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Abstract

Background

The finite element method has complimented research in the field of network mechanics in

the past years in numerous studies about various materials. Numerical predictions and the

planning efficiency of experimental procedures are two of the motivational aspects for these

numerical studies. The widespread availability of high performance computing facilities has

been the enabler for the simulation of sufficiently large systems.

Objectives and Motivation

In the present study, finite element models were built for sintered, metallic fibre networks

and validated by previously published experimental stiffness measurements. The validated

models were the basis for predictions about so far unknown properties.

Materials and Methods

The finite element models were built by transferring previously published skeletons of fibre

networks into finite element models. Beam theory was applied as simplification method.

Results and Conclusions

The obtained material stiffness isn’t a constant but rather a function of variables such as

sample size and boundary conditions. Beam theory offers an efficient finite element method

for the simulated fibre networks. The experimental results can be approximated by the simu-

lated systems. Two worthwhile aspects for future work will be the influence of size and

shape and the mechanical interaction with matrix materials.
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Introduction

Background
The mechanics of metallic [1] and non-metallic [2] fibre networks have since long been the
subject of research studies. One possible way to categorize the available studies is by the specific
material which is investigated. Early and recent studies about cellulose material and paper can
be found in [2–6]. Numerous studies exist about the mechanics of polymeric networks [7–11].
The modelling of polymeric non-woven fabrics and their particularly complex behaviour [12]
has been in the focus of several research studies [13–17]. In the field of biomaterials, a big num-
ber of studies exists about the mechanics of actin networks and cytoskeletons [18–22]. A range
of studies refers to theoretical networks whose geometries have been generated by computer
code [23–31].

The mechanics of sintered, metallic fibre networks as used for the present study have been
investigated by [1, 30–35]. In [36], an architectural characterization of the six network samples
of the present study was published, together with experimentally obtained mechanical
properties.

For finite element (FE) analyses of structures whose dimensions are dominated by their
extension along only one axis, such as screws or fibres, beam theory can offer an efficient simu-
lation method [37]. The foundations of beam theory were laid in [38–40] and are available in
today’s textbooks [41]. For the application of boundary conditions (BC) to random fibre net-
works and for the determination of the representative volume element (RVE), [29, 42] have
provided a much referred to concept [43–46]. By this concept, the RVE is obtained for a
defined relative error for each physical property. Image acquisition by computed tomography
(CT) scanning which uses the principle of Röntgen radiation [47] is a commonly used method
for measuring the dimensions of metallic three-dimensional (3D) structures [48].

Motivation and scope of the present study
The motivation of the present study was to predict previously unknown mechanical properties
for metallic, sintered fibre networks. For that purpose, FE models were developed. The input
geometries for the FE models were based on CT scans, acquired from real network samples in
[36]. Experimental values for the network Young’s modulus from that same study were used
for a validation of the FE models. The properties of these six network samples define the scope
and at the same time also the limitations of the present study. Other metallic, sintered networks
with similar but different properties will require a re-evaluation of the proposed FE models.

Mathematical notation
Throughout the present study, the following notation is used: x for scalars, x for vectors, and x

for 2nd rank tensors. Cube faces are written X. The vector product is given as “×” and dot prod-
uct as “�”. Relations which are greater-than and approximately equal are written “≳”. If the
relation is greater-than or equal “�” is used.

Materials and Methods

Network samples and meshing step
The present study uses as geometry input for the FE models the dimensions of six AISI (Ameri-
can Iron and Steel Institute) 316L network samples. The architectural network values have
been published in [36] (see Table 1). Each scanned sample section is a cube of volume V = 43

mm3 (see Fig 1a). Following the two-phase model in [29], V is split into fibre volume and void
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volume:

V ¼ Vfibre [ Vvoid ð1Þ

Equally, the volume boundary @V is defined to consist of a section of fibre boundary and a
section of void boundary on the cube surface S:

@V ¼ @Vfibre [ @Vvoid ð2Þ

Six quadratic cube faces form S (see Fig 1b), two of them perpendicular each to one of the
three axes:

S ¼ Fx0 [ Fy0 [ Fz0 [ Fx1 [ Fy1 [ Fz1 ð3Þ

Table 1. AISI 316L network samples.

Sample Fibre vol. frac. Fibres Fibre segments Segment length Beam elements
f [%] [-] [-] λ [μm] [-]

316L-10%-No.1 10 2,891 22,913 235 700,515

316L-10%-No.2 10 2,815 22,789 239 709,427

316L-15%-No.1 15 4,326 37,049 191 929,249

316L-15%-No.2 15 4,920 41,479 181 1,029,453

316L-20%-No.1 20 6,138 59,936 153 1,265,910

316L-20%-No.2 20 6,400 59,949 153 1,269,925

Complete documentation of geometries in [36].

doi:10.1371/journal.pone.0143011.t001

Fig 1. Sample cube dimensions and definition of cube faces. (a) Dimensions of fibre network cube V = 43 mm3 (fibre network details in [36]) and (b) six
quadratic cube faces (Fx0, Fx1, Fy0, Fy1, Fz0, and Fz1) forming S.

doi:10.1371/journal.pone.0143011.g001
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Two samples each are manufactured with a fibre volume fraction f of 10, 15, and 20%. In
[36], the fibre production process by bundle drawing [49], the network manufacturing at N.V.
Bekaert S.A. (Belgium), the CT scan acquisition at General Electric (resolution 7.75 μm), and
the applied skeletonisation algorithm [50–52] are discussed in detail. The skeletonisation algo-
rithm reduces the 3D fibre bodies to their medial axes which are strings of voxels (see Fig 2).
The medial axis models obtained for [36] are transferred in the present study into beam assem-
blies and run as FE models. The approximately hexagonal fibre cross-section is simulated as a
round cross-section of radius R = 20 μm.

FEmodels
For the present study, two FE models are implemented (see Table 2). Model A and Model B are
based on five specifications:

1. Linear elasticity and static equilibrium,

2. Euler-Bernoulli or Timoshenko beam elements as AISI 316L fibres,

3. Rigid joints or torsional springs as inter-fibre joint models at contact points between fibre
paths (see Fig 2),

4. BC as defined in Eqs (8) and (11), and

5. the new introduced model parameter of BC-depth hBC.

