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Abstract. Glioma is a common malignant tumor of the 
central nervous system, accounting for ~50% of intracranial 
tumors. The current standard therapy for glioma is surgical 
resection followed by postoperative adjuvant radiotherapy 
and temozolomide (TMZ) chemotherapy. However, resistance 
to TMZ is one of the factors affecting prognosis. It has been 
reported that TNF receptor‑associated protein 1 (TRAP1) is 
overexpressed in numerous types of tumor and that interfering 
with its function may abrogate chemotherapy resistance. 
TRAP1 inhibitor Gamitrinib triphenylphosphonium (G‑TPP) 
and shRNA were used in the present study to suppress the 
function of this molecule in glioblastoma multiforme (GBM) 
cell lines. MTT assay was performed to evaluate the combined 
effect of G‑TPP and TMZ treatment. To investigate the under‑
lying mechanism responsible for this combined effect, the 
mitochondrial unfolded protein response (mtUPR), mitophagy, 
mitochondrial fusion and reactive oxygen species (ROS) were 
quantified using western blotting and immunofluorescence 
techniques. TMZ treatment induced apoptosis in GBM cells 
by activating the p53 pathway, whilst simultaneously down‑
regulating mitophagy and enhancing mitochondrial fusion. 
The latter may occur in order to compensate for the defect 
caused by downregulated mitophagy. Suppressing the func‑
tion of TRAP1 disturbed this compensatory mechanism by 
inducing mtUPR, which resulted in a burst of ROS formation 

and sensitized the GBM cells to the effects of TMZ treatment. 
Thus, suppressing the function of TRAP1 sensitized GBM 
cells to TMZ lysis by inducing mtUPR and the subsequent 
ROS burst. TRAP1 is therefore considered to be a promising 
target for GBM therapy.

Introduction

Glioblastoma multiforme (GBM) accounts for 40‑50% of all 
gliomas (1,2). Patients with GBM have a progression‑free 
survival of only 6.2‑7.5 months after diagnosis and a median 
survival of 14.6‑16.7 months (3‑5), while the 5‑year survival 
rate is only 10% (6). As a highly malignant tumor, recurrence 
of GBM following surgery is inevitable and adjuvant chemo‑
therapy following GBM resection is essential. Temozolomide 
(TMZ), a second‑generation alkylating agent, methylates the 
O6 guanine site, which causes a G‑T mismatch during DNA 
replication (7). DNA repair mechanisms, such as mismatch 
repair systems are then activated, thereby triggering cell cycle 
checkpoint protein production and stress response‑related 
proteins, finally resulting in cell cycle arrest or apoptosis (8). 
Large‑scale clinical studies have demonstrated that adherence 
to a TMZ chemotherapy regime following surgery prolongs the 
survival of patients with GBM by 2‑4 months (3,9). However, 
due to the instability of the tumor cell genome, the expression 
of O6‑methylguanine‑DNA methyltransferase and the involve‑
ment of various different mechanisms facilitating apoptosis 
escape, chemotherapy resistance is the main factor affecting 
the efficacy of TMZ (10). Of the multiple studies aimed at 
enhancing TMZ efficacy, the present study has focused on heat 
shock protein 90 (Hsp90)‑related research.

