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The connectomic analyses of large-scale volumetric electron microscope (EM) images
enable the discovery of hidden neural connectivity. While the technologies for neuronal
reconstruction of EM images are under rapid progress, the technologies for synapse
detection are lagging behind. Here, we propose a method that automatically detects
the synapses in the 3D EM images, specifically for the mouse cerebellar molecular layer
(CML). The method aims to accurately detect the synapses between the reconstructed
neuronal fragments whose types can be identified. It extracts the contacts between
the reconstructed neuronal fragments and classifies them as synaptic or non-synaptic
with the help of type information and two deep learning artificial intelligences (AIs). The
method can also assign the pre- and postsynaptic sides of a synapse and determine
excitatory and inhibitory synapse types. The accuracy of this method is estimated to be
0.955 in F1-score for a test volume of CML containing 508 synapses. To demonstrate
the usability, we measured the size and number of the synapses in the volume and
investigated the subcellular connectivity between the CML neuronal fragments. The
basic idea of the method to exploit tissue-specific properties can be extended to other
brain regions.

Keywords: connectomics, cerebellum, synapse, electron microscopy, image analysis, machine learning,
computer algorithm

INTRODUCTION

Cajal’s neuron doctrine was proven correct by the experiments in the late 1950s to 1960s, which
directly observed the synapses with EM (Gray, 1959; Colonnier, 1968). Thanks to the advancement
in molecular biology and optics, various methods to observe the synapses such as genetic labeling or
immunochemical staining in combination with high-resolution light microscopes (LMs) are widely
used (Ippolito and Eroglu, 2010; del Valle Rodríguez et al., 2011). However, the resolution limit of
LM and the type specificity of the molecular markers often restrict the use of these technologies.
Especially for the connectomics, whose ambition is to map the complete wiring diagram of nervous
systems, EM is, presently, the only available solution since all the neurons and synapses in a nerve
tissue are homogeneously imaged in EM (Denk and Horstmann, 2004).

A connectome is hypothesized to be the physical substrate of any mental processes of a life
(White et al., 1986; Abbott et al., 2020). The connectome of a nematode, C. elegans, still remains
the only complete connectome (White et al., 1986). Recently, a fruit fly connectome has become
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within reach, since a complete fruit fly brain was imaged by
EM and semi-automated volumetric reconstruction is being
performed (Zheng et al., 2018; Dorkenwald et al., 2020). It is
foreseen that a mouse connectome will be the next goal and will
become available within next 10 years (Abbott et al., 2020).

For connectomics, image analysis technologies are crucial
to reconstruct the neurons and to detect the synapses from
the EM image data. Recent advancement in the neuron
reconstruction technologies, which are based on the deep
learning AI, has rendered automatic reconstruction with
small human intervention (Januszewski et al., 2018; Lee
et al., 2019). Similar computational technologies have
been developed for synapse detection as well (see Table 1
for the references). The advancement of synapse detection
technology is lagging behind compared to that of the neuron
reconstruction technology chiefly because the study for synapse
detection began later.

We have a practical motivation to develop an automatic
synapse detection method since we plan to connectomically
study the cerebellum. Although the connectomics concerns
the entire brain, the studies on the neural circuits do not
necessarily require a complete connectome. The investigations
into the microcircuits in “partial connectomes” from diverse
brain regions and species yield crucial knowledge’s of the
fundamental principles of neural connectivity and function
(Takemura et al., 2013; Kim et al., 2014; Ohyama et al.,
2015). For the cerebellum, the development of the climbing
fiber in the infant mouse cerebellum, a new type of Purkinje
cell layer interneuron, and the connectivity between granule
cells and Purkinje cells have been studied by 3D EM image
analyses (Wilson et al., 2019; Nguyen et al., 2021; Osorno et al.,
2021). Nonetheless, the functional circuit mechanisms of the
motor control and learning of the cerebellum are still largely in
veil. In search of the clues, we plan to investigate a small EM
image volume of the CML of a mouse taken by serial block-face
scanning EM (SBEM).

For semi-automated neuronal reconstruction, we employed
one of the competitive technologies and a proofreading
pipeline with paid workers (Kim et al., 2014; Lee et al.,
2017). For synapse detection, we require a method that shows
a practically applicable level of accuracy (>95%). Various
synapse detection methods have been proposed, and their
accuracy has increased during the last decade. However, only
a few have been developed and tested specifically for the
cerebellum, and none of them exceed the accuracy bound
(Table 1). Therefore, we decided to develop a novel, fully
automated method, which is specialized for the cerebellum
and can handle our EM image data whose resolution
(12 nm × 12 nm × 50 nm voxel size) is relatively low (Table 1
and Figure 1).

Such requirement is difficult to accomplish as seen from the
preceding studies. In general, there are several challenges in
the connectomic EM image analyses, for both reconstruction of
neurons and synapse detection. First, the quality of EM images is
not always ideal. The defects in the sample, which occur during
tissue preparation or staining, hinder precise image analysis.
The image resolution is often compromised over the expenses

in time and money that large-scale imaging requires. Second,
the neuronal structures have intrinsic biological ambiguity such
as thin processes and small synaptic structures. Third, the
image analysis technologies often generalize poorly, and they
show good performance only for the data on which they are
developed and tested. A new technology or extensive fine tuning
is needed for new data.

To overcome such challenges, we developed a method that
is specialized to the cerebellum because the goal seems to
be unreachable with a general solution. It utilizes two deep
learning AIs, prior knowledge of the cerebellum, and fine
tuning of parameters. The method works for a 3D EM image
volume, provided together with the reconstruction of the
neuronal fragments and their type information. The contacts
between a pair of neuronal fragments are extracted from the
reconstruction. The contacts are classified into synaptic or
non-synaptic through multiple steps; each of which selects a
subset of the contacts from the previous step (Staffler et al.,
2017). The first selection is conducted based on the types
of the neuronal segments, and only the contacts between
the types that can have synapses are chosen. The second
and third selections are conducted with the aid of the AIs,
which 3-dimensionally evaluate the visual cues of the synapses
(Cicek et al., 2016; Lee et al., 2017). The method can also
assign the synaptic partners into pre- and postsynaptic sides
(Buhmann et al., 2021) and determine the excitatory and
inhibitory types.

The method is shown suitable for the cerebellar connectomics
research. It is applied to a small test volume to evaluate the
accuracy and to showcase the usability. The accuracy is 0.955
in F1-score for the test dataset containing 508 synapses. The
size and the density of the cerebellar synapses are inspected.
The parallel fibers are shown to innervate the consecutive
Purkinje cells along the transverse axis in a random manner.
Although this method was designed for the cerebellum, the basic
idea of specialization exploiting tissue-specific properties can be
extended to other brain regions.