Fig 2. Medial axis model. Sketch of two intersecting fibre bodies with corresponding medial axes (green and
blue) and joint medial axis at intersection (black) obtained by skeletonisation algorithm [50–52] in [36] and
positions of spring connectors in Model B of the present study (red).

doi:10.1371/journal.pone.0143011.g002

Sintered Metallic Fibre Networks: A Study by Beam Theory

PLOS ONE | DOI:10.1371/journal.pone.0143011 November 16, 2015 4 / 22



Linear elasticity and static equilibrium conditions. For mechanical FE analyses, the sim-
ulated system is transferred into a representation by the global stiffness matrix K ; the most

common assembly method being the direct stiffness method [53]. K links the global load vector

F and the global displacement vector u:

F ¼ K � u ð4Þ

The meshed geometries and material specifications define the variables of K . In the present

study, the material is assumed to behave linearly elastic (i.e. fulfil Hook’s law that stress and
strain are linked by the Young’s modulus: σ = E� [54]). In this case, the variables of K become

constants. The AISI 316L material stiffness is simulated as Efibre = 200GPa with a Poisson’s
ratio ν = 0.3 which expresses the material’s lateral contraction as fraction of the axial extension.
For plastic or non-elastic simulations, the variables of K are functions of e.g. force or

displacement.
BC are imposed in FE by prescribed values for entries of F and u. The non-prescribed

entries of F and u are determined by the FE solver (present study: Abaqus 6.13 [55]) with solu-
tions respecting the equilibrium conditions of forces in Eq (5) and of moments in Eq (6) [56].
Both equations adopt the Lagrangian reference frame [57]. (A comparison to the Eulerian ref-
erence frame and its advantages for the modelling of fluids is available in [58].)

Z
S

t dSþ
Z
V

f dV ¼ 0 ðwith t ¼ s � noutÞ ð5Þ

Z
S

ðx � tÞ dSþ
Z
V

ðx � f Þ dV ¼ 0 ð6Þ

The surface traction vector t is obtained as the product of the Cauchy stress tensor s and

the unit outward normal nout . (A detailed discussion of s is available in today’s textbooks [59].)

In the mechanical simulations of the present study, body force per volume f is neglected; gravi-

tational forces or magnetic forces being typical examples for f . The point vector x specifies the

location of a point relative to the origin; i.e. also the equilibrium of moments in Eq (6) being
taken about the origin.

Beam elements. One Euler-Bernoulli beam element (B33) and two Timoshenko beam ele-
ments, one with linear interpolation (B31) and one with quadratic interpolation (B32), are
implemented for the present study. Table 3 contains the complete list of implemented Abaqus
elements. The neglected shear strain of the Euler-Bernoulli beam and the advanced Timo-
shenko beam are further discussed in [41] for the simplified 2D case. Literature recommends
in general for beam assemblies which include short beam elements the Timoshenko beam [28,
60–62]. For this case, [62] has documented an overestimation of the structural stiffness by
Euler-Bernoulli beam elements.

Table 2. FEmodels.

Joint model Scaling factor Beam element BC-type BC-depth

Model A Rigid joint - not applicable - B31, B32, B33 KUBC, MBC 0 μm � hBC � 155.00 μm

Model B Spring joint s 2 {5, 10, 30, 300, 3000} μm B31, B32 KUBC, MBC hBC = 77.50 μm = const

doi:10.1371/journal.pone.0143011.t002
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Inter-fibre joint models. Model A is simulated for rigid inter-fibre joints. Torsional spring
elements (CONN3D2) are inserted into the medial axis models in Model B between intersect-
ing fibre paths (see Fig 2). This concept for adaptive joint strength of Model B is proposed for
comparable cases in publications such as [63]. In the present study, the inter-fibre joint stiff-
ness Kjoint is defined:

Kjoint ¼ sEfibreAfibre ð7Þ

The scaling factor s [m] in Eq (7) allows the directed variation of Kjoint for an approximation
of the experimental values of [36]. The cross-sectional area Afibre and Efibre are included as they
relate the modelled value of Kjoint to the fibre dimensions and to the fibre stiffness. Alternative
model variables could be chosen too.

Kinematic uniform BC and load cases. In [42], a simulation set of kinematic uniform BC
(KUBC), static uniform BC (SUBC), and periodic BC (PBC) was proposed for a random het-
erogeneous composite. KUBC are applied in the present study as defined in Eq (8). In the case
of KUBC, a macroscopic strain tensor E imposes the displacement vector u on all x located

on @V:

u ¼ E � x 8 x 2 @V ð8Þ

Six independent load cases are implemented in the present study by KUBC for the network
samples: i = 1 to 3 for the simulation of tensile tests along the axes x, y, z and i = 4 to 6 for the
corresponding shear tests. The combination of all six load cases leads to the symmetrical stiff-
ness matrix C, where the six entries Cii on the main diagonal stand for the Young’s moduli E

and Shear moduli G [64, 65]:

sx

sy

sz

tyz

tzx

txy

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼

C11 C12 C13 C14 C15 C16

� C22 C23 C24 C25 C26

� � C33 C34 C35 C36

� � � C44 C45 C46

� � � � C55 C56

� � � � � C66

2
666666666666664

3
777777777777775

�x

�y

�z

gyz

gzx

gxy

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

with : C11 ¼ Ex;C22 ¼ Ey;C33 ¼ Ez

C44 ¼ Gyz;C55 ¼ Gzx;C66 ¼ Gxy

ð9Þ

Table 3. Implemented Abaqus elements.

Element Type Abaqus identifier Interpolation/Connection

Timoshenko Beam B31 3D Linear

B32 3D Quadratic

Euler-Bernoulli Beam B33 3D Cubic

Spring connector CONN3D2 3D Join & torsional spring

Complete software documentation in [55].

doi:10.1371/journal.pone.0143011.t003
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The general 4th rank stiffness tensor contains in total 81 components. The simplification to
only 21 independent variables in C is achieved by energy considerations and symmetry [66].

Mixed BC. The application of further BC to random fibre networks requires additional
considerations [29]. In the case of SUBC, a macroscopic traction vector G is imposed on @V.

PBC add a periodic fluctuation term v. In [29], it is discussed for random fibre networks that
considering:

s ¼ 0 8 x 2 Vvoid ð10Þ

G can’t be prescribed on @Vvoid, only on @Vfibre. Due to the randomness of the fibre network

geometry, the equilibrium conditions in Eqs (5) and (6) are not fulfilled when G is imposed.

