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Inflammation promotes the development of heart failure (HF). The inflammasome is a
multimeric protein complex that plays an essential role in the innate immune response
by triggering the cleavage and activation of the proinflammatory cytokines interleukins
(IL)-1β and IL-18. Blocking IL-1β with the monoclonal antibody canakinumab reduced
hospitalizations and mortality in HF patients, suggesting that the inflammasome is
involved in HF pathogenesis. The inflammasome is activated under various pathologic
conditions that contribute to the progression of HF, including pressure overload,
acute or chronic overactivation of the sympathetic system, myocardial infarction,
and diabetic cardiomyopathy. Inflammasome activation is responsible for cardiac
hypertrophy, fibrosis, and pyroptosis. Besides inflammatory cells, the inflammasome
in other cardiac cells initiates local inflammation through intercellular communication.
Some inflammasome inhibitors are currently being investigated in clinical trials in patients
with HF. The current evidence suggests that the inflammasome is a critical mediator of
cardiac inflammation during HF and a promising therapeutic target. The present review
summarizes the recent advances in both basic and clinical research on the role of the
inflammasome in HF.
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INTRODUCTION

Heart failure (HF) is the end stage of many cardiovascular diseases; its increasing prevalence is a
major threat to global health and is associated with enormous economic costs (Benjamin et al.,
2019). Inflammation plays an important role in HF, contributing to both its pathogenesis and
progression. Proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1
and IL-6, as well as C-reactive protein (CRP), are upregulated in and related to the severity of HF.
Inflammation is also associated with poor outcomes of HF patients and is a prognostic factor that
is independent of left ventricular ejection fraction (EF) and New York Heart Association functional
class. HF can be categorized as HF with reduced EF (HFrEF; EF < 40%), HF with mid-range
EF (HFmEF; EF 40–49%), and HF with preserved EF (HFpEF; EF ≥ 50%), all of which involve
inflammation (Castillo et al., 2020; Murphy et al., 2020).

As it plays a major role in inflammation, the inflammasome has been investigated in
cardiovascular diseases involving inflammation, for example in HF (Abbate et al., 2020a). The
inflammasome is a multiprotein oligomer composed of Nod-like receptors (NLRs), PYD and
CARD domain-containing (PYCARD) [also known as apoptosis Speck-like protein containing
a CARD (ASC)], and caspase-1, which plays an important role in inflammation and is a
focus of cardiac research. Nod-like receptor protein (NLRP)3 inflammasomes are the most
widely investigated inflammasomes. NLRP3 is an intracellular pattern recognition receptor that
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senses pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs) and activates
the inflammasome and downstream inflammatory cascade. In
this manner, the inflammasome is important for defense against
bacterial, fungal, and viral pathogens (Tartey and Kanneganti,
2019). However, the inflammasome is also involved in aseptic
inflammation. Upon activation, the NLRP3 inflammasome
induces the cleavage and activation of IL-1β and IL-18, resulting
in inflammation and subsequent cardiovascular injury (Toldo
and Abbate, 2018; Zhou et al., 2018; Abbate et al., 2020a). The
aim of the present review is to summarize advances in both basic
and clinical research on the role of the inflammasome in HF.

THE PATHOLOGICAL EFFECT OF
INFLAMMASOME ACTIVATION IN HEART
FAILURE

During the progression of HF, inflammasome activation by
various stimuli promotes cardiac inflammation, resulting in
pathologic cardiac remodeling and loss of cardiac cells. Evidence
for the role of inflammasomes in hypertrophy, fibrosis, and
pyroptosis is presented below.

Nod-like receptor protein (NLRP)3 inflammasome activation
has been shown to promote cardiac hypertrophy under
pressure overload. Upon this condition, S-nitrosylation of
muscle LIM protein (MLP) promoted the formation of a
complex composed of toll-like receptor (TLR)3 and receptor-
interacting protein kinase 3 (RIP3), which induced the activation
of the NLRP3 inflammasome and IL-1β, resulting in the
progression of myocardial hypertrophy. Pharmacologic blockade
or RNA interference of NLRP3 and inhibition of IL-1β

with neutralizing antibody reduced pressure overload-induced
myocardial hypertrophy (Tang et al., 2020).

Inflammasomes contribute to cardiac fibrosis under various
pathologic conditions. The NLRP3 inflammasome was shown
to promote fibrosis progression mainly by stimulating the
production of IL-1β and IL-18 (Pinar et al., 2020). The
NLRP3 inhibitor MCC950 suppressed myocardial infarction-
induced NLRP3 inflammasome activation, alleviated cardiac
inflammation and fibrosis, and improved cardiac function (Gao
et al., 2019). Chronic β-adrenergic receptor (AR) activation
in a pressure overload model and direct acute activation of
β-AR led to cardiac fibrosis in an NLRP3 inflammasome-
dependent manner (Xiao et al., 2018; Dang et al., 2020).
Pressure overload caused activation of the NLRP3 inflammasome
via calcium/calmodulin dependent protein kinase (CaMK)IIδ,
resulting in cardiac fibrosis and dysfunction (Suetomi et al.,
2018). In most of the studies, cardiac inflammation was shown to
induce fibrosis following activation of the NLRP3 inflammasome.

