestingly, the administration of LPS in rats
and the incubation of cardiomyocytes with either LPS or TNF-α increased mitochondrial
Drp1, an effect associated with augmented levels of RhoA in cells and fully inhibited by
ROCK inhibition [115]. In fact, looking from the prism of cardiac dysfunction, the inactiva-
tion of the RhoA/ROCK pathway appears to be desirable and has been associated with
beneficial effects (the last part of Table 2 also provides the main findings associating Rho
proteins and the cardiac function in sepsis-associated models). For instance, neuregulin-1,
a member of the epidermal growth factor family involved in cardiovascular function and
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disorders [133–135], attenuated the percentage of apoptotic cardiomyocytes and reduced
the depression of heart function induced by LPS administration in rats, matching its ability
to prevent the LPS-increased expression of RhoA and ROCK in cardiac cells [116]. However,
when administered in CLP-subjected rats, intermedin 1–53, a recently discovered member
of the calcitonin gene-related peptide superfamily with biological effects on heart function
(for review, see [136]) prevented hypotension, improved blood flow perfusion in vital
organs, and avoided the loss of contractile responses by the cardiac papillary muscle, with
the last effect being associated with high levels of phosphorylation of troponin inhibitory
subunits. Importantly, the authors suggested that the protective effects of intermedin 1–53
on cardiac function were significantly reduced in animals that also received the ROCK
inhibitor Y-27632 [117].

6. Rho Proteins and Their Impact on Sepsis Outside the Cardiovascular System

Multiple organ failure is the principal outcome of septic shock [137]. Often, even those
organs that are not the source of the disease are affected by the systemic inflammatory re-
sponse. The kidneys, lungs, liver, gastrointestinal system, and brain are the most frequently
affected throughout sepsis. It is well accepted that much of the existing damage occurs,
at least in part, as a consequence of local vascular changes in response to inflammatory
mediators, poor blood perfusion, and the disruption of the endothelial barrier. For instance,
vascular inflammation can lead to a harmful low blood flow in the brain with acute conse-
quences, as characterized by delirium in humans [138]. However, cognitive impairment has
been described as a consequence of cerebral injury in sepsis-surviving animals [139–141].
The activation of RhoA was demonstrated as a key event for endothelial dysfunction in
brain microvascular cell lines after incubation with LPS [65,88]. Moreover, the repeated
administration of ROCK inhibitors for seven days resulted in a dose-dependent reduction
in the amounts of various inflammatory mediators in the brains of rats subjected to CLP
and improved the performance of the animals in cognitive tasks [139]. Interestingly, a
similar improvement in learning and memory was found in CLP-subjected mice treated
with the sesquiterpene β-elemene, which was associated with reduced levels of brain
inflammation and decreased Rac1 activity in the mouse hippocampus [142].

Considering that most sepsis cases begin due to pneumonia [143], the lungs suffer the
impact of exacerbated inflammatory processes starting in the initial stages of sepsis. Sepsis
draws lungs’ hyperpermeability and consequent edema, which culminate in respiratory
failure. The RhoA/ROCK pathway activation seems to be important in lung inflammation,
since the pharmacological inhibition of ROCK decreases neutrophil migration and lung
edema in experimental models of sepsis [35,144–147]. Besides, researchers found increased
levels of apoptosis in septic pulmonary tissue and pulmonary endothelial cells, and ROCK
inhibition can prevent this situation [148,149]. Chen and co-workers suggested that the
inhibition of the RhoA/ROCK pathway is an essential part of the mechanisms by which the
coumarin compound esculetin improves LPS-induced inflammatory damage in the lung
epithelium [150]. In recent years, microRNAs have been introduced as an experimental
strategy to modulate RhoA/ROCK-mediated events. The administration of microRNA can
selectively regulate the expression of diverse mRNA, modulating cell responses. In this
way, the use of microRNA in sepsis and endotoxemia can reduce pulmonary inflammation
by inhibiting RhoA/ROCK activation [151,152].

Another hallmark of sepsis is the disseminated intravascular coagulation and co-
agulopathy [153]. Interestingly, anticoagulant effects can account for at least part of the
beneficial effects of ROCK inhibitors against LPS-induced lung injury [64]. It was demon-
strated that unfractionated heparin reduces RhoA-GTP levels in the lungs, improving
LPS-induced pulmonary injury [34]. This finding suggests that the beneficial effects of
heparin in sepsis can go further than its anticoagulant properties. Platelets are critical
players in hemostasis and are among the first blood cells to accumulate at an injured site.
Thus, platelets can be excessively activated under endothelial malfunction, such as the one
that occurs in sepsis. The overconsumption of platelets in sepsis can aggravate endothelial
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dysfunction and lead to thrombocytopenia, a condition associated with bleeding, organ
dysfunction, and poor prognosis (for review, see [154]). Notably, the small Rho proteins can,
directly and indirectly, be involved in the regulation of platelet aggregation [17,155,156].
The relevance of RhoA-mediated signaling transduction for the activity of platelets in sepsis
has been suggested in studies involving both animals and human subjects. In animals, it
was demonstrated that fasudil administration to mice treated with LPS reduced the rolling
and adhesion of platelets to the endothelium of femoral arteries [157]. In humans, it was
found that the incubation with Y-27632 was able to significantly reduce arachidonic acid-
induced platelet aggregation in blood samples obtained from both septic and non-septic
patients, revealing that the RhoA/ROCK pathways remain functional in platelets during
the septic condition [158].