For overcoming this, mixed BC (MBC) are proposed by [29] and adopted in the present study
for the simulation of tensile testing along the axes x and y by one independent load case each
(load case i = 1 and 2, definition see above). A macroscopic strain tensor Eprim imposes the pri-

mary displacement uprim along the axis of tension only:

uprim ¼ Eprim � x 8 x 2
( Fx0 [ Fx1; for i ¼ 1 ðtensile� xÞ

Fy0 [ Fy1; for i ¼ 2 ðtensile� yÞ
ð11Þ

Along the two non-prescribed axes, a secondary displacement usec is caused as a conse-
quence of the imposed uprim. The total deformation of the sample is obtained under MBC as:
utotal ¼ uprim þ usec.

The results obtained in [29] for the elastic modulus of computer generated random fibre
networks without preferred orientation direction predict greater stiffness for KUBC: CMBC <

CKUBC.
BC-depth. The present study extends the BC model of Eqs (8) and (11) for the investi-

gated material by the variable of hBC. The value of hBC prescribes to which depth into the mate-
rial along the inward normal nin BC are imposed on @V. The reason for the model
modification is the obtained structural response which will be discussed further in the follow-
ing section by Model A in Figs 3 and 4.

Representative volume element determination
For the determination of the RVE size VRVE, the present study relied on an algorithm proposed
by [42]. This algorithm has been applied since its publication to random fibre networks in [29,
32] and other materials [43–46].

In [42], VRVE is obtained as a probability estimate. The RVE is understood as the minimum
cube volume VRVE for which a particular physical property Z after n realisations can be deter-
mined within the margin of the relative error �rel. Due to this definition, VRVE is in each case a
function of these three variables (see Eq (20)).

In order to acquire the input for the RVE algorithm, the available material sample is split

into sets of sub-samples of Vk (with Lk ¼ V1=3
k ) of nk realisations. The size function of the RVE

is then determined by a regression analysis for the standard deviation DZ(Vk) of Z over Vk. In
[45], the mean for Vk of a physical property Z(Vk) and the respective variation D2

ZðVkÞ are
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Fig 3. Model A—Influence of BC-depth.Obtained ET values of samples 316L-10%-No.1, and 316L-20%-No.1 depending on hBC.

doi:10.1371/journal.pone.0143011.g003
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Fig 4. Model A—Deformation plot.Obtained ux [μm] for sample 316L-20%-No.1 with hBC = 7.75 or 77.50 μm in load case i = 1 (tensile-x).

doi:10.1371/journal.pone.0143011.g004
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calculated as follows:

ZðVkÞ ¼
1

nk

Xj¼nk

j¼1

ZðVk ;jÞ ð12Þ

D2
ZðVkÞ ¼

1

nk � 1

Xj¼nk

j¼1

ðZðVk ;jÞ � ZðVkÞÞ
2 ð13Þ

Using the expressions gained in Eqs (12) and (13), the absolute sampling error �abs and �rel
are defined for this algorithm, following [29, 42, 67]:

�abs ¼
2DZðVÞffiffiffi

n
p ð14Þ

�rel ¼
�abs
Z

ð15Þ

V is linked to the variation D2
ZðVÞ and the point variance D

2
Z [29, 42, 68]:

D2
ZðVÞ ¼ D2

Z �
A3

V

� �a

ð16Þ

D2
Z ¼ f ð1� f ÞðZfibre � ZvoidÞ2 ð17Þ

Zfibre takes in the present study the value of the respective physical property in Vfibre, Zvoid of
the property in Vvoid (with Evoid = 0). Eq (16) requires from the sample volume V [29]:

V � A3 ð18Þ

The term integral range A3 [69–72] provides a mathematical measure for the characterisa-
tion of random structures.

Inserting Eq (14) into Eq (16) yields Eq (19) which provides for Z the required relation
between V, �abs, and n [29, 42]:

n ¼ 4

�2abs
D2

Z

A3

V

� �a

ð19Þ

Eq (19) can be transformed into the final RVE-formula. Now, V stands for the sought vari-
able VRVE [29, 42]:

VRVE ¼
4

n �2abs
D2

ZA
a
3

� �1
a ¼ 4

n �2rel�Z 2
D2

ZA
a
3

� �1
a ð20Þ

In Eq (20), only two unknown variables remain whose values need to be determined for the
calculation of VRVE, i.e. A3 and the exponential RVE-factor α. Linear regression (y = ax + b) of
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the log-transformed relation given in Eq (16) produces these two values [29, 42]:

logðD2
ZðVÞÞ ¼ �a logðVÞ þ ðlogðD2

ZÞ þ a logðA3ÞÞ
y :¼ logðD2

ZðVÞÞ
a :¼ � a

x :¼ logðVÞ
b :¼ logðD2

ZÞ þ a logðA3Þ

ð21Þ

Results and Discussion

FEmodelling of experimental in-plane Young’s modulus
The transverse Young’s modulus ET (¼ 1

2
ðEx þ EyÞ) is obtained through the in-plane load cases

i = 1 and 2 by Model A and B. The experimental results of [36] are approximated by Model B.
Model A—Rigid joint model. The value of hBC has a non-negligible influence on the

obtained ET in particular for hBC < 77.50 μm (see Fig 3 for the exemplary values of sample
316L-10%-No.1, and 316L-20%-No.1). Whether hBC still changes ET for hBC � 77.50 μm
depends on the imposed BC type. The deformation plots demonstrate for MBC that for low
hBC the applied BC cause a mechanical response almost exclusively in the close proximity to
the two constrained cube faces Fx0 and Fx1 (see Fig 4). For greater hBC, a nearly linear displace-
ment increase through the sample along the axis of tension can be observed in analogy to the
increased ET in Fig 3.

The change from linear to quadratic interpolation decreases the ET obtained by Timoshenko
beams only marginally (see Tables 4 and 5). ET increases considerably when Euler-Bernoulli
beams are simulated:

ET;B32 ≲ ET;B31 < ET;B33 ð22Þ

The reduced number of prescribed degrees of freedom (DOF) in the case of MBC reduces
also the value of ET when compared to KUBC:

ET;MBC < ET;KUBC ð23Þ

The findings in Eqs (22) and (23) hold true irrespectively of the hBC value and confirm the
prediction of [62] and [29] respectively.

Model B—Spring joint model. ET is obtained by Model B for values of s defined in
Table 2 with hBC = 77.50 μm. This hBC value is chosen because of the obtained ET magnitude

Table 4. Model A—Influence of beam type on ET under MBC.