In addition to activating IL-1β and IL-18, caspase-1 activated
by the NLRP3 inflammasome triggers a type of cell death known
as pyroptosis (Miao et al., 2011) by cleaving gasdermin D,
yielding the N-terminus of the protein that forms pores in the
cell membrane (Zeng et al., 2019). Doxorubicin induced NLRP3
inflammasome activation, triggering cardiomyocyte pyroptosis
and thus contributing the myocardial dysfunction and dilated

cardiomyopathy (Zeng et al., 2020). Pyroptosis was also shown
to amplify inflammation by inducing the massive release of
proinflammatory mediators following cell death (Wang Q. et al.,
2020). We previously demonstrated that acute activation of β-AR
in cardiomyocytes induced NLRP3 inflammasome activation and
pyroptosis. Moreover, activated inflammasomes were transferred
to neighboring cardiac fibroblasts via membrane nanotubes in
response to sympathetic overactivation, leading to amplification
of pyroptosis and inflammatory injury (Shen et al., 2020).

Although the pathologic change varies during HF under
various pathologic conditions, the inflammasome is shown
to play a critical role in the pathologic changes including
hypertrophy, fibrosis, and cell death. Thus, it is worth clarifying
the mechanism of inflammasome activation during HF.

INFLAMMASOME ACTIVATION IN
DIFFERENT CELL TYPES IN HEART
FAILURE

The Priming and Triggering of
Inflammasome Activation
Inflammasome activation is a tightly regulated 2-step process
that includes priming and triggering (Latz et al., 2013).
Priming involves regulation of the expression of inflammasome
components (e.g., NLRP3 and caspase-1) and cytokines (IL-
1β and IL-18) by alarmins and DAMPs that activate pattern
recognition receptors. This leads to the activation of the
nuclear factor (NF)-κB signaling pathway, which promotes the
transcription of inflammasome components and cytokines such
as NLRP3 and IL-1β (Vallabhapurapu and Karin, 2009). The
priming step is necessary for NLRP3 inflammasome activation
in the heart. The A350V mutation causes the constitutive
activation of NLRP3; tamoxifen-induced conditional expression
of the mutant NLRP3 in mouse hearts failed to induce caspase-
1 activation, likely because of the relatively low expression
level of pro-caspase-1 in this tissue. The caspase-1 was
activated in the NLRP3-A350V mutant heart when pro–caspase-
1 expression was primed by lipopolysaccharide (LPS) (Toldo
et al., 2015), indicating that the priming step is required for active
inflammasome formation in the heart.

Triggering refers to the activation of the inflammasome
that induces the cleavage and activation of caspase-1 and the
subsequent IL-1β and IL-18, leading to inflammation (Dinarello,
2009). As to the most widely studied NLRP3 inflammasomes,
triggering involves the generation of reactive oxygen species
(ROS), increase in extracellular ATP, cholesterol crystals, and
potassium efflux (Heid et al., 2013; Latz et al., 2013; Toldo and
Abbate, 2018; Shokoples et al., 2021). The mitochondrial ROS
induced the activation of caspase-1 and IL-1β in macrophages
following nigericin treatment (Heid et al., 2013). The extracellular
ATP released by damaged cells triggered the assembly and
activation of NLRP3 inflammasome and subsequent activation
of IL-1β and IL-18 through binding to P2X7, a ligand-gated
cation channel. Extracellular ATP release and P2X7 activation
have been found in many cardiovascular diseases including
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hypertension, myocardial infarction, and HF (Shokoples et al.,
2021). Additionally, cholesterol precipitates as crystals in the
vessel wall during atherogenesis. Following the phagocytosis
of cholesterol crystals, the lysosomal damage activates NLRP3
inflammasome and IL-1β (Duewell et al., 2010), which was shown
to be enhanced by the priming signal of complement (Niyonzima
et al., 2020). Moreover, potassium efflux, which causes decreased
potassium concentration within cells, is recognized as a common
mechanism underlying NLRP3 inflammasome triggering by
many NLRP3 activators (such as ATP and nigericin). At low
potassium concentrations (< 90 mM), the NLRP3 inflammasome
spontaneously assembled and recruited caspase-1 in in vitro
experiments. Low intracellular potassium level was also required
for the NLRP1 inflammasome and may be a common trigger of
NLRP inflammasomes (Petrilli et al., 2007; Munoz-Planillo et al.,
2013). The detailed mechanism of inflammasome activation has
been summarized in recent reviews (Elliott and Sutterwala, 2015;
Kelley et al., 2019).

