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A magnetostrictive bioinspired whisker sensor based on a galfenol/beryllium-bronze/galfenol composite cantilever beam was
developed in this work. According to the new design concept, the proposed whisker can output positive and negative
voltages under different bending directions. Besides, the proposed whisker sensor can realize the bidirectional distance and
microforce perception. Using the classical beam theory, a theoretical model was used to predict the output performance of
the whisker. An experimental system was established to test the whisker’s output performance. In the experiment, the
designed whisker, compared with a traditional unimorph whisker, displayed an output voltage range of −240 to 240mV.
The parameters were as follows: the distance was 0–22mm, with the microforce sensing range of 9.8–2744mN, the
average distance was 10.90mm/mV, and the force sensitivity was 11.4mN/mV. At last, obstacle perception was applied.
The experiment showed that the proposed whisker sensor can realize the bidirection tactile perception in one-dimensional
space. The work expands the function of the magnetostrictive bioinspired whisker, acquiring the multi-information for
single-sensor system.

1. Introduction

Recently, with the development of robot technology, the
bioinspired whisker has attracted the attention of
researchers. As a “nonvisual” perception method, it is
installed on bionic robots and automatic vehicles, to real-
ize tactile perception, hydrodynamic measurement, and
shape sensing [1–5]. Due to the excellent environmental
adaptability, the bioinspired whisker, by providing an arti-
ficial “tactile,” can collect more ambient information to
make up for the lack of machine vision.

Until now, the reported bioinspired whiskers include
capacitive whisker, piezoelectric whisker, elastic whisker,
and magnetostrictive whisker [6–11]. Wherein, magneto-
strictive whisker shows the advantages of working under

static or low-frequency conditions [12, 13], comparing to
piezoelectric and capacitive whiskers.

However, for traditional magnetostrictive whisker, its
structure and principle (the position of magnetism sensor
and the measuring method) determine that in the following
condition—when bending to different directions, the output
signals are asymmetrical. Thus, it is insensitive to the direc-
tions of stress and vibration, which limits its application.

Due to this, we developed a magnetostrictive whisker
sensor, which is basing on a composite cantilever beam with
sandwich structure. The operation principle was analyzed,
compared to that of traditional magnetostrictive whisker.
We used two Hall sensors to generate a differential output,
thus realizing the detection of bidirectional bending. The
experimental system was built to test the proposed whisker.
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2. Design

2.1. Structure. Figure 1 gives the structure of the whisker,
consisting of a galfenol/beryllium-bronze/galfenol composite
cantilever beam, a magnet, two Hall sensors, and a base. The
magnet uses a bias magnetic field to magnetize two galfenol
sheets. When a stress is applied, the flux linkage change
induced by the bending beam is measured by the two Halls.
The composite beam is fixed by the base with an optimal
distance between the magnet and the clamped point [12],
enabling the Hall to detect the maximum change flux.

The composite cantilever beam was fabricated by a long
beryllium-bronze beam as substrate, with two short galfenol
beams bonding on it. The beryllium-bronze substrate
provides excellent elasticity, making the composite beam
bear larger stress and higher vibration frequency than the
single beam. Tables 1 and 2 show the physical and geometry
parameters of the proposed whisker, respectively.

2.2. Principle. Figure 2 shows the working principle of tradi-
tional, newly designed magnetostrictive whiskers. It can find
the way to realize the bidirection detection. Figure 2(a) shows
a conventional structure of magnetostrictive whisker

developed by Flatua; there is only one Hall sensor used to
detect the linkage flux. Thus, we can know how the magnetic
domains rotate with the application of a stress (observed by
Raghunat et al. by using Kerr microscope [14]).

Figures 2(b) and 2(c) (named “mode I” and “mode II”)
show that these rotations are different for magnetic domains
distributed on both sides of the natural center line. Using a
unipolar Hall to detect the linkage flux (see Figure 2(d)),
the output signal is asymmetric. Furthermore, the output sig-
nal of mode I is larger than that of mode II (see Figure 2(e)).
It is the reason why the traditional magnetostrictive whisker
cannot identify the directions of loading stress.

Defining the output of Hall as Uh and the reference volt-
age (when magnetic flux is zero) as U ref (see Figure 2(a)), we
can obtain the final output signal with a different operation.

Uuni =Uh −U ref 1

For the given whisker, a composite beam is used instead
of the original single beam. Figure 2(f) shows the natural cen-
ter line is in the middle of the beryllium-bronze beam. It
makes the rotation of the bending magnetic domains consis-
tent in each galfenol beam.

Moreover, the changes of linkage flux for each galfenol
beam are measured by different Hall sensors (see
Figures 2(g) and 2(h)). Two bipolar Halls are used to realize
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Figure 1: Magnetostrictive whisker sensor: (a) 3-D model and (b) photography.