MATERIALS AND METHODS

Electron Microscope Image and
Reconstruction
An adult wild-type mouse was used, and a slice of cerebellar tissue
was processed for SBEM following standard protocols (Briggman
et al., 2011; Xu et al., 2020). The tissue was conventionally
stained with the osmium compound and then infiltrated with
epoxy resin. The specimen was cut and imaged roughly along
the sagittal axis by a Merlin VP field emission scanning electron
microscope (Carl Zeiss) equipped with 3View2 in-chamber
ultramicrotome and a backscattered electron detector (Gatan).
XY resolution was 12 nm, and nominal thickness was 50 nm. One
block-face image was acquired in 2-by-3 tiles with 10∼20% of an
overlap between the tiles, each of which is 5,000 by 5,000 pixels.
Consecutive 1,000 block faces were imaged.

Each of the 6 stacks of 1,000 images was aligned separately
and then merged using Image J and TrakEM2 plugin software
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TABLE 1 | Accuracy of various synapse detection methods (selected animals).

Publication Resolution (nm) Animal Region Test set size (µm3) F1-score

Kreshuk et al., 2011 5 × 5 × 9 Rat Somatosensory cortex 241 0.905

Becker et al., 2013 5 × 5 × 5 Rat Cerebellum 66 0.941

Becker et al., 2013 5 × 5 × 5 Rat Hippocampus 58 1

Becker et al., 2013 6.8 × 6.8 × 6.8 Rat Somatosensory cortex 22 1

Kreshuk et al., 2014 4.5 × 4.5 × 45 Mouse Visual cortex 970 0.904

Plaza et al., 2014 10 × 10 × 10 Drosophila Optic lobe 27,000 0.785*

Roncal et al., 2015 6 × 6 × 30 Mouse Somatosensory cortex 114 0.815*

Dorkenwald et al., 2017 10 × 10 × 30 Mouse Striatum 19,200 0.854

Dorkenwald et al., 2017 9 × 9 × 20 Zebra finch Area X 909,000 0.905

Dorkenwald et al., 2017 9 × 9 × 21 Zebrafish larval Spinal cord 422,000 0.858

Staffler et al., 2017 11.2 × 11.2 × 28 Mouse Somatosensory cortex 237 0.883

Heinrich et al., 2018 4 × 4 × 40 Drosophila calyx 375 0.877

Huang et al., 2018 10 × 10 × 10 Drosophila Optic lobe 27,000 0.83*

Xiao et al., 2018 2 × 2 × 50 Mouse Cortex 2,325 0.892

Parag et al., 2018 6 × 6 × 29 Mouse Somatosensory cortex 164 0.93*

Buhmann et al., 2021 4 × 4 × 40 Drosophila calyx Whole region 0.74

Buhmann et al., 2021 4 × 4 × 40 Drosophila Lateral horn Whole region 0.68

Buhmann et al., 2021 16 × 16 × 40 Mouse Cerebellum 320 0.94

Park et al., 2022 (this work) 12 × 12 × 50 Mouse Cerebellum 1,757 0.955

The accuracies of recent synapse detection methods are shown together with the types of the data and animal species.
The * symbol indicates that the value is read from a graph.

(Cardona et al., 2012) together with in-house MATLAB
codes. After the registration, the size of image volume is
14,600× 10,200× 1,000 voxels, approximately corresponding to
a 175 µm× 122 µm× 50 µm physical dimension.

To automate the reconstruction of this large volume, an AI
implemented by a modified 3D U-Net was employed (Cicek
et al., 2016; Lee et al., 2017) to segment the images into different
neurons using the cellular membrane as the boundary. To
train the network, eight subvolumes from the entire volume
were taken at various locations and sizes as training data.
They were manually reconstructed by human experts (advanced
paid workers) with specialized software, VAST (Berger et al.,
2018). Then, the trained network segments the entire volume to
reconstruct the putative neuronal fragments.

Since the AI-aided segmentation contains errors, it was
proofread by paid workers to yield the final reconstruction using
in-house software with an interactive graphical user interface
and a few kinds of background software for work process
management (Kim et al., 2014). The proofreading was conducted
progressively for one neuronal fragment after another, and
each neuronal fragment was represented by one segment after
proofreading was done.

The segments of proofread neuronal fragments were saved
in a separate volume. The separate volume gradually turns
from sparse to dense as the proofreading progresses. We
used a snapshot of such volume from a fixed date where
57.6% of the volume is filled with the segments of proofread
neuronal fragments. This volume will be called as “completed
segmentation” hereafter.

Further details of the animal, sample preparation, SBEM
acquisition, alignment, image segmentation, and proofreading
for 3D reconstruction will be reported elsewhere.

Synaptic Structures
The mammalian synapses in EM images are characterized
by the cloud of presynaptic neurotransmitter vesicles and
the postsynaptic density (PSD), which are protein complexes
specialized for synaptic transmission (Ziff, 1997). These
structures are electron dense and visually prominent as they
appear dark in EM images (Figures 1A,B and Supplementary
Figure 1). Narrow synaptic clefts are also visible in high-
resolution EM micrographs, but they are hardly observable
when the image resolution is worse than roughly 10 nm
per voxel, which is within the resolution range commonly
used for connectomics (Table 1). In the 3D representation of
reconstructed neurons, the presynaptic boutons (“b”), which
appear as swelling on the axon and the postsynaptic spines (“s”),
which appear as short protrusion from the dendritic shaft, are
also characteristic (Figure 1C). Most of the synapse detection
methods for EM, including human visual inspection and our
method, take advantage of these visual cues.

Overview of the Method
The method assumes the EM image volume, the corresponding
segmentation of reconstruction, and the type information of
each neuronal fragment as the input (Figure 2). The contacts
between pairs of neuronal fragments are extracted from the
reconstruction. They are classified into synaptic or non-synaptic
through 3 steps (Figure 2, bottom row).

The first step selects the synaptically “relevant contacts”
utilizing the type information. The cerebellar cortex has only
a few anatomically distinct types of neuronal fragments, and
the connectivity between the types is assumed to be regular.
A type of neuronal fragments can have connections only to
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FIGURE 1 | Image resolution is enough for visual identification of synapses
and synaptic structures. (A) Various examples of synapses between different
types of neuronal fragments are shown. They have presynaptic vesicles (small
blobs) and postsynaptic density (a dark blurring or thick line on the membrane)
regardless of the types. The red triangles point the synapses from the
postsynaptic side. (B) About 3 consecutive sections of images for a synapse
corresponding to the white dashed box. The yellow arrows point a few
examples of neurotransmitter vesicles, and the curved brown arrow indicates
the range of postsynaptic density. (C) 3D mesh rendering of the two neuronal
fragments in the vicinity of the images in panel (B). The label “b” denotes the
bouton, and “s” denotes the spine. Scale bars: 600 nm, 50 voxels.

limited types of partners. A contact is regarded as relevant
when it is made between such types (Figure 3). Since the
neuronal fragments that make irrelevant contacts are known
not to have any connection to each other, the irrelevant
contacts can be excluded from the candidates for synaptic
contacts. This efficiently reduces search space and helps decrease
false positive errors, which is otherwise difficult (see section
“Accuracy Evaluation”).