The Inflammasome in Immune Cells
Immune cells are important in regulating heart functions
(Adamo et al., 2020; Sansonetti et al., 2020). The inflammasomes
in immune cells contribute to the activation of inflammatory
cascade and the development of HF. The NLRP3 inflammasome,
caspase-1, and IL-1β are found to be upregulated in
peripheral neutrophils from patients with acute myocardial
infarction. Calcium-sensing receptor (CaSR) is responsible
for inflammasome activation in neutrophils and promotes
cardiomyocyte apoptosis and cardiac fibrosis (Ren et al., 2020).
Transplantation of bone marrow from Nlrp3−/− mice reduced
adverse cardiac remodeling following myocardial infarction
compared to bone marrow from wild-type mice, suggesting that
NLRP3 activation in infiltrated hematopoietic cells increases
cardiac remodeling (Louwe et al., 2020).

The accumulation of somatic mutations in hematopoietic
stem cells with aging—referred to as clonal hematopoiesis—is an
independent risk factor for many cardiovascular diseases (Jaiswal
and Ebert, 2019; Sidlow et al., 2020). Mutation of the Tet2 (Tet
methylcytosine dioxygenase 2) gene in hematopoietic stem cells
or myeloid cells aggravated cardiac remodeling and function
following pressure overload or cardiac ischemia; these effects
were inhibited by a selective NLRP3 inflammasome inhibitor
MCC950 (Sano et al., 2018). The variations in the TET2 gene
have been linked to an increased level of inflammatory cytokines
in patients with severe degenerative aortic valve stenosis or
chronic postinfarction HF (Abplanalp et al., 2020). In immune
cells of HF patients analyzed by single-cell RNA sequencing,
monocytes harboring DNMT3A (DNA methyltransferases 3A)
gene mutations showed significant upregulation of IL1β and
NLRP3, suggesting the involvement of the NLRP3 inflammasome
(Abplanalp et al., 2021). Clonal hematopoiesis driven by
mutations of DNMT3A was found to be associated with poor
prognosis in the case of HF (Bazeley et al., 2020). Thus, mutations
in myeloid cells induce the activation of the inflammasome
in immune cells and the development of HF. Collectively, the
inflammasome is critical for the activation of immune cells in

inflammatory cascades. Meanwhile, it is also activated in other
cardiac cells during HF, contributing to its progression.

The Inflammasome in Cardiac Cells
Cardiomyocytes have been proved to be a cellular source
of secreted proteins, known as cardiokines (Shimano et al.,
2012). Under pathologic conditions, cardiomyocytes release
inflammatory cytokines (Shimano et al., 2012; Wu et al.,
2019). We previously reported that in isolated primary cardiac
cells, β-AR agonist activated the NLRP3 inflammasome in
cardiomyocytes but not fibroblasts or macrophages, which may
be attributable to differential expression of β-AR subtypes across
the cell types. Inflammasome activation in cardiomyocytes is
mediated by β1-AR, whereas cardiac fibroblasts mainly express
β2-AR (Xiao et al., 2018); the activated inflammasome induced
the cleavage and activation of IL-18 in cardiomyocytes. The
IL-18 stimulated the production of monocyte chemoattractant
protein (MCP)-1 by cardiac fibroblasts, which further caused
macrophage infiltration, leading to more chemokine production
and activation of the inflammatory cascade (Xiao et al.,
2018). Inflammasome activation in cardiomyocytes was also
observed in other pathologic models. In a mouse model
of angiotensin II infusion, CaMKII was shown to mediate
inflammasome priming at an earlier timepoint than macrophage
infiltration. Cardiomyocyte-specific knockout of CaMKII
blocked inflammasome activation (Willeford et al., 2018).
A similar result was obtained in a mouse model of transverse
aortic constriction: cardiomyocyte-specific knockout of CaMKII
blocked inflammasome activation, macrophage accumulation,
fibrosis, and cardiac dysfunction (Suetomi et al., 2018). In
mouse hearts, inflammasome activation was observed by
immunofluorescence mainly in cardiomyocytes 7 days after
myocardial infarction. LPS and ATP can prime and trigger the
activation of NLRP3 inflammasome in HL-1, the cell-line of
cardiomyocytes (Mezzaroma et al., 2011).

The role of inflammasome activation in cardiac remodeling
has been extensively investigated in cardiac fibroblasts (Butts
et al., 2015). Cardiac fibroblasts are the predominant cell type
in the interstitium and can sense cardiac injury and activate
the inflammasome, leading to the secretion of inflammatory
cytokines (Chen and Frangogiannis, 2013). Priming with LPS
and triggering with ATP induced the secretion of IL-1β from
cardiac fibroblasts (Torp et al., 2019). In a mouse model of
myocardial ischemia/reperfusion injury, the inflammasome was
activated in cardiac fibroblasts but not cardiomyocytes. Similarly,
in isolated cardiac cells, hypoxia/reoxygenation stimulated the
production of ROS and IL-1β in the former but not the latter
cell type. The inflammasome in cardiac fibroblasts was found
to be activated by ROS and potassium efflux, resulting in
the activation of IL-1β and cardiac inflammation (Kawaguchi
et al., 2011). NLRP3 also promoted fibroblast differentiation
independent of inflammasome formation and was shown to
localize to mitochondria and regulates mitochondrial production
and Smad signaling, leading to profibrotic gene expression
(Bracey et al., 2014).