According to the latest classification, the Hsp90 family 
includes five members, of which Hsp90AA1, Hsp90AA2 and 
Hsp90AB1 are mainly located in the cytoplasm, Hsp90B1 
in the endoplasmic reticulum and TNF receptor‑associated 
protein 1 (TRAP1) in the mitochondrial matrix with a few 
molecules present in the intermembrane space of mitochon‑
dria (11‑13). Although the members of the Hsp90 family have a 
similar structure, TRAP1 has its own specific characteristics. 
It consists of four domains, mitochondria targeting domain 
(MTS), N‑terminal domain (NTD), middle domain (MD) 
and C‑terminal domain (CTD; Fig. 1) (11) of which it is MTS 
that is the mitochondrial targeting sequence. Thus, TRAP1 
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precursors are targeted to mitochondria and, after passing 
through the inner membrane, the MTS sequence is cleaved by 
mitochondrial processing peptidase to form mature TRAP1. 
The other domains have different functions as follows: NTD 
binds and hydrolyzes ATP (11,14), MD acts as a substrate 
protein or chaperone‑binding domain (11,15) and CTD 
contains a homodimerization binding domain that regulates 
N‑terminal ATPase activity (11,16). This is necessary for the 
ATP binding and ADP release cycle. Changes to the dimer 
conformation of Hsp90 members help to shape the structure of 
the substrate proteins (11). 

A previous study demonstrated that TRAP1 has multiple 
functions in mitochondria, for example, playing a role in 
the intra‑mitochondria protein control system (17), regu‑
lating the opening of the permeability transition pore by 
interacting with cyclophilin D (13,18) and influencing the 
mitochondrial respiratory process by interacting with mito‑
chondrial respiratory chain complexes (19). In the present 
study, suppressing the function of TRAP1 was shown to 
sensitize GBM cells to TMZ therapy. Furthermore, treatment 
with the mitochondrial‑targeting Hsp90 inhibitor Gamitrinib 
triphenylphosphonium (G‑TPP) together with TMZ exerted an 
additive effect in reducing the viability of glioblastoma cells.

Materials and methods

Cell culture. SHG44, U251‑MG and U87‑MG (glioblastoma 
of unknown origin) glioblastoma cell lines were obtained 
from the Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences and were grown in DMEM culture 
medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented 
with 10% fetal bovine serum (Thermo Fisher Scientific, Inc.).

Reagents and antibodies. TMZ and G‑TPP were purchased 
from MedChemExpress company and the MTT assay 
was obtained from MilliporeSigma. The MitoTracker™ 
(cat. no. 7512), Hoechst 33342 (cat. no. H3570) and 
LysoTracker™ (cat. no. L7526) were all obtained from Thermo 
Fisher Scientific, Inc. RIPA buffer (cat. no. P0013B) and 
horse serum (cat. no. C0262) were purchased from Beyotime 
Institute of Biotechnology. The antibodies used in the 
present study were as follows: anti‑Hsp10 (cat. no. ab210681; 
Abcam), anti‑phosphorylated‑ubiquitin [serine 65 (Ser65) 
cat. no. ABS1513‑I] from Merck KGaA, anti‑ubiquitin 
(cat. no. 13‑1600) from Thermo Fisher Scientific, Inc., anti‑β 
actin (cat. no. 60008‑1‑Ig), anti‑Bax (cat. no. 50599‑2‑Ig), 
anti‑PTEN‑induced kinase 1 (PINK1; cat. no. 23274‑1‑AP), 
anti‑caspase‑3 (cat. no. 19677‑1‑AP), anti‑caspase‑9 
(cat. no. 10380‑1‑AP), anti‑Hsp60 (cat. no.15282‑1‑AP) and 
anti‑p53 (cat. no. 60283‑2‑Ig) from ProteinTech Group, 
Inc., goat anti‑mouse secondary f luorescent antibody 
(cat. no. F2761) and goat anti‑rabbit secondary fluorescent 
antibody (cat. no. A‑11012) from Thermo Fisher Scientific, Inc. 
and goat anti‑mouse, HRP‑conjugated secondary antibody 
(cat. no. SA00001‑1) and goat anti‑rabbit, HRP‑conjugated 
secondary antibody (cat. no. SA00001‑2) from ProteinTech 
Group, Inc.

MTT assays. Cells were seeded into 96‑well plates at a density 
of 1x104 cells/well and cultured with TMZ or G‑TPP, after 

which 20 µl MTT solution (5 mg/ml) was introduced into each 
well. After 4 h incubation in the CO2 incubator at 37˚C, 150 µl 
DMSO was added to each well. The plates were assessed using 
a CLARIO star microplate reader (BMG Labtech GmbH) at 
an absorbance of 570 nm. 