For the second and third steps, two 3D U-Nets are separately
trained to evaluate the likelihood of each voxel being a synaptic
contact (SC) voxel and a vesicle-cloud (VC) voxel based on the
visual cues for synapses. They are called as SC-Net and VC-Net,
respectively (Supplementary Figure 2). The networks learn from
the examples in the training data where the SC voxels and VC
voxels are annotated by human experts. The networks mimic
what humans do and label the SC and VC voxels with a confident
level, or the likelihood (Supplementary Figure 3).

In the second step, “synapse candidate” contacts are selected
from the relevant contacts. The synapse candidates are those
contacts whose voxels have an SC-likelihood distribution that has
a peak at a high value (Figure 4). The final step determines the
candidates as the synaptic contacts if a candidate contact has a
VC in a close distance. The VC is a segment of connected voxels
with high VC likelihood (Figure 5).

The assignment of the pre- and postsynaptic neuronal
fragments is straightforward from the final step, because those
containing the VC can be assigned as presynaptic and the other
as postsynaptic. One presynaptic bouton can innervate multiple
postsynaptic spines (Toni et al., 1999; Federmeier et al., 2002).
The excitatory and inhibitory synapse types are determined
based on the type information that is associated with the
neuronal fragments that form each contact. The synapse type is
determined following the excitatory vs. inhibitory nature of the
presynaptic side.

The Datasets
Seven subvolumes that were taken at various locations from the
entire imaged volume were used for this work (Table 2). Each
subvolume is the combination of an EM image volume and
the corresponding segmentation volume (Figures 3B,C). Six out
of the eight subvolumes, which were used for the training of
segmentation AI, were used again for the training of the synapse
detection AIs. The segmentations of these subvolumes were
completely reconstructed by manual tracing as mentioned above
(see section “Electron Microscope Image and Reconstruction”).
For the SC-Net, five were used as training sets and one as
a validation set. For the VC-Net, four were used as training
sets and one as a validation set. The dataset 3 was used for
SC-Net validation, and the dataset 4 was used for VC-Net
validation. One additional subvolume, which is much larger
than the training and validation sets, was prepared as a test set.
The segmentation volume of the test set was taken from the
completed segmentation volume, in which 57.6% of the volume is
reconstructed (Figure 3A) by the semi-automated reconstruction
(see section “Electron Microscope Image and Reconstruction”).
All of the datasets mostly consist of neuropil, and the soma is only
minimally included.

Type Classification of Neuronal
Fragments
The cerebellar molecular layer contains four major types of
neurons or neural processes (Figure 3A): Purkinje cell (PC);
climbing fiber (CF), which is the axonal projection from the
inferior olivary nucleus neurons; parallel fiber (PF), which is a
part of the axon of the cerebellar granule cell; and molecular layer
inhibitory interneuron (IN). Since only a part of the neurons
or neural processes is in the data, we referred to all these
as neuronal fragments for simplicity. The 3D mesh rendering
of each neuronal fragment was visually inspected by human
experts upon the completion of the proofreading. Human experts
can tell the types from the completed segmentation volume
(14,600 × 10,200 × 1,000 voxels, 175 µm × 122 µm × 50 µm
size) where the large-scale context of the neuronal structure is
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FIGURE 2 | A procedure overview of the method. The diagram showing the overall procedures of the proposed synapse detection method. The * symbols indicate
the prerequisite or input data to the method. From the reconstructed neuronal fragments, the contacts between neurons are extracted. The goal of the procedures is
to filter these contacts and select only the synaptic contacts (bottom row). First, the contacts are restricted by the cell types to select the relevant contacts. Second,
synapse candidate contacts are selected, whose voxels have high SC likelihood values evaluated by an AI. Finally, those contacts that have a VC in a close distance
are determined as the synapses, where the VC is found by another AI. At the final step, the excitatory and inhibitory synapse types and the pre- and postsynaptic
neurons are assigned.

preserved. PCs have spiny dendrites, PFs are long and straight
along the transverse axis, CFs arborize parallelly to PCs, and
INs have dendrites that are confined within the CML. The
type information determined from the completed segmentation
volume was transferred to the neural segments in the subvolumes
when applicable (Figures 3A,C).

Contact Extraction
The computations in the “Materials and Methods” section below
were performed by custom written MATLAB codes unless
otherwise noted. The contacts between a pair of neuronal
fragments are extracted from the segmentation volumes of all
the datasets (Figure 3D). When there were background voxels
due to extracellular space or annotation gaps between neuronal
segments in the volume, the segments were dilated until they
saturated the volume to ensure that neighboring segments
touched each other.

The segmentation volumes are a 3D-labeled image stack,
where each voxel is labeled by a numerical ID of a segment
(Figure 3C). To extract the contacts from these data, we
searched the voxel locations that the segment ID changes
values into 6-neighborhood. As the calculation is symmetric,
contact voxels are found on both sides of a pair of neuronal
fragments, yielding two-voxel thickness. All the contacting
voxels between a pair of neuronal segments were grouped by
connected component analysis, and each connected component

is considered as one contact (Figure 3D). The contacts with 200
or less voxels (roughly 0.03 µm2 or less) were considered as noise
and were excluded.

Cell Type Restriction for Relevant
Contacts
Only five pairs among the four types of neuronal fragments
of the CML are known to have connections, from CF to PC,
PF to PC, PF to IN, IN to PC, and IN to IN (Eccles et al.,
1967; Kim and Augustine, 2021). The contacts between these
five pairs were accepted as the relevant contacts (Figure 3E).
The relevant contacts are required during the prediction of the
synapses but not during the training of the AIs. The SC-Net
and VC-Net are trained only by the EM images with the ground
truth labels (see sections “Ground Truth and Data Labeling,” “SC-
Net Architecture and Training,” and “VC-Net Architecture and
Training”). Therefore, the relevant contacts are not computed for
the training and validation sets (Table 2).