The above studies demonstrate that inflammasomes can be
activated not only in immune cells but also in cardiomyocytes
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and cardiac fibroblasts. During HF, these cardiac cells directly
sense pathologic stimulation, which induces inflammasome
activation and the resultant release of proinflammatory
cytokines from these cells. Thereafter, the different cell types
interact via paracrine signaling by inflammatory cytokines,
resulting in cardiac inflammation. In addition to this indirect
mechanism, we have demonstrated that the inflammasome
can be directly transferred to neighboring cardiac cells via
membrane nanotubes (Shen et al., 2020), a long and thin
membrane cellular structure that facilitates the transfer of
various molecules and organelles between cells. The exact
mechanism of inflammasome transportation in membrane
nanotubes is still unknown, whereas the microtubule may
be involved as it mediates the transport of other cargos in
membrane nanotubes (Shen et al., 2018). Thus, inflammasome
activation in cardiac cells may initiate cardiac inflammation
under pathological conditions and then different cell types
in the heart collaboratively contribute to cardiac remodeling
and HF (Figure 1). Moreover, the inflammasome activation in
different cell types appears to depend on the conditions. For
example, acute sympathetic stress and hypoxia/reoxygenation
cause inflammasome activation in cardiomyocytes and cardiac
fibroblasts, respectively, via distinct signaling pathways. β1-AR,
which mediates the sympathetic stress-induced inflammasome
activation, is mainly expressed in cardiomyocytes. Meanwhile,
ROS generated under the hypoxia/reoxygenation induce
inflammasome activation mainly in cardiac fibroblasts. These
findings indicate distinct mechanisms are underlying the role of
the inflammsome in HF under different pathologic conditions.

INFLAMMASOME ACTIVATION IN
ANIMAL HEART FAILURE MODELS
UNDER DIFFERENT PATHOLOGIC
CONDITIONS

Inflammasome activation has been studied using animal
models of HF induced by various pathologic factors, such as
pressure overload, myocardial ischemia, diabetes mellitus, and
sympathetic stress (Figure 2). These basic studies have provided
insight into the mechanisms and signaling pathways of the
inflammasome in HF.

Pressure overload is a typical cause of HF. Transverse aortic
constriction is often used to mimic pressure overload to construct
animal models of HF. Heart tissue and isolated cardiomyocytes of
mice subjected to transverse aortic constriction showed increased
expression of NLRP3 and IL-1β and increased cleavage of
caspase-1 and IL-18, indicating that pressure overload increases
both priming and triggering of the NLRP3 inflammasome
in the heart. The NLRP3 inflammasome activation and
subsequent macrophage infiltration, fibrosis, and dysfunction
were alleviated by heart-specific knockout of CaMKIIδ and was
associated with Nuclear Factor Kappa B (NF-κB) activation
and ROS release (Suetomi et al., 2018). These results suggest
that pressure overload induces the activation of NF-κB and
ROS via CaMKIIδ, resulting in the priming and triggering

FIGURE 1 | Inflammasome activation in cardiac cells initiates cardiac
inflammation to promote heart failure. Under pathologic conditions,
inflammasomes in cardiomyocytes, and fibroblasts are activated. Activated
inflammasomes cause the release of proinflammatory cytokines from various
cell types, collaboratively contributing to the inflammatory cascade. Besides
cytokines, membrane nanotubes also mediate the transport of activated
inflammasomes, thereby propagating inflammatory injury. The resultant
cardiac inflammation causes pathologic cardiac remodeling, cell death, and
dysfunction.

of the NLRP3 inflammasome and the consequent cardiac
remodeling and dysfunction. The role of CaMKIIδ in cardiac
fibrosis was also evaluated following angiotensin II infusion,
which is another animal model to mimic pressure overload.
CaMKIIδ knockout blocked NF-κB activation and inflammasome
activation along with macrophage infiltration and cardiac
fibrosis in mice treated with angiotensin II (Willeford et al.,
2018). Lipocalin-2, a proinflammatory adipokine that was
shown to be upregulated in mouse hearts following pressure
overload, is another key molecule involved in pressure overload-
induced cardiac NLRP3 inflammasome activation. Lipocalin-
2 knockout reduced NLRP3 inflammasome activation and
alleviated mitochondrial damage. Lipocalin-2 induced the
expression of NLRP3 and IL-1β via the TLR4/NF-κB pathway
(Song et al., 2017). Collectively, these findings demonstrate that
pressure overload promotes both priming and triggering of the
NLRP3 inflammasome.