Although scarcely investigated, septic shock and experimental models of sepsis can
result in a dysfunctional gastrointestinal system [159,160]. The regulation of the epithelial
barrier and calcium sensitization by Rho proteins have been involved in both physiological
and inflammation-associated disorders in the intestinal system [161–167]. The enhanced
activity of RhoA was described as a determinant step for diminished epithelial resistance,
leading to reduced levels of occludin and E-cadherin found in Caco-2 cells previously
incubated with LPS [68]. Interestingly, the severe damage of intestinal epithelial tight
junctions induced by the association of D-galactosamine and LPS in mice was prevented
by ROCK inhibition, which also restored the occludin levels in the animals [168]. In guinea
pigs, the intravenous injection of LPS resulted in spontaneous relaxation of the colonic
muscle, a response that almost vanished with fasudil [36]. The treatment with Y-27632 also
reduced apoptotic cell levels in the ileum of infant rats after the LPS challenge [169]. In
addition, the degree of intestinal injury, levels of tight junction proteins, and markers of the
inflammatory response were all improved in CLP-subjected mice treated with the flavanone
glycoside naringin, an effect associated with the inhibition of RhoA and ROCK activities in
the ileum [170]. Moreover, pleiotropic actions of simvastatin include the downregulation
of both RhoA and ROCK in the intestinal tissue of CLP-subjected rats, and this effect may
explain, at least in part, how simvastatin prevents the intestinal barrier disruption in septic
animals [171].

The maintenance of liver function is critical for survival in sepsis (for review, see [172]).
Thus, experimental studies involving the systemic effects of sepsis frequently include the
measurement of hepatic biomarkers. Nevertheless, few studies have explored the biological
role and the impact of the pharmacological modulation of Rho proteins in liver function
in experimental models of sepsis. As described for different tissues, high levels of RhoA
and Ras proteins were found in the liver of mice subjected to CLP [173]. Both fasudil and
Y-27632 can prevent LPS-induced liver dysfunction in mice, resulting in reduced apoptosis,
diminished rolling, the adhesion and accumulation of neutrophils, and improved blood
perfusion [37,174]. The inhibition of ROCK also reduced proinflammatory and oxidative
stress responses and improved the mitochondrial function in the liver of endotoxemic
mice [175]. In contrast, the activity of Rac1 in hepatocytes was suggested as a pathway
that continuously modulates inflammatory and immune responses, with both local and
systemic repercussions [176].

Acute kidney injury is one of the most common clinical findings in sepsis (for review,
see [177]). As previously described, the exacerbated activation of the RhoA/ROCK pathway
can be involved in the maintenance of vascular responses to vasoconstrictors in the kidneys
of endotoxemic rats [109]. However, studies also indicate that the modulation of Rho
proteins can be essential for renal function in sepsis. For instance, evidence of an augmented
activity of ROCK and protective effect of ROCK inhibitors against LPS-induced renal failure
was found in mice and further associated with a proinflammatory modulation evoked
by the RhoA/ROCK pathway on NF-κB activation [178]. Moreover, it was described
that inflammatory responses of renal endothelial cells to TNF include caspase-dependent
cytoskeletal changes accompanied by activation of RhoA [179]. Interestingly, the inhibition
of ROCK also avoided the augmented permeability induced by TNF in mouse renal
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endothelial cells and human glomerular endothelial cells [180]. Both LPS- and adriamycin-
induced podocyte cytoskeleton disruption and apoptosis were associated with reduced
activity and diminished expression levels of RhoA, reinforcing the putative contribution of
Rho proteins for the development of renal dysfunction in sepsis [181]. Indeed, multiple Rho
proteins can be involved in this process, since both LPS and NO increased the podocyte
permeability to albumin in a Cdc42/Rac1-dependent manner, and the genetic depletion
of Rac1 in the bone marrow-derived macrophages protect mice against the renal injury
induced by LPS administration [182].

7. Final Remarks and Conclusions

Although many efforts have been made in basic research to prove how Rho proteins
and downstream pathways contribute to the development of sepsis and septic shock, it
is likely that the lack of system selective agents, perhaps acting as activators or inhibitors
on distinct Rho proteins and downstream targets, is the key missing point, preventing
this pathway from being adequately explored in the clinical management of sepsis. In
fact, studies in this area have been overly focused on RhoA, while other small GTPases
such as RhoB and RhoC, which also have regulatory effects on cardiovascular biology and
may share downstream targets such as ROCK (i.e., [183–186]), remain scarcely explored
in sepsis-associated experimental models. For instance, RhoB was found to be increased
in macrophages, lung, liver, and kidney of LPS-treated mice, and the knockdown of this
protein prevented the transcriptional activity of NF-κB [187].