Ground Truth and Data Labeling
The synapse structures in the datasets were labeled by human
experts. First, the synapses are searched for and identified in
the datasets. To find the synapses, two experts visually inspected
all the extracted contacts in the training and validation sets
and voted for synaptic, non-synaptic, or ambiguous using the
visual cues discussed above as the criteria (see section “Synaptic
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FIGURE 3 | From cell reconstruction to relevant contacts. (A) The 3D renderings of the neuronal fragments in the test set are shown in the four panels grouped by
the types. From the left: the parallel fibers (PF), Purkinje cells (PC), inhibitory interneurons (IN), and climbing fibers (CF). (B) A small example patch of EM image.
(C) The reconstruction of B that shows the segments of neuronal fragments. The segments are color coded, and their types are shown. White background
represents the space without reconstruction (57.6% of the imaged volume is reconstructed.) (D) The color-coded 3D contacts are overlaid on top of the segments of
neuronal fragments. The arrows are pointing each contact separately. A contact is the union of the surface voxels from two segments of neuronal fragments that
touch each other. Note that some contacts appear thicker than 2 voxels because the contacting voxels to the Z direction are also shown in the XY plane. (E) The
relevant contacts are chosen between PF-PC and PF-IN among all the contacts in panel (D). The PF-PF contacts were discarded because they could not make a
synapse and were irrelevant. The type information of the neuronal fragments that form the contacts is kept until the contact is determined as synapse. The synapse
types are determined based on the types of neuronal fragments. For example, all the relevant contacts in panel (E) are potentially excitatory synapses because they
are PF-PC or PF-IN contacts. A scale bar: 600 nm, 50 voxels.

Structures”). For the disagreements, the two experts had a debate
on them and then voted again. The tenacious disagreements
in the second voting were labeled as ambiguous. For the test
set, only the relevant contacts were inspected and then labeled
with the same method. The ambiguous cases were not used as
the ground truth for AI training and were not included in the
accuracy evaluation.

Next, the synaptic structures are actually marked on the
data. The extracted contacts, which were consented as synaptic,
directly became the SC in most cases (Figure 4A, left panel and
Supplementary Figure 3A, left panel). Occasionally, however,
the area of the PSD, which is biologically relevant area for
synapse, is smaller than the contact. When it is the case,
human experts erased the part on the contact that lies outside
the PSD in the training and validation sets. The sizes before
and after erasion of each contact can be used to assess
the overestimation of approximating the synapse size by the
contact size. The fraction of the size change, (sizebefore −

sizeafter)/sizeafter, is measured for each contact (section “Synapse
Size and Density”).

The human experts also searched for and labeled a VC for each
SC. The label for a VC is a 3D area inside the perimeter formed
by the outermost neurotransmitter vesicles (Supplementary
Figure 3B, left panel). We used VAST for erasing of the SC and
labeling of the VC. The VCs were not labeled for Dataset 8, since
it was used only for SC-Net training (Table 2).

Measurement of Accuracy
The accuracy was measured in a contact-wise manner by
comparing the results of the method and the labels by human
experts. The contacts in the validation sets and the test set
were labeled as synaptic, non-synaptic, or ambiguous from the
voting. The method classifies each contact into synaptic and non-
synaptic, and it is compared to the ground truth labeling. The
experiments were performed on the test set, and we calculated
the precision and recall by counting the true-positive (TP), false-
positive (FP), and false-negative (FN) cases.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

The ambiguous contacts were not included in the calculation
of accuracy. Regardless of the prediction on the ambiguous
contacts, they were not counted as any of the true positive, false
positive, nor false negative.

The accuracy was measured in Fβ -score. The Fβ -score,
defined as below, is the generalization of the F1-score. F1-score
(Fβ -score for β = 1) is the harmonic mean of precision and recall.
Fβ -score gives more weight on recall when β > 1 (penalize false-
negative errors more) and gives more weight on precision when
β < 1 (penalize false-positive errors more).

Fβ =
(1+ β2) · precision · recall

β2·precision + recall

Frontiers in Neuroanatomy | www.frontiersin.org 6 March 2022 | Volume 16 | Article 760279

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-16-760279 March 11, 2022 Time: 12:43 # 7

Park et al. Synapse Detection for Cerebellar Connectomics

0.7 0.8 0.9 1
Recall

0.7

0.75

0.8

0.85

0.9

0.95

1

noisicerP

SCLSVM
SCLSVM + NHSCLV
Highest F2-score

A

1 2 3

0

0.2

0.4

0.6

0.8

1

D

B

C E

FIGURE 4 | Synapse candidates are the contacts with high SC likelihood. (A) Two contacts are shown (first panel), one between Neurons 1 and 2 (red); one
between Neurons 2 and 3 (blue). The SC-Net produces the SC-likelihood map of all the voxels (middle panel). The likelihood values only for the voxels belonging to
each contact are collected (right panel) using the contacts as a mask. A scale bar: 600 nm, 50 voxels. (B) The distributions of the SC-likelihood values for the two
contacts are shown together with 3 percentiles. The contact that is likely to be synaptic (1–2) has narrowly peaked distribution toward high values (red histogram).
The 95th percentile (a red dash-dotted line) assesses the bias toward high values, and the (85th–99th) percentile range (a red dashed line) assesses the width of the
peak. (C) When the two percentile measures are scatter plotted, synaptic contacts (a red circle) and non-synaptic contacts (a blue cross) from the training sets
loosely segregate with a fuzzy boundary. A support vector machine (SVM; SC-likelihood SVM; SCLSVM) was trained to draw a decision boundary. The two regions
separated by the boundary are colored with green (positive) and pink (negative) backgrounds, respectively. The contacts that have 400 or more voxels with 0.9 or
higher SC likelihood are also considered as synapse candidates (number of high-SC-likelihood voxels; NHSCLV). The purple squares indicate the contacts that
transit from negative to positive by this. (D) The histograms of the SVM scores of the synapses and non-synapses in the test set are shown. The dashed vertical line
represents the usual decision boundary, a zero-SVM score. However, we wanted to accept a few false positives near the boundary to enlarge the pool of synapse
candidates. (E) The PR curves for varying SVM thresholds are plotted, for the cases when only the SCLSVM is used and when both the SCLSVM and NHSCLV are
used (see section “Finding Synapse Candidates Using SC Likelihood”). The F2-score, which measures the false-positive errors permissively, is the highest when the
SVM threshold is –0.2 (a purple triangle). The SVM threshold for synapse candidate selection is decided to be –0.2.
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FIGURE 5 | A synapse has a vesicle cloud in the presynaptic side. (A) The VC-Net produces the map of VC likelihood of all the voxels. The map is masked by the
neuronal boundaries to prevent the VC from crossing multiple segments of neuronal fragments. A scale bar: 600 nm, 50 voxels. (B) The 3D VC segment (green) is
obtained from the map by a watershed algorithm. (C) Two synapse candidate contacts are shown in yellow and red. For each synapse candidate contact, a VC
segment is searched for. The yellow contact, which does not have a VC in any of the contacting neurons, is classified as non-synaptic. The red contact, which has a
VC in one of the contacting neurons within 5-voxel distance, is classified as synaptic. (D) The PR curve when the VC requirement is added to the SCLSVM and
NHSCLV, for varying VC size thresholds. The other two PR curves are repeated from Figure 4D for references. The final step gives the highest F1-score of 0.955,
and the VC size threshold is decided to be 1,000 voxels.
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The precision-recall (PR) curves are used to decide the optimal
parameters and calculate the maximum possible Fβ -scores.
In a PR curve, the precision and recall values for a varying,
controllable parameter are drawn in a connected scatter-plot.