Immunofluorescence (IF) assay. Cells grown on coverslips 
in 24‑well plates were treated with the different agents. 
After staining with MitoTracker for 30 min in CO2 incubator 
at 37˚C, the coverslips were rinsed with PBS and fixed with 
4% (w/v) paraformaldehyde for 25 min followed by a PBS 
rinse. Permeabilization with 0.1% (v/v) Triton X‑100 for 
7 min was followed by blockade with 10% horse serum for 
another 30 min at room temperature. Following incubation 
with anti‑p53 or anti‑Hsp60 antibodies (1:100) at 4˚C for 12 h, 
the coverslips were incubated with fluorescent secondary 
antibodies (1:200) for 30 min at room temperature, then rinsed 
with cold PBS and stained with Hoechst 33342 according to 
the manufacturer's instructions for 7 min before rinsing with 
PBS again. A Revolve Hybrid Microscope (Discover ECHO) 
was used for image capture. Images were further processed 
by ImageJ Software version 1.52s (National Institutes of 
Health) to assess the intensity of IF, as well as the mitochon‑
drial parameters. For the evaluation of mitochondrial fusion, 
three images in each treatment group from three independent 
experiments were evaluated using the ImageJ Software and 
three parameters were used to assess the level of mitochondrial 
fusion as follows: The mean size of mitochondrial network 
(MS), the mean length of mitochondria (ML) and the number 
of mitochondrial nets/individual mitochondria (N/I).

Western blot (WB) analysis. Cells exposed to the different 
agents were harvested, washed at room temperature with 
cold PBS and lysed with 80 µl RIPA buffer. Cell lysates were 
centrifuged at 4,500 x g for 10 min at 4˚C and the superna‑
tant proteins were harvested. A total of 10 µg proteins were 
separated on 12 or 15% (w/v) SDS‑polyacrylamide gels and 
transferred to Immobilon™‑P transfer membranes (EMD 
Millipore). Next, 10% (w/v) skimmed milk was used to block 
the membranes for 30 min at room temperature, before they 
were incubated with primary antibodies (anti‑Hsp10, anti‑phos‑
phorylated‑ubiquitin, anti‑ubiquitin, anti‑β‑actin, anti‑Bax, 
anti‑PINK1, anti‑caspase‑3, anti‑caspase‑9, anti‑Hsp60 
or anti‑p53; 1:1,000) overnight at 4˚C. The next day, after 
rinsing with PBST, the membranes were incubated with goat 
anti‑mouse or goat anti‑rabbit HRP‑conjugated secondary 
antibodies (1:1,000) for 2 h at room temperature. After washing 
with PBST for three times, 10 min each, protein bands were 
visualized using the Syngene Bio Imaging System (Synoptics). 
β‑actin was used as loading control. Quantification of protein 
bands was performed using the ImageJ Software version 1.52s 
(National Institutes of Health). 

Knocking down TRAP1. shRNA sequences targeting human 
TRAP1 and the empty vector were purchased from Shanghai 
GenePharma Co., Ltd. The TRAP1 shRNA sequence was as 
follows: 5'‑CCG GCA GAG CAC TCA CCC TAC TAT GC‑TCG 
AGC ATA GTA GGG TGA GTG CTC TGT TTT TG‑3'. Plasmids 
were transduced into cells using transfection reagent (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  1246,  2021 3

instructions. Briefly, SHG44 cells grown in 6‑well plates were 
transfected with 4 µg TRAP1‑shRNA or empty vector control 
and 6 µl transfection reagent was added to each well. Cells 
were harvested 24 h later and samples were further analyzed 
by WB analysis. 