Table 1: Physical parameters of the whisker.

Material Parameter Value (unit)

Galfenol

Magnetostrictive coefficient 220 ppm

Young’s modulus 70GPa

Poisson’s ratio 0.35

Beryllium-bronze
Young’s modulus 128GPa

Poisson’s ratio 0.42

Bias magnet Bias magnetic field 190mT

Hall Measurable range ±150Gauss

Table 2: Geometric parameters of the whisker.

Component Material/type Dimensions (mm)

Composite beam
Galfenol 30× 4× 0.2

Beryllium-bronze 80× 4× 0.3
Bias magnet NdFeB 8× 4× 3
Base PVC 20× 25× 20
Hall WH202 —
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the magnetic field detection. Figure 2(i) shows that bipolar
Hall has two different outputs of north pole and south pole
(abbreviatedN and S), which are used to implement differen-
tial output. SupposingN output of Hall 1 asUh1 and S output
of Hall 2 as Uh2, the final output signal is

U =Uh1 −Uh2 −U ref 2

The new measuring circuit is used to obtain a signal
with positive and negative symmetry (see Figure 2(j)),
which makes the proposed whisker sensor identify the
force directions.

3. Model

Figure 3 shows a simplified bending model of the galfenol/
beryllium-bronze/galfenol composite beam. Figure 3(a)
shows that the proposed model is different from the conven-
tional beam model—there is a clamper to limit the starting
location of the bending beam (with the origin of coordinate
changing from O to O′).

Based on the 2-dimensional coordinate of the beam
(shown in Figure 3(a)), l is the total length of the substrate
beam; hs is the thickness; l0 is the length of galfenol beam;
and ht is the thickness: l = l0 + l1.

Figure 3(b) shows how the beam bends when a force is
applied at the beam’s free end. It is assumed that F is the
loading force and w is the deflection. At the coordinate point

O′, σx is the tensile stress along the x-direction of the beam
and εx is the strain of galfenol beam under the tensile stress.

According to the Euler-Bernoulli beam theory, the
equivalent tensile stress of the bending beam at O′ can
be expressed as [15]

σx = zEsI
d2w

dx2
= z

F L1 − x
I

, 3

where z is the distance between the position to the natural
center line of the composite beam along z-direction; x is
the position at x-axis; Es is the Young’s modulus of the
substrate beam; and I is the second moment of area of
the beam’s cross section.

The relation of loading force and deflection is expressed as

w = F
3EsI

L31 4

Figure 2(a) shows that there is a composite cantilever
beam with sandwich structure from O to O′. The effective
Young’s modulus of the composite beam can be obtained by

Ee =
2Etht + Eshs
2ht + hs

, 5

where Et is the Young’s modulus of galfenol beam.
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Figure 2: Principle of the traditional and proposed magnetostrictive bioinspired whisker: structure, operation mode, measurement method,
and output signal.
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The elastic relation can be expressed by Hook’s law,
σ = E · ε, and there is

εx =
σx
Ee

= 2ht + hs
2Etht + Eshs

σx 6

Using the piezomagnetic equation, Downey and Flatau
and Datta and Flatau derived the expression of magnetic flux
[16, 17], that is,

B = d∗33Etεx − d33d
∗
33EtH0 + μ0μrH0, 7

where d33 is the piezomagnetic coefficient; d∗33 is the inverse
piezomagnetic coefficient; H0 is the bias magnetic field; μ0
is the permeability of vacuum; and μr is the relative perme-
ability of galfenol.

Substituting (7) into (2), we can obtain

U = 2sHB = 2sHd∗33Etεx , 8

where sH is the sensitivity of Hall sensor.
According to (3), (4), (5), and (6), we derive the

expressions of output voltage in different loading conditions
as follows:

Uσ = 2sHd∗33
Et 2ht + hs
2Etht + Eshs

zL1
I

F, 9

Ud = 2sHd∗33
3EtEs 2ht + hs
2Etht + Eshs

z

L31
w 10

4. Experiment

The work studied the static performances of the proposed
sensor. An experimental system was established to test the
relations between deflection-voltage and force-voltage, thus
investigating the tactile perception of the whisker sensor.

Additionally, a dynamic contact experiment was performed
to investigate its obstacle identification.

Figure 4 shows the experimental system. The deflection
was measured when the beam bends, with the output signal
recorded by an oscilloscope (see Figure 4(a)). The largest
deflection was limited to 22mm, thus preventing the
beam from damage. With a traditional load-bearing exper-
iment method (hanging standard weights), the microforce
sensing performance of the whisker sensor was studied,
and the weights changed from 1 to 280 g. The sensor’s
distance (deflection) and force sensitivity were obtained
by the two experiments.