SC-Net Architecture and Training
Both the SC-Net and VC-Net were implemented and trained
using Caffe (Jia et al., 2014) with its Python interface
(Lee et al., 2017).

The SC-Net takes an image volume as the input and produces
the likelihood map of the voxels being SC as the output.
The network architecture was adopted from the 3D U-Net
(Ronneberger et al., 2015), and a few details were modified
(Supplementary Figure 2). The sizes of the first two kernels
were decided in such a way that the anisotropic data (different
resolutions in XY and Z) to the input layer become isotropic to
the inputs of the next layers. The dropout layers were introduced
to avoid overfitting caused by the lack of training data (Srivastava
et al., 2014). The number of parameters in each layer was
increased from those of the original 3D U-Net to increase the
efficiency of the dropout.

The data augmentation was employed to enhance the training
data. It was applied on-the-fly as follows. In each training
iteration, 3D patches (12 × 44 × 44 voxels) were sampled, and
one of the four augmentation operations (flipping, misaligning,
gray scaling, and warping) was randomly conducted. Masking
was used to handle the class imbalance between SC- and non-
SC voxels. The class imbalance hinders the training because any
prediction biased toward the majority class would result in high
accuracy (Provost and Weiss, 2003). The labeled datasets are
extremely imbalanced. For example, one of the training datasets
contains 14,155,776 voxels, and only 73,190 voxels are SC (0.5%).
Therefore, the SC-Net was trained only with the boundary voxels
of reconstructed neurons, masking out all the rest voxels.

The SC-voxels and non-SC voxels on the neuronal boundary
are the positive and negative training data, respectively. The
loss function is the sigmoid cross-entropy error. The learning
rate was initially set to 1 × 10−5 and then multiplied by
0.98 every 6,000 iterations. The training was terminated after
1 million iterations when the error reached an asymptote
(Supplementary Figure 3A).

Finding Synapse Candidates Using SC
Likelihood
The SC-Net output is the map of voxel-wise likelihood of a
voxel being on an SC. The contact-wise likelihood for being
synaptic was estimated as follows. The SC-likelihood values
(Figure 4A, middle panel) were masked by the relevant contact
voxels (Figure 4A, left panel) to collect only the SC-likelihood
values for each relevant contact (Figure 4A, right panel). Note
that the non-contact voxels can have high SC likelihood because
the SC-Net was trained only with the boundary voxels using
the mask (Figure 4A, middle panel). The likelihood values for
non-contact voxels, no matter they are high or low, are irrelevant.

The distribution of the SC likelihood of the contact voxels
reveals the likelihood of the contact being synaptic (Figure 4B).

The synaptic contacts would have the distribution that is
narrowly peaked at a high likelihood value. To capture such a
distribution pattern, we utilized two percentile features. The 95th
percentile represents the bias of the distribution toward high
values. The range between the 85th and 99th percentiles indicates
the width of the peak. Indeed, the synaptic contacts in the training
sets tend to exhibit a high 95th percentile and a small 85th-
to 99th percentile range (Figure 4C). However, there is a gray
zone in the plot, and the boundary between the synapses and
non-synapses is ambiguous. A support vector machine (SVM)
was recruited to decide the boundary. The three parameters for
percentile (95; 85 and 99) were chosen from many experiments
to yield the best accuracy (data not shown).

Conventionally, the decision threshold of an SVM is the zero
SVM score. The result for the test set shows numbers of false-
positive and false-negative errors when the zero threshold is used
(Figure 4D). We wanted to prioritize making less false-negative
errors to making less false-positive errors, because false-positive
errors could be eliminated at later stages, but false-negative errors
are lost once they are excluded from the candidates. To this end,
the SVM threshold was tuned using the PR curve for the test data
(Figure 4E). The SVM threshold−0.2, which gave the maximum
F2-score, 0.947, was chosen.

The inspection on the errors revealed a special error mode,
which is that the fraction of high SC-likelihood voxels is small
because the synaptically relevant part of the contact is much
smaller than the entire contact (see section “Ground Truth
and Data Labeling”; Supplementary Figure 4). To rescue these
errors, we added a voxel-count based rule (number of high-SC-
likelihood voxels; NHSCLV), in addition to the voxel fraction-
based SVM decision that a contact is synaptic if at least 400
contact voxels have 0.9 or higher SC likelihood. The square boxes
in Figure 4C indicate the contacts that transit from negative to
positive, before and after applying this rule. Although more false-
positive errors are newly introduced than the false negative errors
are eliminated, they are intended as the same strategy discussed
above, which makes less false-negative errors. Overall, the PR
curve for varying SVM threshold is shifted to the right when this
rule is applied (Figure 4E).

VC-Net Architecture and Training
In a naive approach, the synapse candidates found by the
procedure so far could be considered as the final result of synapse
prediction. The SC-Net would implicitly exploit the same visual
cues, including the VC, as human experts do, because SC-Net
utilizes the context information in the large field of a view.
However, to further improve the accuracy and to assign the pre-
and postsynaptic neurons, we introduced the VC-Net to explicitly
utilize the visual cues of the VCs.

The VC-Net takes a volume of image as its input and produces
the likelihood map of the voxels belonging to a VC as the output.
The architecture of the VC-Net is almost identical to the SC-
Net except for a few parameters and the fact that the VC-Net
does not have dropout layers (Supplementary Figure 2B). The
same data augmentation strategy was used as the case of the SC-
Net. The loss function is the sigmoid cross-entropy error. The
learning rate was kept at 1. × 10−3 throughout the training for
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TABLE 2 | The basic statistics of the datasets.