Apoptosis analysis. In order to evaluate the efficacy of TMZ 
and G‑TPP treatment on apoptosis, SHG44 cells grown in 
6‑well plates were exposed to 400 µM TMZ (20), 15 µM G‑TPP 
or 400 µM TMZ + 15 µM G‑TPP for 24 h, then washed with 
cold PBS for three times and trypsinized at room temperature 
for 5 min by 0.25% trypsin solution without EDTA. Apoptosis 
assays were performed using the Apoptosis Detection Kit 
(BD Biosciences) according to the manufacturer's instruc‑
tions. Cells were then counted using a Guava® easyCyte flow 
cytometer (Merck KGaA). 

Effects of combination treatment. A combination index (CI) is 
used to evaluate the synergistic effects of drugs according to the 
Chou‑Talalay method (21) as follows: Synergism, CI<1; additive 
effect, CI=1; antagonism, CI >1. In the present study, growth 
inhibition effects were evaluated by MTT assays on SHG44 
cells. To evaluate the effect of a combination treatment of TMZ 
and G‑TPP, independent assays were conducted with different 
concentrations of TMZ (200, 400, 800, 1,000 and 1,600 µM) 
and G‑TPP (5, 10, 15, 20, 30 and 40 µM) for 24 h and the 
growth inhibition effect of each treatment group was evaluated 
by MTT assays. Moreover, 15 µM G‑TPP was combined with 
difference concentrations of TMZ (200, 400 and 800 µM) and 
in each independent assay, the two agents were added together 
simultaneously. The growth inhibition effect was evaluated by 
MTT following 24 h of treatment. The CI was calculated using 
CalcuSyn version 1.0.1 (Biosoft).

Statistical analysis. Data from three independent experiments 
were collected and analyzed using SPSS 22.0 (IBM Corp.) 
and Student's t‑test. One‑way ANOVA followed by Dunnett's 
post hoc test was also used to conduct multiple comparisons 
using Graphpad Prism 7.00 (GraphPad Software, Inc.). Data 
are presented as the means ± standard deviation and P<0.05 
was considered to indicate a statistically significant difference.

Results

Inhibition of TRAP1 sensitizes GBM cells to TMZ. G‑TPP 
combines the ATPase inhibition module of the Hsp90 
inhibitor, 17‑allylamino‑17‑demethoxy‑geldanamycin and the 

mitochondrial targeting portion of TPP. This enables the drug 
to target and concentrate in the mitochondria and also exert 
the Hsp90 inhibitory function (22). In the MTT assay, G‑TPP 
and TMZ mediated a significant concentration‑dependent 
inhibitory effect on the viability of the GBM cell line, SHG44 
(Fig. 2A). When the two agents were combined, cell viability 
was significantly more inhibited, and the CI analysis indicated 
an additive effect (Fig. 2B). When TRAP1 was knocked 
down by shRNA, the GBM cells were sensitized to TMZ 
(Fig. 2C) and WB revealed that the levels of expression of 
apoptosis‑related proteins were increased (Fig. 2D). In the 
flow cytometric apoptosis assay, the degree of apoptosis in 
the combination treatment group was significantly increased 
(Fig. 2E). These results demonstrate that inhibition of TRAP1 
sensitizes GBM cells to TMZ and indicate the existence of an 
underlying complementary pathophysiological process that is 
responsible.

TMZ induces apoptosis of GBM cells by activating the p53 
pathway and concurrently downregulates PINK1. The mecha‑
nism of TMZ‑induced apoptosis in GBM cells was evaluated. 
After exposing GBM cell lines, SHG44 and U87 to titrated 
concentrations of TMZ, a significant increase in the expres‑
sion of stress protein p53 was observed, which was confirmed 
by WB and IF assays. The co‑localization analysis indicated 
that the p53 protein predominantly accumulated in the nucleus 
(Fig. 3A), which is consistent with the known role of p53 as an 
important nuclear transcription factor. 