BC: MBC hBC:

316L-Sample: Ratio: 7.75 38.75 77.50 155.00 [μm]

10%-No.1 ET,B33/ET,B31 131.05% 137.45% 138.44% 139.62% [-]

15%-No.1 ET,B33/ET,B31 137.63% 143.10% 143.88% 148.88%

20%-No.1 ET,B33/ET,B31 139.45% 142.35% 142.79% 143.53%

10%-No.1 ET,B32/ET,B31 99.44% 99.31% 99.26% 99.27% [-]

15%-No.1 ET,B32/ET,B31 99.12% 99.00% 98.99% 98.99%

20%-No.1 ET,B32/ET,B31 98.65% 98.49% 98.47% 98.47%

doi:10.1371/journal.pone.0143011.t004
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under MBC (similar to the experimental values of [36]) and because of the considerably
reduced dET/dhBC at this value. As required, results for Model B tend towards Model A for
greater s independently of the applied BC (see Fig 5):

lim
s½m	!1

ET;BðsÞ ¼ ET;A ð24Þ

Under MBC with only two constrained cube faces, ET results match better the experimen-
tally obtained stiffness values of in-plane tensile testing of [36]. The best match of Model B
under MBC is obtained for s = 5 μm (see Fig 6) which is used for the following analyses.

Stiffness matrix and transverse isotropy
The dominantly in-plane fibre orientation of the network samples (see [36, 73] for detailed
analyses) influences the mechanical behaviour to a great extent when the remaining load cases
i = 3 to 6 (see Fig 7 for sample 316L-20%-No.2) are obtained. It can be described as transversely
isotropic.

Eqs (25)–(27) present the elastic moduli together with the confidence intervals [Cij ± 2DCij
]

under KUBC for B32 of each f. All non-bold entries would be expected to equal zero. However,
they only nearly vanish which is caused by the numerical artefacts. C11 deviates from C22 by a
maximum error of 6.13% for f = 10%. The conditions that C44
 C55 and C13 
 C23 show the
biggest errors for f = 15% (5.67% and 4.80% respectively). The obtained error for C66 

1
2
ðC11 � C12Þ varies between 3.20% for f = 10% and 11.27% for f = 20%.

½C	B32f¼10% ¼

3:25� 0:27 1:01� 0:06 0:10� 0:03 0:02� 0:03 0:06� 0:04 0:07� 0:08

� 3:05� 0:09 0:10� 0:03 0:06� 0:08 0:03� 0:02 0:12� 0:08

� � 0:32� 0:01 0:02� 0:02 0:02� 0:03 0:02� 0:02

� � � 0:17� 0:02 0:01� 0:00 0:04� 0:04

� � � � 0:17� 0:02 0:02� 0:02

� � � � � 1:09� 0:04

2
666666666666664

3
777777777777775

GPa ð25Þ

Table 5. Model A—Influence of beam type on ET under KUBC.

BC: KUBC hBC:

316L-Sample: Ratio: 7.75 38.75 77.50 155.00 [μm]

10%-No.1 ET,B33/ET,B31 139.02% 153.55% 155.84% 160.58% [-]

15%-No.1 ET,B33/ET,B31 147.34% 151.64% 161.01% 168.81%

20%-No.1 ET,B33/ET,B31 148.79% 153.94% 154.38% 165.32%

10%-No.1 ET,B32/ET,B31 99.34% 99.35% 99.39% 99.50% [-]

15%-No.1 ET,B32/ET,B31 99.04% 99.11% 99.21% 99.34%

20%-No.1 ET,B32/ET,B31 98.63% 98.77% 98.91% 99.12%

doi:10.1371/journal.pone.0143011.t005
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Fig 5. Model A and B—Convergence of results.Obtained ET values of Model A and Model B depending on s.

doi:10.1371/journal.pone.0143011.g005
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Fig 6. Model B—Comparison experiments and simulation.Obtained ET values of Model B depending on f and experimental in-plane tensile testing
results of [36].

doi:10.1371/journal.pone.0143011.g006
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½C	B32f¼15% ¼

4:06� 0:07 1:28� 0:10 0:18� 0:06 0:04� 0:05 0:13� 0:21 0:11� 0:05

� 4:06� 0:10 0:17� 0:03 0:11� 0:18 0:05� 0:05 0:13� 0:07

� � 0:53� 0:09 0:04� 0:05 0:04� 0:03 0:04� 0:02

� � � 0:29� 0:01 0:02� 0:01 0:03� 0:01

� � � � 0:31� 0:05 0:03� 0:02

� � � � � 1:31� 0:12

2
666666666666664

3
777777777777775

GPa ð26Þ

Fig 7. Model B—Deformation plot.Obtained u [μm] for sample 316L-20%-No.2 in load cases i = 3 to 6.

doi:10.1371/journal.pone.0143011.g007
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½C	B32f¼20% ¼

4:31� 0:14 1:32� 0:06 0:28� 0:05 0:02� 0:01 0:05� 0:04 0:09� 0:05

� 4:30� 0:12 0:28� 0:04 0:06� 0:07 0:03� 0:03 0:14� 0:26

� � 1:02� 0:05 0:03� 0:02 0:05� 0:07 0:04� 0:03

� � � 0:46� 0:05 0:02� 0:01 0:04� 0:03

� � � � 0:47� 0:01 0:03� 0:03

� � � � � 1:33� 0:02

2
666666666666664

3
777777777777775

GPa ð27Þ

Size effect and prediction of RVE size
The sample set of Vk and respective nk in Table 6 with k between 1 and 6 was extracted ran-
domly for each f from the network samples. nk replicates the scheme found in [45]. The original
publication [29] relates to the measurement error which would be rather difficult to quantify
for the presented meshed fibres network systems.

ET shows for the two BC types two different size effects, decreasing for KUBC and increas-
ing for MBC (see Fig 8). These two patterns can be found similarly in [29], there in particular
for the bulk modulus under MBC, and for KUBC in [32].

The application of the regression algorithm in Eq (21) (with Z = ET) leads to the values of
Table 7. Greater f reduces VRVE,ET

. The influence of the BC type on the material is found to be
as predicted by [29]:

VRVE;MBC > VRVE;KUBC ð28Þ

For f = 10% under MBC, the condition of Eq (18) [29] isn’t fulfilled any more. The precision
of the values for this particular simulation point could be investigated further in future work by
greater sample sets.

Prediction of fibre deformation mechanism
The fibre segment deformation inside the network sample by deflection w� (perpendicular to
the fibre segment axis) is compared to the elongation ΔΛ (along the axis) by the median of
their ratio under KUBC (see Fig 9). For greater simplicity, load cases i = 1 and 2 are summa-
rised to �T, i = 4 and 5 to the out-of-plane shear deformation �shear-z. Load case i = 3 stands for
�tensile-z and i = 6 for �shear-xy.