Dataset ID Size (voxels) Reconstructed neuronal fragments Contacts Relevant contacts Vesicle clouds Synapses

Train and Validation 1 256 × 256 × 64 80 340 N/A 14 13

2 256 × 256 × 64 92 346 N/A 17 13

3 384 × 384 × 96 217 996 N/A 49 43

4 384 × 384 × 96 184 802 N/A 44 46

7 384 × 384 × 96 217 1,078 N/A 39 32

8 512 × 512 × 128 184 846 N/A N/A 29

Test 992 × 992 × 248 598 5,857 1,973 N/A 508

The size, numbers of the segments of neuronal fragments, contacts, relevant contacts, vesicle clouds, and ground truth synapses are shown for the datasets.
The Datasets 1, 2, 4, 7, and 8 were used as training sets, and Dataset 3 was used as a validation set for the SC-Net training.
The Datasets 1, 2, 3, and 7 were used as training sets, and Dataset 4 was used as a validation set for the VC-Net.
The fields for irrelevant data are marked as “not applicable (N/A)”.

fast convergence. The training was terminated after 1.62 million
updates (Supplementary Figure 3B).

Synapse Prediction and Assignment
Using Vesicle-Cloud Likelihood
The output of the VC-Net is the map of voxel-wise likelihood
that a voxel is in a VC (Figure 5A). The segments of individual
VCs were obtained from the map by the similar method used for
the segmentation of neurons, which uses a watershed algorithm
to aggregate the similar voxels (Turaga et al., 2010; Zlateski and
Seung, 2015). The VC likelihood was considered to represent the
affinity between neighbor voxels (Turaga et al., 2010). The voxel-
wise likelihood map was converted to a 3D-undirected affinity
graph by repeating the likelihood values to three axes. To prevent
a VC from hanging across multiple neurons, the likelihood map
was masked by the neuronal boundaries. A watershed algorithm
was used to turn the affinity map into segmentation (Figure 5B;
Zlateski and Seung, 2015). The parameters for watershed were
selected from many experiments (data not shown).

The VC segmentation is used to predict the synapses from
the synapse candidates. For each synapse candidate, the distance
to the closest VC is measured where the VC needs to be inside
either of the pair of neuronal segments forming the contact. The
distance is defined as the voxel distance between the closest VC
voxel and the contact voxel of the synapse candidate (Figure 5C).
If the distance is 5 or less, the synapse candidate is considered to
have a corresponding VC, and it is finally predicted as a synapse.
At this stage, the SVM threshold −0.2 selected above yields the
highest F1-score, 0.955 (Figure 5D). We also tried the VC size
threshold as the parameter, because too small VCs might be noise
and need to be discarded. The result shows that the VC size
threshold 1,000 voxels yields the highest F1-score (Figure 5D),
and the parameter is accepted. Lastly, the neuron to which the
VC belongs is assigned as the presynaptic neuron. The other one
naturally becomes the postsynaptic neuron. The synapse type
is determined based on the type information and excitatory vs.
inhibitory nature of the presynaptic neuronal fragment.

Structure and Connectivity Analysis
All the analyses were performed by custom-written MATLAB
codes. The size of the synapse was calculated from the contact
size as follows. As the anisotropic volume has a voxel size

12 nm × 12 nm × 50 nm, a face of the contacting voxel has
the area 600 nm2 in the YZ or ZX plane and 144 nm2 in the
XY plane. The size of the contact can be calculated by counting
the contacting faces for each axis direction. The number of
contacting faces can be counted during the contact extraction
step. It is the same as the number of locations that the segment
ID changes along the XYZ axes.

The number of synapses per bouton was found as follows. The
VC was considered to be unique to a bouton, and a VC was used
as the proxy of a bouton. During the last step of the synapse
detection, a VC was matched for each synapse. Here, we counted
the number of synapses that were matched to a VC.

RESULTS

Reconstruction and Synapses in the Test
Set
The results are discussed and evaluated for the test set. The
volume of the test set (11.9 µm × 11.9 µm × 12.4 µm) is 0.15%
of the entire data. It contains 598 neuronal fragments in total,
which consist of 574 PFs, 4 PCs, 17 INs, and 3 CFs (Figure 3A).
Two neuronal fragments (1 glial cell and 1 Golgi cell) were not
reconstructed nor considered in this work. All the reconstructed
neuronal fragments were neuropils, except one IN soma. About
57.6% of voxels of the volume belong to reconstructed neuronal
fragments, and the chief proportion of the remaining voxels
belong to glial cells. Other proportion includes small numbers of
PFs and INs. Since the brain sample was sectioned and imaged
roughly sagittally, the PFs align parallelly and the PCs align
perpendicularly with the Z axis (Eccles et al., 1967; Kim and
Augustine, 2021). All the PFs pass through both sides of the
volume along the Z axis. The PCs are roughly laminated, each
occupying one lamina. The CFs and INs appear to irregularly
arborize at this scale.

The 598 neuronal segments yield a total of 5,857 contacts,
1,973 of which are the relevant contacts (Table 3). The majority
of the relevant contacts involve the PFs. About 59.5% are PF-PC
(n = 1,173) and 36.8% are PF-IN (n = 726). The remaining 74
relevant contacts consist of 44 IN-PC, 13 IN-IN, and 17 CF-PC.

From these, 508 are labeled as synapses in the ground truth
(Figure 6A). About 1,158 and 307 are labeled as non-synaptic and
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TABLE 3 | Accuracy for the test set by cell type.

Pre-Post (cell count) Relevant
Contacts (%)

Total
Synapses (%)

Non-synapses
(%)

Ambiguous (%) FP FN TP Precision Recall F1-score

PF (489) – PC (4) 1,173 (59.5) 360 (70.9) 675 (58.3) 138 (45) 9 11 349 0.975 0.969 0.972

PF (370) – IN (17) 726 (36.8) 116 (22.8) 451 (38.6) 159 (51.8) 14 9 107 0.884 0.922 0.903

CF (3) – PC (4) 17 (0.9) 8 (1.6) 7 (0.6) 2 (0.7) 0 0 8 1 1 1

IN (14) – PC (4) 44 (2.2) 21 (4.1) 20 (1.7) 3 (1) 0 3 18 1 0.857 0.923

IN (6) – IN (4) 13 (0.7) 3 (0.6) 5 (0.4) 5 (1.6) 0 0 3 1 1 1

Total (598) 1,973 508 1,158 307 23 23 485 0.955 0.955 0.955

The synapse detection accuracies for different cell-type pairs are given together with the basic metrics.
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FIGURE 6 | Visualization of the accuracy. (A) The result of synapse classification for the test set is displayed in 3D mesh rendering. The contacts are color coded as
true positive (green), false positive (blue), or false negative (red). (B) The proportion of the synapses by the types is shown in a pie graph. The PF-related synapses
are absolutely dominant. (C) The accuracy measures by the types are shown in bar graphs. The PF-IN is the least accurate (90.3% F1-score) followed by IN-PC
(92.3%) and then by PF-PC (97.2%). (D) The impact of the cell-type restriction step to select the relevant contacts is tested. The PR curves are shifted to down-left
when all the contacts are used (the highest F1-score, 92.6%) compared to when the relevant contacts are used (95.5%), for both varying SVM thresholds and
varying VC size thresholds. The cyan curve for relevant contacts for varying VC size thresholds is identical here and, in Figure 5D, serves as a reference.

ambiguous, respectively. About 70.9% of the total synapses are
between PF and PC (n = 360), and 22.8% are between PF and
IN (n = 116). Of the remaining 32 synapses, 21 are IN-PC, 3 are
IN-IN, and 8 are CF-PC (Figure 6B and Table 3).