Downstream, upregulation of the pro‑apoptotic Bcl‑2 
family member Bax was observed. Previous studies have 
reported that p53 induces apoptosis by promoting the 
transcription of Bax (23,24). Downstream of Bax the acti‑
vation of the apoptosis‑executing protein caspase‑3 was 
observed (Fig. 3B). In addition, PINK1 expression was 
markedly downregulated by TMZ in GBM cells. The func‑
tion of PINK1 was evaluated with an antibody specific for 
phosphorylated‑ubiquitin (Ser65). The phosphorylating 
activity of PINK1 was identified to be downregulated by 
TMZ (Fig. 3C). Furthermore, staining of lysosomes and 
mitochondria demonstrated a decreased co‑localization of the 
two organelles in the TMZ treatment group, which indicated 
the downregulation of mitophagy (Fig. 3D). Notably, when 
the expression levels of p53 and PINK1 were evaluated in 
the p53 mutant GBM cell line, U251, the upregulation of p53 
and PINK1 was observed under the TMZ treatment, which 
indicated that p53‑PINK1 regulation may only exist in cell 
line with wild‑type p53 (Fig. 3E). 

Figure 1. Domain structure of TNF receptor‑associated protein 1. MTS, mitochondria targeting domain; NTD, N‑terminal domain; MD, middle domain; 
CTD, C‑terminal domain.
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Figure 2. (A) Following treatment of GBM cell line SHG44 with TMZ and G‑TPP the inhibition of cell viability was shown to be concentration‑dependent. 
(B) Combination treatment with TMZ and G‑TPP significantly inhibited the viability of GBM cells. Combination index analysis indicated that there was a 
synergistic effect of treatment with the two agents. Point 1: G‑TPP (15 µM) + TMZ (200 µM) for 24 h; Point 2: G‑TPP (15 µM) + TMZ (400 µM) for 24 h; 
Point 3: G‑TPP (15 µM) + TMZ (800 µM) for 24 h. (C) Knocking down TRAP1 with shRNA may enhance the chemotherapeutic efficacy of TMZ to GBM 
cells. (D) Western blot confirmed that the combined treatment led to increased expression of the apoptosis‑related proteins Bax, cleaved caspase‑9 and cleaved 
caspase‑3. (E) Flow cytometry demonstrated that the proportion of apoptosis in the group treated with both drugs increased significantly when compared 
with that of the TMZ group. *P<0.05; **P<0.01; ***P<0.001. GBM, glioblastoma multiforme; G‑TPP, Gamitrinib triphenylphosphonium; TMZ, temozolomide; 
Fa, fraction affected; KD, knockdown; TRAP1, TNF receptor‑associated protein 1.
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Figure 3. (A) The expression of p53 in glioblastoma cell lines SHG44 and U87 was significantly upregulated following TMZ treatment. In the cell immuno‑
fluorescence assay, p53, nucleus and mitochondria were stained green, blue and red, respectively, which indicated that the upregulated p53 predominantly 
accumulated in the nucleus following TMZ treatment (scale bar, 80 µm). (B) Following treatment with TMZ, the upregulation of p53 and the activation of its 
downstream apoptotic pathways mediated by the Bcl‑2 family was observed. (C) In GBM cells stimulated by TMZ, downregulation of PINK1 was observed, 
as well as a decreased level of Ser‑65 site phosphorylated ubiquitin that indicated the impaired function of PINK1. (D) Following treatment with TMZ, the 
co‑localization of lysosome (green) and mitochondria (red) decreased, which indicated the downregulation of mitophagy. The nucleus was stained blue (scale 
bar, 80 µm). (E) In the p53 mutant U251 cells, TMZ treatment increased the level of p53 and PINK1. (F) A total of 62.47% cells of the control group were 
included in the R3 gate, while 66.78% of the TMZ treatment group and 89.63% of the TMZ + G‑TPP group were in the same R3 gate. The level of ROS in 
GBM cells in the TMZ treatment group was not statistically different from that in the control group (P=0.2892), while the level of ROS in the G‑TPP and 
TMZ combined treatment group was significantly higher than the TMZ group (P=0.0041). (G) Following TMZ treatment, the level of mitochondrial fusion of 
glioblastoma cells was increased. The mean size of the MS was elevated in SHG44 and U87 cells, and the mean ML in U87 cells was also increased, although 
the difference in the number of N/I was not significantly different between the two groups (scale bar, 80 µm). *P<0.05; **P<0.01; ***P<0.001. GBM, glio‑
blastoma multiforme; G‑TPP, Gamitrinib triphenylphosphonium; TMZ, temozolomide; CI, combination index; TRAP1, TNF receptor‑associated protein 1; 
PINK1, PTEN‑induced kinase 1; p, phosphorylated; Ubi, ubiquitin; ROS, reactive oxygen species. MS, mitochondrial network; ML, length of mitochondria; 
N/I, mitochondrial nets/individual mitochondria.
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Mitophagy is an important aspect of the mitochondrial 
quality control system. To evaluate mitochondrial function 
under the condition of downregulated mitophagy, intracel‑
lular ROS levels following TMZ treatment were assessed, but 
no difference was identified when compared with the control 
(Fig. 3F). Furthermore, mitochondrial morphology was assessed 
and the level of mitochondrial fusion in SHG44 and U87 cells 
was observed to be elevated following TMZ treatment (Fig. 3G). 
Currently, it is considered that mitochondrial fusion is a compen‑
satory mechanism for impaired mitochondrial function, which 
can achieve functional complementation between dysfunctional 
mitochondria. This restores mitochondrial function to a certain 
extent (25) and reduces ROS generated by mitochondrial 
dysfunction and the subsequent damaging reactions.