Figure 4(b) shows the experimental system of dynamic
contact; the whisker was fixed on a motion stage, with a
simulated obstacle placed on its motion path. The deflec-
tion was measured by a laser displacement sensor (Lts-
250). Besides, the voltage was recorded by an oscilloscope.
This experiment shows how the sensor works when a
dynamic contact occurs. It can simulate not only the active
exploration for the unknown obstacle (such as a whisker
system installed on a robot rat [2]) but also the passive
perception for external contact force changes. Both refers
to a bionic tactile.

5. Results and Discussion

Firstly, we compared the performance of the magnetostric-
tive whisker with traditional structure and newly designed
structure. In Figure 5, for the traditional one (see
Figure 5(a)), the maximum output voltage is 640mV at a
deflection of 22mm, when the beam bends to the left. When
it bends to another direction, the output voltage is positive,
but smaller than the former. From Section 2, it can be found
that the asymmetry of the curve is caused by the
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Figure 3: Bending model of the composite cantilever beam.
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inhomogeneity of magnetic domain rotation and the position
of the Hall sensor.

The deflection-voltage curve shows a nearly linear
relationship and changes from negative to positive with the
changed bending direction (see Figure 5(b)). The maximum
output voltage is 240mV at a deflection of 22mm. The aver-
age deflection sensitivity of the proposed whisker sensor is
10.9mV/mm.

In Figure 6, we compared the experimental and theo-
retical result for distance and microforce sensing. As
shown in Figure 6(a), the theoretical calculation is closed
to the experimental result; however, there is an error
between them in Figure 6(b). As in the distance sensing
experiment, the whisker sensor is working at its linear
region. For force sensing test, the whisker sensor reaches
its saturated region. Equations (9) and (10) provide a lin-
ear description. In fact, in these two equations, the inverse
piezomagnetic coefficient is not a constant, which depends
on the value of the magnetic field and stress. Therefore,
the prediction will be more accurate if we replace the
constant with a function of d∗33.

Figure 6 shows the microforce sensing performance of
the whisker sensor. The proposed whisker is tested when
the load changes from 9.8 to 2744mN. When the applied
force is 2744mN, the output voltage is 240mV. The average
force sensitivity is 11.42mN/mV, and the proposed sensor
has a resolution of 9.8mN/2mV.

Figure 7 shows the obstacle perception of the proposed
whisker sensor. The whisker sensor is fixed on the motion
stage and moves at a constant speed. The dynamic con-
tact process can be divided into three stages: (a) at stage
1 (0~t1), there was no contact between the sensor and
obstacle; (b) at stage 2 (t1~t2), the beam contacted the
obstacle and begun to bend; and (c) at stage 3 (after t2), when
the control unit has detected the raising voltage, the mov-
ing process was stopped immediately. In this test, we
focused on the response time of the whisker sensor in
the contact process.

There is a delay time (td) between the deflection and
sensing voltage. The delay time can be calculated by wmin/v,
where wmin is the minimum deflection of the cantilever beam
measured by Hall sensor and v is the relative vocasity
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Figure 4: Experimental system for (a) deflection and force test and (b) contact test.
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Figure 5: Deflection-voltage curve of (a) traditional and (b) newly designed magnetostrictive whisker sensor.
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between the whisker sensor and obstacle. After that, the
sensing voltage increases, and an addition time (tp) is needed
for the measuring circuit to test the voltage changing from
zero (which is usually very short and can be ignored). As a
result, we can define the total perception time as

ttot = td + tp ≈
wmin
v

11

Equation (11) indicates that the total perception time ttot
is mainly due to the relative speed v. This experiment indi-
cates that the proposed whisker can detect the obstacles.

6. Conclusions

In this work, a bioinspired magnetostrictive whisker was pro-
posed. Based on the new structure composite cantilever beam
and differential measurement method, the proposed whisker
realized the perception of bidirectional tactile. To testify the
operation principle, an experimental system was established.
Furthermore, the static performances of the proposed whis-
ker sensor were tested. The designed whisker has properties
as follows:

(i) The distance measurement range is 2–22mm, with
sensitivity of 10.9mV/mm.
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Figure 6: Comparison of the experimental and theoretical sensing performance for (a) distance and (b) force sensing.
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Figure 7: Obstacle perception process of the proposed whisker sensor.
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(ii) The microforce sensing range is 9.8–2744mN, with
force sensitivity of 11.4mN/mV and resolution of
9.8mN (at 2mV).

(iii) It has bidirectional perception.

Our research expands the function of magnetostrictive
bioinspired whisker. Applied to dynamic measurement, the
given sensor can detect more information than existing
whisker sensors. The “multi-information sensing tech-
nique” based on bioinspired magnetostrictive whisker will
be deeply studied.
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