Increased f has been shown to reduce the fibre segment length λ (see Table 1 and [36])
which reduces simultaneously in the present study the obtained median [w�/ΔΛ]. The obtained

Table 6. Sample set of random realisations for each fibre volume fraction.

Index k 1 2 3 4 5 6 Full sample

Sub-sample size V 1=3
k

50 100 150 200 250 300 516 [pixel]

0.39 0.78 1.16 1.55 1.94 2.33 4.00 [mm]

Number of realisations nk 140 110 80 50 30 10 2 [-]

doi:10.1371/journal.pone.0143011.t006
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Fig 8. Model B—Size effect.Obtained ET values of Model B depending on V1/3 (error bar = ±DET(V
1/3

)).

doi:10.1371/journal.pone.0143011.g008
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median ratio is in each case greater than 2, increasing for shear and out-of-plane deformation:

2 <
w�

DL

� �Median

�T

<
w�

DL

� �Median

�shear�xy

<
w�

DL

� �Median

�tensile�z

<
w�

DL

� �Median

�shear�z

< 8 ð29Þ

Conclusions and Future Work
The present study simulates the elastic mechanics of metallic fibre networks by two FE models
(rigid inter-fibre joints or torsional spring connectors) and validates the results by experimen-
tally obtained values from [36]. While [29, 32] used solid volume meshes, beam theory is
shown to offer a valid simplification method for the investigated material.

BC types MBC and KUBC are simulated and a new model parameter hBC is introduced for
the depth to which BC are prescribed into the material along nin on @V. MBC with fewer pre-
scribed DOF provide a greater match to the experimental values of in-plane tensile testing than
KUBC do. The results for rigid inter-fibre joints and for torsional spring connectors converge
incrementally. During this process, the influence of the spring constant on the overall

Table 7. RVE results for KUBC andMBC, obtained by linear regression.

BC - Values from linear
regression

RVE V 1=3
RVE;ET

[mm]

Fibre volume fraction f α [-] A1=3
3 [mm] R2 [-] n = 1, �rel = 1% n = 2, �rel = 1% n = 5, �rel = 1%

KUBC—10% 0.97 0.036 0.97 5.64 4.47 3.29

KUBC—15% 0.90 0.009 0.98 2.25 1.74 1.24

KUBC—20% 0.81 0.003 0.95 1.12 0.84 0.58

MBC—10% 1.41 21.274 0.89 1,210.50 1,042.56 855.84

MBC—15% 1.15 0.294 0.94 39.44 32.62 25.38

MBC—20% 0.94 0.010 0.93 5.06 3.98 2.89

doi:10.1371/journal.pone.0143011.t007

Fig 9. Model B—Deformation mechanism.Obtained median of [w*/ΔΛ] depending on f.

doi:10.1371/journal.pone.0143011.g009
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structural stiffness decreases. This implies for the manufacturing process that the stiffness of
inter-fibre joints becomes increasingly negligible as soon as a minimum joint strength has been
achieved in the sintering process.

In [29], an isotropic material behaviour was obtained for computer generated fibre networks
without preferred fibre orientation direction. The material of the present study exhibits a domi-
nantly in-plane fibre orientation [36] and an in-plane transversely isotropic mechanical behav-
iour. Depending on the applied BC type, a decreasing or increasing size effect is observed. Fibre
segment deflection dominates the deformation inside the network over fibre segment elonga-
tion. These three findings imply for future work and future design studies that size and shape
of the material are of importance, as well as the manufactured fibre orientation.

Of interest for future work is also the achievable strain magnitude in a matrix material
located in the network’s void phase and the material’s suitability for mechanical bone growth
stimulation [74].

Acknowledgments
Dr Garth Wells’ advice about Timoshenko beam types, joints, and boundary conditions is
acknowledged. Dr Arul Britto has to be mentioned for sharing his vast experience with Abaqus.
This research was supported by the European Research Council Grant No 240446.

Author Contributions
Conceived and designed the experiments: WAB. Performed the experiments: WAB. Analyzed
the data: WAB. Contributed reagents/materials/analysis tools: WAB. Wrote the paper: WAB.

References
1. Ducheyne P, Aernoudt E, De Meester P. The mechanical behaviour of porous austenitic stainless steel

fibre structures. Journal of Materials Science. 1978; 13(12):2650–2658. doi: 10.1007/BF02402752

2. Cox H. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Phys-
ics. 1951; 3(3):72–79. doi: 10.1088/0508-3443/3/3/302

3. Rigdahl M, Andersson H, Westerlind B, Hollmark H. Elastic Behaviour of Low Density Paper Described
by Network Mechanics. Fibre Science and Technology. 1983; 19(2):127–144. doi: 10.1016/0015-0568
(83)90036-2

4. Rigdahl M, Westerlind B, Hollmark H. Analysis of cellulose networks by the finite element method. Jour-
nal of Materials Science. 1984; 19(12):3945–3952. doi: 10.1007/BF00980758

5. Alava M, Niskanen K. The physics of paper. Reports on Progress in Physics. 2006 mar; 69(3):669–
723. doi: 10.1088/0034-4885/69/3/R03

6. Alkhagen M, Toll S. The Effect of Fiber Diameter Distribution on the Elasticity of a Fiber Mass. Journal
of Applied Mechanics. 2009; 76(4):041014. doi: 10.1115/1.2966178

7. Head DA, Levine AJ, MacKintosh FC. Mechanical response of semiflexible networks to localized per-
turbations. Physical Review E. 2005 dec; 72(6):061914. doi: 10.1103/PhysRevE.72.061914

8. Heussinger C, Frey E. Role of architecture in the elastic response of semiflexible polymer and fiber net-
works. Physical Review E. 2007 jan; 75(1):011917. doi: 10.1103/PhysRevE.75.011917

9. Bai M, Missel AR, Levine AJ, KlugWS. On the role of the filament length distribution in the mechanics
of semiflexible networks. Acta biomaterialia. 2011 may; 7(5):2109–2118. doi: 10.1016/j.actbio.2010.12.
025 PMID: 21187172

10. Kurniawan NA, Enemark S, Rajagopalan R. The role of structure in the nonlinear mechanics of cross-
linked semiflexible polymer networks. The Journal of Chemical Physics. 2012 feb; 136(6):065101. doi:
10.1063/1.3682779 PMID: 22360221

11. Carrillo JMY, MacKintosh FC, Dobrynin AV. Nonlinear Elasticity: From Single Chain to Networks and
Gels. Macromolecules. 2013 may; 46(9):3679–3692. doi: 10.1021/ma400478f

12. Mao N, Russell SJ, Pourdeyhimi B. 9 Characterisation, testing and modelling of nonwoven fabrics. In:
Russell SJ, editor. Handbook of nonwovens. Cambridge (UK); 2007. p. 401–502.