TRAP1 inhibition and TMZ treatment induce an exacerbated 
mitochondrial unfolded protein response (mtUPR) in GBM 
cells. The mtUPR was evaluated following TRAP1 knockdown 
using shRNA (Fig. 4A). The results indicated that TRAP1 
plays an important role in the protein quality control system in 

mitochondria. SHG44 cells were then treated with G‑TPP and a 
typical mtUPR was observed (Fig. 4B). IF assays to evaluate the 
level of Hsp60 expression also confirmed this effect (Fig. 4C). 
These findings are consistent with previous studies (26,27). 
Treatment with a combination of G‑TPP and TMZ resulted in a 
higher mtUPR when compared to treatment with G‑TPP alone, 
although no definite mtUPR occurred in cells that were treated 
with TMZ alone (Fig. 4D). This indicates that G‑TPP and TMZ 
act together in aggravating the mtUPR in GBM cells.

Combined treatment with G‑TPP and TMZ significantly 
increases the level of ROS in glioblastoma cells. It is generally 
hypothesized that upon exposure to mtUPR‑inducing factors, 
cells will increase mitophagy to remove damaged mitochon‑
dria, reduce the production of harmful metabolites and recycle 
material. This is exactly what was observed when TRAP1 was 
knocked down or G‑TPP was administered in the present study, 
particularly, elevated PINK1 expression and phosphorylated 
ubiquitin at the Ser65 site (Fig. 5A). However, due to the inhib‑
itory effect of TMZ on the expression of PINK1, mitophagy 