The contributions of the inflammasome and inflammation to
atherosclerotic plaque formation and the myocardial infarction
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FIGURE 2 | Mechanism of inflammasome activation by pathologic factors contributing to heart failure. Pressure overload, cardiac infarction, diabetes, and
sympathetic overactivation caused either priming or triggering of inflammasomes via various molecular signaling pathways, which converge to activate caspase-1
and consequently, IL-1β and IL-18, promoting cardiac inflammation and HF.

have been investigated in multiple studies (Duewell et al.,
2010; Xiao et al., 2013; Abbate et al., 2020a) including the
Canakinumab Anti-Inflammatory Thrombosis Outcomes Study
(CANTOS) (Ridker et al., 2017). Nevertheless, inflammation
following myocardial infarction was shown to contribute to
the development of cardiac remodeling and HF (Westman
et al., 2016). Following myocardial infarction, caspase-1
activity was increased and the inflammasome was formed in
heart tissue; NLRP3 silencing or pharmacologic inhibition
prevented inflammasome formation and limited infarct
size and cardiac enlargement (Mezzaroma et al., 2011).
Ischemia during cardiac infarction also contributes to both
NLRP3 inflammasome priming and triggering. TLRs are
among the major receptors responsible for the priming of
the transcription of proinflammatory genes via the NF-κB
pathway during acute myocardial infarction; extracellular
ATP released from necrotic cells caused the triggering of
NLRP3 inflammasomes via P2X7 (Toldo and Abbate, 2018).
Triggering is also achieved by increasing the level of ROS
via stimulation of thioredoxin-interacting protein (TXNIP)
(Liu et al., 2014). Hypoxia/reoxygenation also stimulated
inflammasome activation in cardiac fibroblasts through ROS
generation and potassium efflux (Kawaguchi et al., 2011). Thus,
priming and triggering of the NLRP3 inflammasome contribute

to cardiac inflammation and HF development following
cardiac infarction.

Diabetes mellitus is a major risk factor for heart disease.
NLRP3 inflammasome expression and activation were found to
be increased in monocyte-derived macrophages from patients
with newly diagnosed type 2 diabetes (Lee et al., 2013).
The NLRP3 inflammasome and IL-1β were shown to be
involved in the development of insulin resistance and islet
beta cell dysfunction (Masters et al., 2010; Vandanmagsar
et al., 2011; Jourdan et al., 2013). Intracellular hyperglycemia
in diabetes mellitus causes excessive ROS production, which
promotes the triggering of the NLRP3 inflammasome (Shah
and Brownlee, 2016). NLRP3 inflammasome activation caused
cardiac inflammation, cell death, fibrosis, and systolic and
diastolic dysfunction in the heart of type 2 diabetic rats,
which can be suppressed by NLRP3 gene silencing (Luo
et al., 2014). In diabetic cardiomyopathy, Exendin-4 suppressed
ROS and TXNIP, resulting in inhibition of the inflammasome
and protection against hyperglycemia-induced cardiomyocyte
pyroptosis (Wei et al., 2019).

Sympathetic overactivation is the main pathological factor
contributing to the development of HF. In our research, we
found that the NLRP3 inflammasome plays a critical role in
sympathetic stress-induced cardiac inflammation and cardiac
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injury. Sympathetic stress caused the activation of β-AR, the
dominant adrenergic receptor subtype in the heart. Acute
β-AR overactivation activated the NLRP3 inflammasome and
IL-18 in cardiomyocytes by β1-AR/ROS signaling. The IL-
18 then triggered cytokine cascades, macrophage infiltration,
and pathologic cardiac remodeling (Xiao et al., 2018). Besides
β-AR, α1-AR is also expressed in the heart and we showed
that it also contributes to sympathetic stress-induced NLRP3
inflammasome activation in mouse hearts and the resultant
cardiac inflammation and dysfunction (Xin et al., 2020).
AR-mediated inflammasome activation also occurs in other
models of HF. In a rat pressure overload model of HF
induced by thoracic aorta constriction, blocking β-AR signaling
suppressed inflammasome activation (Dang et al., 2020). A study
of HFpEF found that uninephrectomy-induced HFpEF mice
exhibited sympathetic hyperactivation and activation of NLRP3
inflammasome and IL-1β (Yang et al., 2020). Growth hormone
secretagogue receptor (GHSR) deficiency was shown to aggravate
β-AR–mediated cardiac fibrosis in GHSR knockout mice, which
involved the increased inflammasome activation and IL-18
cleavage and release (Wang M. et al., 2020). These findings
suggest that there is a close link between sympathetic stress
and inflammasome activation during the development of HF,
although the detailed mechanism remains to be elucidated.

The above studies demonstrate that the inflammasome can be
activated by various pathologic factors leading to HF. Although
different signaling pathways are activated under pathologic
conditions, they appear to converge on inflammasome activation.
Thus, the inflammasome may be a common mechanism
mediating the development of HF.