Sintered Metallic Fibre Networks: A Study by Beam Theory

PLOS ONE | DOI:10.1371/journal.pone.0143011 November 16, 2015 19 / 22

http://dx.doi.org/10.1007/BF02402752
http://dx.doi.org/10.1088/0508-3443/3/3/302
http://dx.doi.org/10.1016/0015-0568(83)90036-2
http://dx.doi.org/10.1016/0015-0568(83)90036-2
http://dx.doi.org/10.1007/BF00980758
http://dx.doi.org/10.1088/0034-4885/69/3/R03
http://dx.doi.org/10.1115/1.2966178
http://dx.doi.org/10.1103/PhysRevE.72.061914
http://dx.doi.org/10.1103/PhysRevE.75.011917
http://dx.doi.org/10.1016/j.actbio.2010.12.025
http://dx.doi.org/10.1016/j.actbio.2010.12.025
http://www.ncbi.nlm.nih.gov/pubmed/21187172
http://dx.doi.org/10.1063/1.3682779
http://www.ncbi.nlm.nih.gov/pubmed/22360221
http://dx.doi.org/10.1021/ma400478f


13. Mannarino MM, Rutledge GC. Mechanical and tribological properties of electrospun PA 6(3)T fiber
mats. Polymer. 2012; 53(14):3017–3025. doi: 10.1016/j.polymer.2012.04.039

14. Ridruejo A, González C, LLorca J. A constitutive model for the in-plane mechanical behavior of nonwo-
ven fabrics. International Journal of Solids and Structures. 2012 sep; 49(17):2215–2229. doi: 10.1016/j.
ijsolstr.2012.04.014

15. Silberstein MN, Pai CL, Rutledge GC, Boyce MC. Elastic-plastic behavior of non-woven fibrous mats.
Journal of the Mechanics and Physics of Solids. 2012 feb; 60(2):295–318. doi: 10.1016/j.jmps.2011.10.
007

16. Farukh F, Demirci E, Sabuncuoglu B, Acar M, Pourdeyhimi B, Silberschmidt VV. Numerical analysis of
progressive damage in nonwoven fibrous networks under tension. International Journal of Solids and
Structures. 2014; 51(9):1670–1685. doi: 10.1016/j.ijsolstr.2014.01.015

17. Farukh F, Demirci E, Sabuncuoglu B, Acar M, Pourdeyhimi B, Silberschmidt VV. Mechanical analysis
of bi-component-fibre nonwovens: Finite-element strategy. Composites Part B: Engineering. 2015;
68:327–335. doi: 10.1016/j.compositesb.2014.09.003

18. Kwon RY, Lew AJ, Jacobs CR. A microstructurally informed model for the mechanical response of
three-dimensional actin networks. Computer Methods in Biomechanics and Biomedical Engineering.
2008 aug; 11(4):407–418. doi: 10.1080/10255840801888686 PMID: 18568835

19. Lieleg O, Schmoller KM, Claessens MMAE, Bausch AR. Cytoskeletal polymer networks: viscoelastic
properties are determined by the microscopic interaction potential of cross-links. Biophysical journal.
2009 jun; 96(11):4725–4732. doi: 10.1016/j.bpj.2009.03.038 PMID: 19486695

20. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010 jan; 463(7280):485–492.
doi: 10.1038/nature08908 PMID: 20110992

21. Stricker J, Falzone T, Gardel ML. Mechanics of the F-actin cytoskeleton. Journal of Biomechanics.
2010 jan; 43(1):9–14. doi: 10.1016/j.jbiomech.2009.09.003 PMID: 19913792

22. Yamaoka H, Matsushita S, Shimada Y, Adachi T. Multiscale modeling and mechanics of filamentous
actin cytoskeleton. Biomechanics and modeling in mechanobiology. 2012 mar; 11(3):291–302. doi: 10.
1007/s10237-011-0317-z PMID: 21614531

23. Astrom JA, Makinen JP, Hirvonen H, Timonen J. Stiffness of compressed fiber mats. Journal of Applied
Physics. 2000; 88(9):5056–5061. doi: 10.1063/1.1315622

24. Head DA, MacKintosh FC, Levine AJ. Nonuniversality of elastic exponents in random bond-bending
networks. Physical Review E. 2003 aug; 68(2):025101(R). doi: 10.1103/PhysRevE.68.025101

25. DiDonna BA, Lubensky TC. Nonaffine correlations in random elastic media. Physical Review E. 2005
dec; 72(6):066619. doi: 10.1103/PhysRevE.72.066619

26. Hatami-Marbini H, Picu RC. Heterogeneous long-range correlated deformation of semiflexible random
fiber networks. Physical Review E. 2009 oct; 80(4):046703. doi: 10.1103/PhysRevE.80.046703

27. Broedersz CP, Sheinman M, MacKintosh FC. Filament-Length-Controlled Elasticity in 3D Fiber Net-
works. Physical Review Letters. 2012 feb; 108(7):078102. doi: 10.1103/PhysRevLett.108.078102
PMID: 22401259

28. Shahsavari AS, Picu RC. Size effect on mechanical behavior of random fiber networks. International
Journal of Solids and Structures. 2013 oct; 50(20-21):3332–3338. doi: 10.1016/j.ijsolstr.2013.06.004

29. Dirrenberger J, Forest S, Jeulin D. Towards gigantic RVE sizes for 3D stochastic fibrous networks.
International Journal of Solids and Structures. 2014 jan; 51(2):359–376. doi: 10.1016/j.ijsolstr.2013.10.
011

30. Jin MZ, Chen CQ, Lu TJ. The mechanical behavior of porous metal fiber sintered sheets. Journal of the
Mechanics and Physics of Solids. 2013 jan; 61(1):161–174. doi: 10.1016/j.jmps.2012.08.006

31. Zhao TF, Jin MZ, Chen CQ. A phenomenological elastoplastic model for porous metal fiber sintered
sheets. Materials Science and Engineering: A. 2013 oct; 582:188–193. doi: 10.1016/j.msea.2013.06.
042

32. Tsarouchas D. Fibre Network Materials: Architecture & Effective Linear Elastic Properties. University
of Cambridge; 2012.