The impaired activity of Rho-associated pathways, mainly increased activity of RhoA
and the inhibition of Rac1, are listed in several studies associated with experimental sepsis
models. Notably, the modulation of Rho signaling, such as with ROCK inhibitors, improved
the function of, or prevented damage in multiple organs, including the lungs, liver, kidneys,
and brain of animals subjected to septic insults, as illustrated in Figure 1. Although some
differences existed when distinct endothelial cell lines or experimental conditions were
evaluated, most experimental data indicate that Rho proteins can either be modulated by
proinflammatory cascades or modulators of the inflammatory response, contributing to
the endothelial barrier dysfunction existing in sepsis (Figure 2).

Although ROCK has been considered the main target of RhoA, this small GTPase
can interact and modulate the activity of different intracellular components, including
transcription factors, the mammalian Diaphanous homolog 1 (mDia) and profilin-1 signal-
ing pathway, and the type I phosphatidylinositol 4-phosphate 5-kinase isoforms, among
others [188–190]. Nonetheless, the pharmacological modulation of Rho proteins has been
limited to few agents that are able to inhibit only the RhoA/ROCK pathway, mainly acting
on ROCK. Moreover, drugs with direct effects on Rho proteins, including but not limited to
RhoA, Rac1, and Cdc42, remain to be further explored in sepsis. The association between
the spread distribution, multiple roles, and few pharmacological agents has hindered
the use of Rho proteins and downstream pathways as therapeutic targets. Despite the
accumulated knowledge and previous clinical trials in different fields, including the cardio-
vascular system, the only marketed drug in the United States containing a ROCK inhibitor,
named netarsudil, is an ophthalmic solution indicated for glaucoma [191]. Ripasudil has
similar uses in Japan [192]. Fasudil, one of the ROCK inhibitors used in several studies
included in this review, has also been used in Japan as an injectable formulation to reduce
cerebral vasospasm following subarachnoid hemorrhage [193] but is still unapproved by
other governmental regulatory healthy agencies. ROCK inhibitors, however, remain in
focus for different diseases, including some intractable ones, such as amyotrophic lateral
sclerosis [194,195]. Importantly, there are two isoforms of ROCK, named ROCK-I and
ROCK-II, which are widely expressed [196] and are not distinguished by the currently
available ROCK inhibitors. Moreover, although the MYPT-1 subunit of MLCP often ap-
pears as the only ROCK target explored in studies involving sepsis, ROCK has several
other downstream targets [197] that may be druggable and remain to be explored.
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Unlike endothelial cells, in the vascular smooth muscle cells, where the RhoA/ROCK
pathway acts as a calcium sensitization mechanism mediating contractile responses, most
of the studies indicate that the system is depressed (Table 2). The reduced activity of Rho
components decreases the inhibitory action of ROCK on myosin phosphatase, contributing
to vasodilation, vasoplegia, and the hypotensive state in septic shock (Figure 3). Thus,
considering the studies that explored the relationship between vascular reactivity and Rho
proteins in sepsis models, the activity of the RhoA/ROCK pathway should be enhanced
to increase the vascular tone during the septic insult. However, to improve endothelial
function, the desired effect appears to be the inhibition of RhoA and the activation of
Rac1. Together, these data clearly indicate the existence of tissue-specific differences in how
sepsis-mediated events modulate the activity of Rho proteins and correlated downstream
pathways. Thus, it appears that the development of strategies to adequately modulate
the activity of Rho proteins and their downstream pathways during the septic insult
depends on the development of innovative tools, such as drugs able to activate or inhibit
Rho proteins and related pathways selectively, refinements in mRNA-based therapeutics,
and continuous advances to improve our understanding about how the system works in
diseased systems.

Indeed, as detailed in this review, the majority of the studies presented in the literature
used only in vitro approaches, mainly cells exposed to punctual stimuli, such as LPS,
proinflammatory cytokines (TNF-α, IL-1β), or bacterial components (CNF1), creating an
experimental environment whose results need to be carefully evaluated and explored in
more complex models before being transposed to the septic condition. Moreover, the
conclusions taken from those studies that included experiments in animals were limited by:

(i) Drugs with pleiotropic or indirect effects, and unknown molecular mechanisms
regarding the effects on Rho proteins and downstream targets (i.e., statins);

(ii) A lack of information regarding which Rho protein is affected in different organs
during the ongoing sepsis;

(iii) A single point of evaluation;
(iv) The usage of LPS instead of more reliable experimental models of sepsis (i.e., CLP);
(iv) A lack of dose–response evaluation;
(vi) The use of acute treatments only, often as a pretreatment, missing details regarding

the benefices of a post-treatment and continuous therapy, and;
(vii) The absence of toxicological and safety evaluation.

In summary, the published data showing the involvement of small GTPases in ex-
perimental models potentially associated with sepsis indicate that Rho proteins and their
downstream pathways deserve further consideration as a valuable target for sepsis treat-
ment.
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