Accuracy Evaluation
The final accuracy of the proposed method was measured to
be 0.955 in F1-score (Figures 5D, 6C,D). We estimated the
impact of each contact selection rule on the accuracy. We

calculated the F1-score when the contacts selected by the rules
are assumed to be the final prediction for synapses. The highest
F1-score for varying SVM thresholds, when the voxel-fraction-
based SVM rule is applied to the relevant contacts, is 0.923. After
the voxel-count-based rule (NHSCLV) is applied, the highest
F1-score increases to 0.934. The use of VC further raises the
F1-score to the final value, 0.955. The utilization of the VCs in
addition to the SC likelihood raised the accuracy beyond the 0.95
barrier (Table 1).

Frontiers in Neuroanatomy | www.frontiersin.org 10 March 2022 | Volume 16 | Article 760279

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-16-760279 March 11, 2022 Time: 12:43 # 11

Park et al. Synapse Detection for Cerebellar Connectomics

The details of accuracy can be evaluated for different contact
types, which are determined by the pairs of neuronal-fragment
types (Figure 6C and Table 3). The PFs seem to be the major
source of errors as they are involved in the majority of the
contacts. The PF-IN is least accurate (90.3%) followed by IN-
PC (92.3%) and then by PF-PC (97.2%). The accuracies of other
contact types appear high, but the number of instances is too
small to conclude. Further investigation shows that the errors
are most common when the size of the synapse is small in all
contact types. They tend to have thin and vague PSD, a small
contact area, and a small VC. The low resolution of the image
further aggravates the accurate decision for small synapses (data
not shown). The PF-related errors occur mainly because the PF
synapses are inherently small. The IN synapses have varied sizes,
and most of the IN-involved errors occur for small synapses
(section “Synapse Size and Density”). A few error examples are
shown in Supplementary Figures 5, 6.

Next, we wondered about the impact of type restriction and
using relevant contacts (Figure 6D). When the type restriction
was not applied and all the contacts were used instead of the
relevant contacts, the PR curves for varying SVM thresholds
and for varying VC size thresholds are shifted toward down-
left, compared to the cases when the relevant contacts were
used. The maximum F1-score when the relevant contacts are not
used is 0.926 as opposed to the final F1-score, 0.955. While the
92.6% of accuracy is still very competitive to those in the pieces
of literature, it is clear that the type restriction enhanced the
accuracy even more.

The contacts that were labeled as ambiguous in the ground
truth were excluded from the accuracy calculation. We estimated
the lower bounds of the accuracy when they were included.
If all the ambiguous contacts were actually synapses, then our
prediction yields 0.832 F1-score. If all the ambiguous contacts
were, indeed, non-synapses, the F1-score of our prediction
became 0.862. These values seem to be too low compared to
the highest value of 0.955; however, they are still competitive
to a few other methods (Table 1). The exclusion of ambiguity
is advantageous for the training of AI and is often adopted for
accuracy evaluation as well (Dorkenwald et al., 2017).

Synapse Size and Density
In the following sections, we demonstrate the usability of the
proposed method by investigating the properties of synapses and
connectivity between CML neurons. First, we measured the size
of the synapses. The size of a synapse was calculated from the
number of voxels in the synaptic contact (see section “Structure
and Connectivity Analysis”).

The synapse size was estimated for each contact type
(Figure 7A, left four columns). The median area of PF-PC
synapses (0.26 µm2) was much smaller than that of IN-PC
synapses (1.2 µm2). The PF-IN (0.46 µm2) and CF-PC synapses
(0.61 µm2) have a small median synaptic area, too. This is
because the excitatory neurons (PF and CF) tend to innervate the
dendritic spines, and inhibitory neurons (IN) tend to innervate
dendritic shafts as is well known (Eccles et al., 1967). This is
clearer when the five contact types are grouped into excitatory
and inhibitory types (Figure 7A, right to columns). The median

area of the excitatory synapses (0.29 µm2) was much smaller than
that of the inhibitory synapses (1.13 µ m2).

The size of PF synapses has the smallest average, median, and
variation at the same time, but there are many outliers whose size
is larger than the median or average by several folds. The size of
the outliers was overestimated by the size of the entire contact.
The contacts of PFs are often formed in an elongated shape
(Figure 6A), only a part of which is the synaptically relevant
contact corresponding to the PSD. We visually inspected the
biggest outliers, and all of them were the case.

Such overestimation can be quantitatively estimated using
the ground truth labels (see section “Ground Truth and Data
Labeling”). The fraction of the size change before and after
the erasion of synaptically irrelevant parts of the contacts
exhibits a skewed distribution. The 25% of the contacts did
not change in size. The median of the fraction of size change
is 20%. Considering the 20% of change as typical, the median
of the synaptically relevant area of the contacts is estimated
to be 0.24 µm2. This value is larger than the calculation
from the images of fluorescently labeled postsynaptic proteins,
0.12 ∼ 0.13 µm2 (Zhu et al., 2018). Since this difference can
potentially undermine rigorous analyses, we plan to improve the
method to manage this issue.

The spatial density of the synapses for different contact
types is 0.005/µm3 (CF-PC), 0.002/µm3 (IN-IN), 0.01/µm3 (IN-
PC), 0.07/µm3 (PF-IN), and 0.203/µm3 (PF-PC). The PF-PC
synapses outnumber all the rest synapses by far. These densities
are underestimated because the reconstruction is not complete.
When the size of each synapse and the density of the synapses are
considered together, the total sum of the area of PF-PC synapses
(158.59 µm2) is much larger than that of IN-PC synapses
(21.27 µm2). The excitatory neurons jointly provide a larger
total synaptic area (230.86 µm2) than the inhibitory neurons do
altogether (24.48 µ m2).

Multiple-Synaptic Boutons
One presynaptic bouton can innervate multiple postsynaptic
sites, where the multiple sites can be either on one neuron or on
multiple neurons. We inspected the number of postsynaptic sites
that one presynaptic bouton innervates (Figure 7B). The boutons
that make more than one synapse were found to be 9%, 42 out
of the total number of boutons, 462. This number is probably
underestimated, because the reconstruction is not complete. The
multiple-synaptic boutons are known to have various functional
roles including those related to synaptic plasticity (Harris, 1995;
Kim et al., 2019).