Figure 4. (A) The increased expression of Hsp10, Hsp60 and CLPP indicated that knocking down TRAP1 induced mtUPR. The efficiency of TRAP1 knockdown 
was ~60%. (B) G‑TPP treatment of glioblastoma cells induced mtUPR. (C) Cell immunofluorescence assay confirmed that the expression level of Hsp60 (red) 
in glioblastoma cells was significantly increased following G‑TPP treatment. Nuclei were stained blue (scale bar, 80 µm). (D) Increased expression of Hsp10, 
Hsp60 and CLPP was observed in the combined TMZ and G‑TPP treatment group. **P<0.01; ***P<0.001 vs. the indicated groups or control. TRAP1, TNF 
receptor‑associated protein 1; mtUPR, mitochondrial unfolded protein response; Hsp, heat shock protein; CLPP, caseinolytic mitochondrial matrix peptidase 
proteolytic subunit; G‑TPP, Gamitrinib triphenylphosphonium; TMZ, temozolomide; NC, negative control; NS, not significant. 
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(an essential aspect of the mitochondrial quality control 
system) could not take place in the presence of a combination 
treatment with G‑TPP and TMZ (Fig. 5B). When the extent of 
mtUPR exceeds the capacity of the compensatory mechanisms 
to maintain homeostasis in mitochondria, dysfunction of the 
mitochondrial system, such as fusion, occurs. This may be 
the underlying mechanism responsible for the increased level 
of mtUPR in cells treated with the combination of agents. 
Numerous damaged mitochondria with mtUPR that cannot 
be normally removed will affect mitochondrial metabolism 
and result in the production of increased quantities of delete‑
rious factors, such as ROS (28). Therefore, the ROS level was 
evaluated and TMZ treatment alone did not affect the level of 
intracellular ROS, although this increased significantly when 
TMZ was combined with G‑TPP (Fig. 3F). This is consis‑
tent with the above‑mentioned inference. It is believed that 
a large quantity of ROS damages mitochondria and nuclear 
DNA and induces apoptosis (29) and that there may also be a 
cyclic amplification effect consisting of: ROS, DNA damage, 
ROS (29). Aggravated mtUPR and the following ROS burst 
may be the mechanism by which TRAP1 inhibition sensitizes 
GBM cells to TMZ treatment.

Discussion

As the most malignant type of primary tumor of the central 
nervous system, glioblastoma is associated with a particularly 
poor prognosis (30). In the current regime for comprehensive 
therapy, chemotherapy plays an indispensable role and TMZ, 
as an effective chemotherapeutic agent verified by large‑scale 
clinical trials, remains the dominant drug for GBM chemo‑
therapy (30,31). However, prolonged TMZ chemotherapy results 
in the development of GBM resistance, which is an important 
factor affecting the efficacy of the drug (8,10). Therefore, there 
is an urgent need to develop appropriate adjuvant drugs for 

combination with TMZ chemotherapy to increase sensitivity 
and decrease resistance. TRAP1 became the focus of the 
present study as it is a molecule with an important role in 
the physiological and pathological processes of tumor cell 
biology. Studies have shown that TRAP1 is highly expressed 
in numerous types of cancer, indicating that this molecule may 
influence various shared behaviors of tumor cells (32,33). 

Previous studies have shown that TRAP1 is involved in the 
protein quality control system in mitochondria. Knocking down 
TRAP1 causes a typical mtUPR (17), which is consistent with the 
findings of the present study. Furthermore, studies have reported 
that TRAP1 reduces the accumulation of ROS in cells (34,35). 
These characteristics indicate that TRAP1 may represent an 
alternative target for sensitizing GBM to TMZ chemotherapy. 
In the present study, it was found that TMZ induced apoptosis 
by activating p53 and its downstream pathways. Moreover, two 
other effects induced by TMZ are of note. 

Firstly, on treatment with TMZ, tumor cells downregulate 
PINK1 expression and activity, which may in turn down‑
regulate mitophagy. As one of the main pathways for initiating 
mitophagy, PINK1 anchors to the surface of mitochondria, phos‑
phorylates the ubiquitin at Ser65 and recruits Parkin to conduct 
mitophagy (36). The observed downregulation of PINK1 
expression and phosphorylating ability implies that the effect 
of TMZ downregulates mitophagy. Studies have shown that p53 
binds to the PINK1 promoter region and blocks its transcrip‑
tion, which results in the downregulation of mitophagy (37). 
This is consistent with the TMZ‑induced upregulation of p53 
expression and aggregation in the nucleus in present study. 