33. Yi P, Peng L, Liu N, Lai X, Ni J. A micromechanics elastic-plastic constitutive model for sintered stain-
less steel fiber felt. Materials & Design. 2013 oct; 51:876–885. doi: 10.1016/j.matdes.2013.05.023

34. Rodney D, Gadot B, Martinez OR, du Roscoat SR, Orgéas L. Reversible dilatancy in entangled single-
wire materials. Nature Materials. 2015;(September (advance online publication)). Available from: http://
www.nature.com/doifinder/10.1038/nmat4429

35. BosbachW. The mechanical and magnetic behaviour of sintered fibre networks and their suitability for
a therapeutic, biomedical application. University of Cambridge (viva passed on 20 March 2015); 2015.

Sintered Metallic Fibre Networks: A Study by Beam Theory

PLOS ONE | DOI:10.1371/journal.pone.0143011 November 16, 2015 20 / 22

http://dx.doi.org/10.1016/j.polymer.2012.04.039
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.014
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.014
http://dx.doi.org/10.1016/j.jmps.2011.10.007
http://dx.doi.org/10.1016/j.jmps.2011.10.007
http://dx.doi.org/10.1016/j.ijsolstr.2014.01.015
http://dx.doi.org/10.1016/j.compositesb.2014.09.003
http://dx.doi.org/10.1080/10255840801888686
http://www.ncbi.nlm.nih.gov/pubmed/18568835
http://dx.doi.org/10.1016/j.bpj.2009.03.038
http://www.ncbi.nlm.nih.gov/pubmed/19486695
http://dx.doi.org/10.1038/nature08908
http://www.ncbi.nlm.nih.gov/pubmed/20110992
http://dx.doi.org/10.1016/j.jbiomech.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19913792
http://dx.doi.org/10.1007/s10237-011-0317-z
http://dx.doi.org/10.1007/s10237-011-0317-z
http://www.ncbi.nlm.nih.gov/pubmed/21614531
http://dx.doi.org/10.1063/1.1315622
http://dx.doi.org/10.1103/PhysRevE.68.025101
http://dx.doi.org/10.1103/PhysRevE.72.066619
http://dx.doi.org/10.1103/PhysRevE.80.046703
http://dx.doi.org/10.1103/PhysRevLett.108.078102
http://www.ncbi.nlm.nih.gov/pubmed/22401259
http://dx.doi.org/10.1016/j.ijsolstr.2013.06.004
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.011
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.011
http://dx.doi.org/10.1016/j.jmps.2012.08.006
http://dx.doi.org/10.1016/j.msea.2013.06.042
http://dx.doi.org/10.1016/j.msea.2013.06.042
http://dx.doi.org/10.1016/j.matdes.2013.05.023
http://www.nature.com/doifinder/10.1038/nmat4429
http://www.nature.com/doifinder/10.1038/nmat4429


36. Neelakantan S, BosbachW, Woodhouse J, Markaki AE. Characterization and deformation response of
orthotropic fibre networks with auxetic out-of-plane behaviour. Acta Materialia. 2014 mar; 66:326–339.
doi: 10.1016/j.actamat.2013.11.020

37. Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R. Finite Element Analysis of Osteosynthesis
Screw Fixation in the Bone Stock: An Appropriate Method for Automatic ScrewModelling. PloS ONE.
2012 jan; 7(3):1–10. doi: 10.1371/journal.pone.0033776

38. Eulero L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio pro-
blematis isoperimetrici latissimo sensu accepti. Lausanne (Switzerland); 1744.

39. Timoshenko S. On the Correction for Shear of the Differential Equation for Transverse Vibrations of
Prismatic Bars. Philosophical Magazine Series 6. 1921; 41(245):744–746. doi: 10.1080/
14786442108636264

40. Timoshenko S. On the transverse vibrations of bars of uniform cross-section. Philosophical Magazine
Series 6. 1922; 43(253):125–131. doi: 10.1080/14786442208633855

41. Reddy JN. An Introduction to the Finite Element Method. 3rd ed. College Station, Texas (USA); 2006.

42. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative vol-
ume element for random composites: statistical and numerical approach. International Journal of Solids
and Structures. 2003 jun; 40(13-14):3647–3679. doi: 10.1016/S0020-7683(03)00143-4

43. Kanit T, N’Guyen F, Forest S, Jeulin D, ReedM, Singleton S. Apparent and effective physical properties
of heterogeneous materials: Representativity of samples of two materials from food industry. Computer
Methods in Applied Mechanics and Engineering. 2006 jul; 195(33-36):3960–3982. doi: 10.1016/j.cma.
2005.07.022

44. Brun E, Vicente J, Topin F, Occelli R, Clifton MJ. Microstructure and Transport Properties of Cellular
Materials: Representative Volume Element. Advanced Engineering Materials. 2009 oct; 11(10):805–
810. doi: 10.1002/adem.200900131

45. Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative vol-
ume elements for the prediction of cortical bone elastic properties. Biomechanics and modeling in
mechanobiology. 2011 dec; 10(6):925–937. doi: 10.1007/s10237-010-0284-9 PMID: 21267625

46. Kanit T, Forest S, Jeulin D, N’Guyen F, Singleton S. Virtual improvement of ice cream properties by
computational homogenization of microstructures. Mechanics Research Communications. 2011 mar;
38(2):136–140. doi: 10.1016/j.mechrescom.2011.01.005

47. RöntgenWC. Ueber eine neue Art von Strahlen (Vorläufige Mittheilung). In: Sonderabbdruck der Sit-
zungsberichte der Würzburger Physik.-medic. Gesellschaft. Würzburg (Germany); 1895.

48. Buzug M. Computed Tomography—From Photon Statistics to Modern Cone-BeamCT. Luebeck (Ger-
many); 2008.

49. Francois R. US-Patent 5,071,713; 1991.

50. Lee TC, Kashyap RL, Chong-NamC. Building Skeleton Models via 3-D Medial Surface/Axis Thinning
Algorithms. Graphical Models and Image Processing. 1994; 56(6):462–478. doi: 10.1006/cgip.1994.
1042

51. Lindquist WB. 3DMAGeneral Users Manual. Stony Brook (USA); 1999.

52. Yang H. A Geometric and Statistical Analysis of Fibrous Materials from Three-Dimensional High Reso-
lution Images. State University of New York at Stony Brook; 2001.