THE ROLE OF OTHER
INFLAMMASOMES IN HEART FAILURE

Pattern-recognition receptors other than NLRP3 also form
inflammasomes including NLRP1, NLRC4, absent in melanoma
(AIM)2 (Table 1); their activation also causes caspase-1 and
IL1β/IL-18 activation and is important for the immune defense
of infection (Man and Kanneganti, 2015). In a type 2 diabetes
mouse model, myocardial infarction reduced left ventricular
EF. Mitophagy was impaired in the mice and caused the
release of mitochondrial DNA, which activated the AIM2
inflammasome and the NLRC4 inflammasome in cardiomyocytes
and macrophages in the peri-infarct region of the left ventricle.
Activated inflammasome and caspase-1 caused an increase
in cell death and expression of IL-18, resulting in impaired
neovascularization and increased fibrosis (Durga et al., 2017;
Zhao et al., 2020). AIM2 expression was increased in the heart
of streptozotocin-induced diabetic rats, and AIM2 silencing
alleviated pyroptosis, cardiac remodeling, and heart dysfunction
(Wang et al., 2019; Zhao et al., 2020). AIM2 and NLRC4
expression was also increased in the heart tissue of HF patients
and animal models in the late phase of chronic HF induced
by pressure- or volume-overload, and following infarction.
Activation of the AIM2 inflammasome resulted in activation
of both IL-1β and IL-18, and its inhibition with probenecid
alleviated chronic HF (Onodi et al., 2021). These findings suggest

TABLE 1 | Different types of inflammasomes.

Inflammasome Activator Cardiovascular
function

References

NLRP1 Anthrax lethal toxin Myofibroblast
differentiation

Zong et al.,
2018

NLRP3 PAMPs and DAMPs
(bacterial DNA/RNA,
virus, ATP, uric acid
crystals, etc.)

Hypertensin; diabetes;
atherosclerosis;
myocardial infarction;
cardiac remodeling

Liu et al.,
2018

NLRC4 Flagellin, etc. HF Durga
et al., 2017;
Onodi
et al., 2021

AIM2 dsDNA HF Durga
et al., 2017;
Onodi
et al., 2021

NLRP6 Dextran sodium
sulfate-induced colitis

Not investigated in the
cardiovascular system

NLRP12 Yersinia and
Plasmodium infection

Not investigated in the
cardiovascular system

AIM2, Absent in melanoma 2; DAMP, damage-associated molecular pattern;
dsDNA, double-stranded DNA; HF, heart failure; NLR, Nod-like receptor; PAMP,
pathogen-associated molecular pattern.

that AIM2 and NLRC4 are involved in diabetes-related or late-
phase HF.

In addition to the formation and activation of inflammasomes,
AIM2 is known to suppress inflammatory cytokine expression
in an inflammasome-independent manner. In mouse
cardiomyocytes stimulated with interferon (IFN)-γ and
LPS, AIM2 reduced the transcription of proinflammatory
cytokines such as IL-6, IFN-γ–induced protein (IP)-10, and
TNF-α, by suppressing NF-κB signaling through inhibition
of signal transducer and activator of transcription (STAT)1
phosphorylation. The anti-inflammatory effect of AIM2 is
independent of caspase-1, as double knockdown of AIM2
and caspase-1 yielded the same proinflammatory cytokine
transcriptional profile as observed in AIM2 depleted cells
(Furrer et al., 2016). However, this finding is based on in vitro
experiments and the overall physiologic effect of AIM2 in
the heart may be to promote inflammation via induction of
inflammasome formation.

THERAPEUTIC TARGETING OF
INFLAMMASOMES

There is increasing clinical evidence that inflammasomes are
activated and involved in HF. In a study of 316 patients with
acutely decompensated HF, the concentration of IL-1β, a cytokine
activated of inflammasomes, was associated with increased
disease severity and risk of death in patients (Everett and
Siddiqi, 2019; Pascual-Figal et al., 2019). Increased inflammasome
activation was also detected in cardiac biopsy samples from HF
patients (Song et al., 2017). A study of 155 HF patients found
that the methylation of the inflammasomes component ASC was
inversely related to its mRNA and protein expression levels and
positively correlated with cardiac function; moreover, elevated
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expression of ASC was associated with an increased risk of clinical
events (Butts et al., 2016). These results provide evidence for
the involvement of the inflammasome in the development of
HF in patients and indicate the inflammasome as a potential
therapeutic target for HF. Some studies have investigated the role
of inflammasome inhibition in HF through targeting of either the
inflammasome per se or its downstream cytokines.