Secondly, the ROS level of tumor cells did not increase 
significantly while the level of mitochondrial fusion did 
increase in present study. Typically, decreased mitophagy 
will be accompanied by the reciprocal accumulation of 
damaged mitochondria, thus increasing the level of harmful 
metabolites, such as ROS in cells (38). However, in the case 

Figure 5. (A) Knocking down TRAP1 or treatment with G‑TPP may upregulate the expression of PINK1 and p‑Ubi (Ser65). (B) When G‑TPP was combined 
with TMZ, the expression level of PINK1 was lower than the G‑TPP treatment group. TRAP1, TNF receptor‑associated protein 1; p‑Ubi, phosphorylated 
ubiquitin; G‑TPP, Gamitrinib triphenylphosphonium; TMZ, temozolomide; KD, knockdown; NC, negative control.
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of TMZ treatment, it is possible that the elevated level of 
mitochondrial fusion compensates for the downregulation 
of mitophagy in sustaining a healthy mitochondrial system. 
Suppressing the function of TRAP1 in the present study, either 
by G‑TPP treatment or by shRNA, may have overloaded this 
compensatory effect of mitochondrial fusion by inducing the 
mtUPR, which further exacerbated mitochondrial dysfunction 
and damage. The accumulation of dysfunctional or damaged 
mitochondria is always accompanied by the production of 
deleterious metabolites, such as ROS (39), which damage cells 
and induce apoptosis, as reported by a large number of earlier 
studies (40,41). In addition to inducing mitochondrial damage 
and nuclear DNA damage (42), ROS also activates the down‑
stream JNK pathway and other pathways, thereby inducing 
apoptosis (43). It is hypothesized that this is the underlying 
mechanism for sensitizing GBM cells with wild‑type p53 to 
TMZ, that is to say, by TRAP1 inhibition and the additive 
effect of TMZ and G‑TPP treatment (Fig. 6). However, as 
p53 is frequently mutated in GBM, the present study aimed 
to establish whether this mechanism continues to work in p53 
mutant GBM. U251, a cell line with mutant p53, was treated 
with TMZ and concentration‑dependent, increased expression 
levels of p53 and PINK1 were observed. The point mutation 
in the DNA binding domain of p53 in U251 cells impairs the 
affinity of p53 to DNA, which weakens the downregulation 
of PINK1 by p53. This result strengthens the hypothesis that 
p53 downregulates the transcription of PINK1 in the form 
of nucleus transcriptional factor and also indicates that the 
above‑mentioned mechanism may be ineffective in p53 mutant 
cell lines. 

The connections between the various pathways in tumor 
cells are complex. The present study cannot reveal all of the 
changes caused by TMZ treatment or interference of TRAP1, 
however, as a key molecule linking the mitochondrial protein 
quality control system and mitochondrial metabolism, TRAP1 
plays important roles in many physiological and pathophysi‑
ological cellular processes. This in turn indicates that the 

present study on TRAP1 has great potential and practical 
value in the diagnosis and treatment of tumors.

Inhibiting the function of TRAP1 by G‑TPP treatment 
or shRNA induces the mtUPR, while TMZ treatment down‑
regulates mitophagy in addition to inducing apoptosis of 
GBM cells via the p53 pathway. The combination of these two 
effects aggravates the damage to the mitochondrial system and 
increases the accumulation of harmful metabolites and ROS 
in GBM cells, thus inducing adverse events, even apoptosis. 
Therefore, TRAP1, as a key molecule that affects the mito‑
chondrial protein quality control system and mitochondrial 
metabolism, represents a promising target in the treatment 
of GBM. However, certain limitations exist to the present 
study. The mechanism revealed in the current study requires 
confirmation in additional cell lines and in vivo studies, and 
the mechanism of TMZ‑induced mitochondrial fusion will be 
investigated in future studies.
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