53. Desai CS, Abel JF. Introduction to the Finite Element Method—A Numerical Method for Engineering
Analysis. New York (USA); 1972.

54. Hooke R. Lectures de Potentia Restitutiva, or of Spring—Explaining the Power of Springing Bodies.
London (UK); 1678.

55. Dassault Systèmes. Abaqus 6.13 Online Documentation; 2013. Available from: http://129.97.46.
200:2080/v6.13/

56. Dassault Systèmes. Abaqus Theory Guide 1.5.1 Equilibrium and virtual work; 2013. Available from:
http://129.97.46.200:2080/v6.13/books/stm/default.htm?startat = ch01s05ath08.html

57. Logan JD. Applied Mathematics. 6th ed. Lincoln, Nebraska (USA); 2006.

58. Atzberger PJ. Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluc-
tuations. Journal of Computational Physics. 2011; 230(8):2821–2837. doi: 10.1016/j.jcp.2010.12.028

59. Gross D, Hauger W, Schröder J, Wall WA, Bonet J. Engineering Mechanics 2: Mechanics of Materials.
Heidelberg (Germany); 2011.

60. Shahsavari A, Picu RC. Model selection for athermal cross-linked fiber networks. Physical Review E.
2012 jul; 86(1):011923. doi: 10.1103/PhysRevE.86.011923

Sintered Metallic Fibre Networks: A Study by Beam Theory

PLOS ONE | DOI:10.1371/journal.pone.0143011 November 16, 2015 21 / 22

http://dx.doi.org/10.1016/j.actamat.2013.11.020
http://dx.doi.org/10.1371/journal.pone.0033776
http://dx.doi.org/10.1080/14786442108636264
http://dx.doi.org/10.1080/14786442108636264
http://dx.doi.org/10.1080/14786442208633855
http://dx.doi.org/10.1016/S0020-7683(03)00143-4
http://dx.doi.org/10.1016/j.cma.2005.07.022
http://dx.doi.org/10.1016/j.cma.2005.07.022
http://dx.doi.org/10.1002/adem.200900131
http://dx.doi.org/10.1007/s10237-010-0284-9
http://www.ncbi.nlm.nih.gov/pubmed/21267625
http://dx.doi.org/10.1016/j.mechrescom.2011.01.005
http://dx.doi.org/10.1006/cgip.1994.1042
http://dx.doi.org/10.1006/cgip.1994.1042
http://129.97.46.200:2080/v6.13/
http://129.97.46.200:2080/v6.13/
http://129.97.46.200:2080/v6.13/books/stm/default.htm?startat�=�ch01s05ath08.html
http://dx.doi.org/10.1016/j.jcp.2010.12.028
http://dx.doi.org/10.1103/PhysRevE.86.011923


61. Dassault Systèmes. Abaqus Analysis User’s Guide 29.3.3 Choosing a beam element; 2013. Available
from: http://129.97.46.200:2080/v6.13/books/usb/default.htm?startat = pt06ch29s03alm08.html

62. Wang CW, Berhan L, Sastry AM. Structure, Mechanics and Failure of Stochastic Fibrous Networks—
Part I Microscale Considerations. Journal of Engineering Materials and Technology. 2000; 122(4):450–
459. doi: 10.1115/1.1288769

63. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube
sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of
Applied Physics. 2004; 95(8):4335–4345. doi: 10.1063/1.1687995

64. Kaw AK. Mechanics of Composite Materials. 2nd ed. Boca Raton, Florida (USA); 2006.

65. Zohdi TI, Wriggers P. An Introduction to Computational Micromechanics. In: Pfeiffer F, Wriggers P, edi-
tors. Lecture Notes in Applied and Computational Mechanics. 1st ed. Hannover (Germany); 2005.

66. Christensen RM. 1.1 Elasticity Theory Results. In: Mechanics of Composite Materials. revised ed.
Mineola, New York (USA); 2005.

67. Matheron G. Estimating and Choosing. Paris (France); 1989.

68. Jeulin D. Variance scaling of Boolean random varieties. HAL: hal-00618967, version 1. 2011;p. 1–16.

69. Matheron G. The Theory of Regionalized Variables and its Applications. In: Les Cahiers du Centre de
Morphologie Mathematique de Fontainebleau. vol. 5. Paris (France); 1971. p. 1–211.

70. Matheron G. Random Sets and Integral Geometry. Paris (France); 1975.

71. Lantuejoul C. Ergodicity and integral range. Journal of Microscopy. 1991; 161(3):387–403. doi: 10.
1111/j.1365-2818.1991.tb03099.x

72. Cailletaud G, Jeulin D, Rolland P. Size Effect on Elastic Properties of Random Composites. Engineer-
ing Computations. 1994; 11(2):99–110. doi: 10.1108/02644409410799227

73. Spear RL, Srigengan B, Neelakantan S, BosbachW, Brooks RA, Markaki AE. Physical and Biological
Characterization of Ferromagnetic Fiber Networks: Effect of Fibrin Deposition on Short-Term In Vitro
Responses of Human Osteoblasts. Tissue Engineering Part A. 2015; 21(3-4):463–474. doi: 10.1089/
ten.tea.2014.0211 PMID: 25145466

74. BosbachW. Finite element modelling of bone growth stimulation and its suitability for therapeutic, bio-
medical applications. In: von-Behring-Röntgen-Symposium. Giessen (Germany); 2015. p. 1–2. Avail-
able from: https://www.repository.cam.ac.uk/handle/1810/251137?show = full

Sintered Metallic Fibre Networks: A Study by Beam Theory

PLOS ONE | DOI:10.1371/journal.pone.0143011 November 16, 2015 22 / 22

http://129.97.46.200:2080/v6.13/books/usb/default.htm?startat�=�pt06ch29s03alm08.html
http://dx.doi.org/10.1115/1.1288769
http://dx.doi.org/10.1063/1.1687995
http://dx.doi.org/10.1111/j.1365-2818.1991.tb03099.x
http://dx.doi.org/10.1111/j.1365-2818.1991.tb03099.x
http://dx.doi.org/10.1108/02644409410799227
http://dx.doi.org/10.1089/ten.tea.2014.0211
http://dx.doi.org/10.1089/ten.tea.2014.0211
http://www.ncbi.nlm.nih.gov/pubmed/25145466
https://www.repository.cam.ac.uk/handle/1810/251137?show�=�full