Preclinical Experiments on
Inflammasome Inhibition
A series of NLRP3 inhibitors have been developed that target
inflammasome priming and triggering (Mezzaroma et al., 2021).
Some of the inhibitors have been evaluated in animal models
of HF. Oridonin, the main active ingredient in the traditional
Chinese medicinal herb Rabdosia rubescens, exerts potent anti-
inflammatory activity through specific covalent inhibition of
NLRP3 inflammasome. Intraperitoneal injection of oridonin
reduced myocardial fibrosis and preserved cardiac function in a
mouse myocardial infarction model (Gao et al., 2021). Glyburide,
an antihyperglycemic drug, was shown to suppress NLRP3
inflammasome activation by inhibiting ATP-sensitive potassium
channels (Lamkanfi et al., 2009). However, there was no obvious
protective effect of glyburide against HF (Giles et al., 2010;
Siniorakis et al., 2012). Empagliflozin, another antihyperglycemic
drug, alleviated cardiac dysfunction in 2 rodent HF models—
namely, the HFrEF model, in which mice were subjected to
transverse aortic constriction and the HFpEF model, in which
rats fed a high salt diet. Empagliflozin attenuated activation
of the NLRP3 inflammasome and cardiac inflammation. The
mechanism involve restoration of optimal cytoplasmic calcium
levels in the heart, as empagliflozin was shown to prevent the
LPS-induced increase in calcium level in cardiomyocytes while its
anti-inflammation effect was inhibited by the calcium ionophore
A23187 (Byrne et al., 2020a).

Some interventions indirectly target inflammasomes. An
agonist of REV-ERB—a core driver of circadian mechanism—
reduced the expression and activation of NLRP3 following
ischemia/reperfusion of mouse heart and thereby prevents the
development of HF (Reitz et al., 2019). Chronic elevation of
circulating ketones by knockout of succinyl-CoA:3-ketoacid-
CoA transferase (SCOT)1 in mouse skeletal muscle suppressed
pressure overload-induced cardiac inflammation and cardiac
dysfunction. Infusion with β-hydroxybutyrate into isolated hearts
inhibited NLRP3 inflammasome activation (Byrne et al., 2020b).
Inhibiting of sodium-glucose cotransporter (SGLT)2 increased
β-hydroxybutyrate and decreased serum insulin in patients
with type 2 diabetes compared to sulfonylurea, and inhibited
activation of the NLRP3 inflammasome in isolated macrophages
(Kim et al., 2020). Exosomes derived from embryonic stem cells
blocked doxorubicin-induced NLRP3 inflammasome activation,
pyroptosis, inflammation, hypertrophy, and cardiac dysfunction
(Singla et al., 2019).

Clinical Trials Investigating
Inflammasome Inhibition
Therapeutic targeting of the NLRP3 inflammasome or
downstream IL-1β signaling in patients with HF has been

evaluated in clinical trials (Table 2). Although some of the
trials show promising results, most of the studies are still
preliminary and future large-scale clinical trials are required for
further evaluation.

Exploratory results from the CANTOS study showed a
significant reduction in the risk of hospitalization for HF
or HF-related mortality in patients treated with the IL-1β

inhibitor canakinumab (Everett et al., 2019). Anakinra is a
recombinant form of the naturally occurring IL-1 receptor
IL-1Ra. In a randomized clinical trial of 30 patients with
acute decompensated HF, blockade of IL-1 with anakinra
significantly reduced CRP level compared to the placebo,
suggesting that anakinra suppresses the systemic inflammatory
response in HF patients (Van Tassell et al., 2016). Another
clinical trial reported that 12-week treatment with anakinra
improved peak aerobic exercise capacity in patients with recently
decompensated systolic HF (Van Tassell et al., 2017). Anakinra
was also found to reduce the incidence of death or new-
onset HF and the incidence of death and hospitalization for
HF in patients presenting ST-segment elevation myocardial
infarction (Abbate et al., 2020b). On the other hand, treatment
with anakinra for 12 weeks failed to improve peak aerobic
exercise capacity in a group of HFpEF patients with obesity
(Van Tassell et al., 2018).

Colchicine is a widely available drug for agouty arthritis
and familial Mediterranean fever and can inhibit the NLRP3
inflammasome (Martinez et al., 2018). Colchicine led to a lower
risk of ischemic cardiovascular events in patients with recent
myocardial infarction and helped to prevent cardiovascular
events in patients with coronary artery disease (Tardif et al.,
2019; Imazio et al., 2020). However, although colchicine
reduced the expression of inflammation-related biomarkers, it
did not improve the functional status of patients with stable
chronic HF (Deftereos et al., 2014; Hemkens et al., 2016).
Allopurinol is another drug to treat gout that inhibits xanthine
oxidase, which promotes the formation of oxidative free radicals
and induces oxidative stress. Allopurinol suppressed NLRP3
inflammasome activation in cell-based and animal models
(Kang et al., 2016; Foresto-Neto et al., 2018; Negi et al.,
2020). In clinical trials of HF, allopurinol improved endothelial
function and reduced mortality in patients with HF (Struthers
et al., 2002; Gotsman et al., 2012; Okafor et al., 2017; Alem,
2018).