Laminar Organization of the Cerebellar
Molecular Layer
The dendrites of a PC form a flat arborization along the sagittal
plane and different PC dendrites align parallelly to one another.
The PFs are parallel to one another and perpendicular to the PC
arborization (Eccles et al., 1967). This laminar organization of the
CML was quantified for the test set.

We calculated the volume distribution of the PCs by counting
the number of voxels along the Z axis (Figure 7C). The distances
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FIGURE 7 | Structural properties of the synapses and connectivity. (A) The size of the synapses measured by the contact area is shown grouped by the cell types or
by excitatory (PF-PC, PF-IN, CF-PC) or inhibitory (IN-PC, IN-IN) types (left y-axis). The violin plots roughly show the distribution. The empty circles are the median,
and the vertical gray bars range from the 25th to 75th percentiles. The total sum of the synapse area of each type is denoted by the star (right y-axis). (B) Frequency
of the boutons with 1∼3 synapses. The boutons with 2 or more synapses are 9% (42 out of 462). (C) The volume distribution of the 4 PCs along the Z axis in the
test set was calculated. The PCs have laminar organization, where each PC occupies one lamina. The dashed lines are the median for each distribution. The
distance between adjacent PCs is estimated to be 4.5 ∼ 5.5 µm, considering the fact that PCs 1 and 4 are cut off by the borders of the volume. (D) The histogram
of inter-synapse intervals of PF-PC synapses. A peak near 5 µm is coincident with the inter-PC distance in panel (C). (E) The mean conditional probability that a PF
connects also to PC (m + k), given that it connects to PC (m), averaged over m. The constant conditional probability implies that there is no correlation between the
PF connections to different PCs. The error bars are standard error.

between adjacent PCs can be determined from the median of
each distribution. The maximum distance 5 µm is measured
between the two PCs at the center. The average distance is 3.6 µm;
however, it is an underestimation because the PCs on both sides
of the Z axis are cut off by the border of the data. Therefore,
the typical inter-PC distance is assumed to range between 4.5
and 5.5 µ m.

We then measured the distance between adjacent PF-PC
synapses on a PF along the Z axis. The location of a synapse is
represented by the median voxel of the contact. The PF-PC inter-
synapse distances are broadly distributed with a prominent peak
near 4.5 ∼ 5 µm (Figure 7D). The typical PF-PC inter-synapse
distance is consistent with the inter-PC distance.

Lastly, we tested the correlation of PF-PC connections
(Figure 7E). Here, we considered cell-to-cell connectivity rather
than the synaptic level connections. Let us call the four PCs as PC
1∼4, in order of increasing Z. We measured the fraction of the
PFs that synapse also to PC (m + k) among the PFs that synapse to
PC (m). It is a conditional probability that a PF has a connection
to PC (m + k), given the condition that it has a connection to PC

(m). We computed the mean of the conditional probability over
m. It appears that the average conditional probability is roughly
constant in the small test set. The result suggests that a PF makes
a connection to a PC independently of whether or not it has a
connection to another PC in a close distance.

DISCUSSION

We report an accurate and automated synapse detection method
for cerebellar EM connectomics. It exhibits over 95% of accuracy
with full automation. It provides the location, type, size, and
direction of the synapses without human intervention. The over
95% accuracy was accomplished for the first time for any data
(Table 1). The result is remarkable, considering that the accuracy
for the cerebellar sample is lower than those for other brain
regions by the same method in a previous report because the
cerebellar synapses are small and dense (Becker et al., 2013).

The high accuracy of this method can be attributed to a few
factors. First, it utilizes two deep learning AIs, the SC-Net and
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the VC-Net, which were trained with large amount of data. The
VC-Net complements the SC-Net, while they exploit the same
visual cues that human experts refer to. Second, the parameters
such as the SVM threshold and the VC size threshold were
carefully fine-tuned for the test data, and they may be close
to the optimum for the entire data we will analyze. Third, the
idea of relevant contact and type restriction greatly increased the
accuracy. It is particularly beneficial for the case of PFs. The PFs
are tightly packed forming bundles and make many contacts with
each other (Figure 3C). They may result in many false positive
errors without the exclusion of the irrelevant PF-PF contacts
(Supplementary Figure 6).

The method has a few limitations, too. First, the
reconstruction is a prerequisite (Staffler et al., 2017; Parag
et al., 2018; Buhmann et al., 2021). Other methods are needed if
a researcher wants to reconstruct only a few neurons first, find
their synapses, and then backward trace the synaptic partners
of the first neurons from the synapses. Second, the method
regards an entire contact as the synapse even when the PSD is
only at a small part of it (Staffler et al., 2017). This needs to be
improved in the future studies. Third, the type restriction by
relevant contacts may limit the chance for the exploration of
unknown connections. However, the method can still be used to
test whether there exist unknown connections for given types,
only if the contacts of those types are set to be relevant. In such
cases, however, the accuracy may be low.

Most of the synapse detection software in the pieces of
literature, including this work, consists of many files of source
code rather than a readily executable program. It is a hard
task to reproduce the reported results even for the researchers
with expert-level computational skills. There had been a few
executable software packages, which were claimed to be easily
usable, to be generally applicable, and to have good accuracy
(Morales et al., 2011; Becker et al., 2013). Nevertheless, they have
been recently replaced by newer and more accurate technologies
equipped with deep learning AIs. The AIs have to be trained
and fine-tuned before application. It is unfortunate particularly
for the common neurobiologists with basic computational skills.
Efforts are being made toward generally usable software with AI
(Staffler et al., 2017; Buhmann et al., 2021).

The proposed method can easily scale up as the computation
time for processing the test set is less than 20 min on a
desktop computer with 8 CPU cores and 32 GB memory.
While the method is tweaked for, and may seem to be
limited to, the cerebellum and the data, the approaches and
ideas may be extended to other brain regions as well. The
requirements for the extension can include the change in
the network architecture of the AIs, new training of the AIs
with the image data from the region, fine tuning of the
parameters, and the region’s having well-defined cell types and
type connectivity. Nevertheless, the more important lesson of
this study may be is the idea that new specialized designs
exploiting tissue-specific properties of the different brain regions
will enhance the performance of the methods. For example,
there can be different policies to replace the type restriction
for other brain regions. The high accuracy of the method
for individual synapses is advantageous for the inspection of

subcellular wiring specificity. The connectomic analyses on
the small test set already showed interesting results. We plan
to report the larger-scale analyses of the entire data soon.
All in all, the method is practically useful for large-scale
cerebellar connectomics.
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