A phase 1B clinical trial examining the safety of dapansutrile
in patients with stable HFpEF found that dapansutrile treatment
for 14 days was well-tolerated (Wohlford et al., 2020; Del
et al., 2021). Dapansutrile selectively inhibited the NLRP3
inflammasome but not the NLRC4 or AIM2 inflammasome. It
directly targeted inflammasome formation, without affecting
potassium efflux or expression of the IL-1β precursor (Marchetti
et al., 2018). In a mouse model of ischemia/reperfusion,
dapansutrile limited infarct size and alleviated cardiac
dysfunction when given within 60 min following reperfusion
(Toldo et al., 2019).

Exercise also affects inflammasome activation in HF patients.
ASC is required for inflammasome activation, and lower
methylation of ASC was shown to be associated with worse
outcomes in patients with HF (Butts et al., 2016, 2017). Exercise
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TABLE 2 | Clinical Studies targeting NLRP3 inflammasome in patients with HF.

Intervention Study type Population Sample size Main outcome References

Allopurinol Retrospective cohort study Chronic HF 1760 Increase in mortality (low dose) Struthers et al.,
2002

Allopurinol Cohort study HF 6204 Improved survival Gotsman et al.,
2012

Anakinra Randomized, double-blinded,
placebo-controlled pilot study

Acute decompensated HF 30 Well tolerated;
reduction in CRP

Van Tassell
et al., 2016

Anakinra Registered clinical trial
(NCT01936909)

HFrEF 60 Increase in peak oxygen consumption
and ventilatory efficiency at 12 weeks;
no effect at 2 weeks

Van Tassell
et al., 2017

Anakinra Registered clinical trial
(NCT01950299)

ST-segment elevation
myocardial infarction

99 Decrease in incidence of death or
new-onset HF;
decrease in death and hospitalization
for HF

Abbate et al.,
2020b

Anakinra Registered clinical trial
(NCT02173548)

HFpEF 31 Decrease in CRP and NT-proBNP;
no effect on peak oxygen consumption
or ventilatory efficiency at 12 weeks

Van Tassell
et al., 2018

Canakinumab Registered clinical trial
(NCT01327846)

Patients with prior myocardial
infarction and high-sensitivity
CRP ≥ 2 mg/L

10061 Dose-dependent reduction in
hospitalization for HF;
reduction in composite outcomes of
hospitalization for HF or HF-related
mortality

Everett et al.,
2019

Colchicine Prospective randomized study Stable chronic HF 267 Decrease in CRP and IL-6;
no effect on primary endpoint rate

Deftereos et al.,
2014

Dapansutrile Phase 1B Stable HFrEF 30 No serious adverse events;
improvements in left ventricular EF

Wohlford et al.,
2020

Exercise
intervention

Pilot study HF 54 Increase in ASC methylation;
decrease in plasma IL-1β;

Butts et al.,
2018

ASC, apoptosis Speck-like protein containing a CARD; CRP, C-reactive protein; EF, ejection fraction; HF, heart failure; HFpEF, heart failure with preserved ejection fraction;
HFrEF, heart failure with reduced ejection fraction; IL-1β/6, interleukin 1β/6; proBNP, brain natriuretic peptide.

for 3 months increased ASC methylation and decreased IL-1β and
ASC expression following HF (Butts et al., 2018).

CONCLUSION AND PERSPECTIVES

The inflammasome is activated under various pathologic
conditions that promote the progression of HF and contributes
to cardiac inflammation, making it a promising therapeutic
target. The current research on the role of the inflammasome
in HF is focused on the NLRP3 inflammasome. The functions
of other types of inflammasome in HF—for example, of AIM2
and NLRC4, which were shown to be involved in myocardial
infarction injury in a type 2 diabetes mouse model—need
to be clarified. The different functions of inflammasomes in
HFrEF, HFmEF, and HFpEF also merit further investigation.
Inflammation is involved in all forms of HF, but with certain
differences (Castillo et al., 2020; Murphy et al., 2020). HFpEF
is characterized by the chronic inflammatory state induced
by obesity, hypertension, and diabetes. HFpEF mice exhibit
hyperacetylated mitochondria, enhanced assembly of the NLRP3
inflammasome, and overproduction of IL-1β and IL-18 (Deng
et al., 2021). Meanwhile, HFrEF may be mainly associated
with inflammation triggered by DAMPs from direct cardiac
insult and cell death. It remains to be determined whether
the inflammasome contributes to the different patterns of

inflammation observed for HFrEF, HFmEF, and HFpEF. In
summary, the current evidence indicates that the activation of
inflammasomes in local cardiac cells serves as a trigger for
inflammation in HF; clarifying the mechanism underlying this
process can yield new insight into the pathogenesis of HF as well
as potential therapeutic targets for its prevention and treatment.
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