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Abstract: The present review aims to systematically and critically analyze the current 

knowledge on phospholipases and their role in physiological and pathological 

mineralization undertaken by mineralization competent cells. Cellular lipid metabolism 

plays an important role in biological mineralization. The physiological mechanisms of 

mineralization are likely to take place in tissues other than in bones and teeth under 

specific pathological conditions. For instance, vascular calcification in arteries of patients 

with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone 

formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating 

from the inflammation in the synovium are also affected by cellular lipid metabolism. The 

focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These 

and other phenomena indicate that phospholipases may participate in bone remodelling as 

evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, 

chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, 

phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and 
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sphingomyelinase are engaged in membrane lipid remodelling during early stages of 

mineralization and cell maturation in mineralization-competent cells. Numerous 

experimental evidences suggested that phospholipases exert their action at various stages 

of mineralization by affecting intracellular signaling and cell differentiation. The lipid 

metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate 

are involved in cell signaling and inflammation reactions. Phospholipases are also 

important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis 

and exocytosis. They may favour mineral formation inside MVs, may catalyse MV 

membrane breakdown necessary for the release of mineral deposits into extracellular 

matrix (ECM), or participate in hydrolysis of ECM. The biological functions of 

phospholipases are discussed from the perspective of animal and cellular knockout models, 

as well as disease implications, development of potent inhibitors and therapeutic interventions. 

Keywords: bone; cartilage; osteoarthritis; osteoporosis; phospholipases; rheumatoid 

arthritis; sphingomyelinase; osteoblasts; osteoclasts; chondrocytes; Smooth muscle cells; 

matrix vesicle; mineralization; vascular calcification 
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Abbreviations: 1α,25-(OH)2D3, 1α,25-dihydroxyvitamin D3; 24R,25(OH)2D3,  

24R,25-dihydroxyvitamin D3; AA, arachidonic acid; ATX, autotaxin; BM, bone marrow; Ca2+
e, 

extracellular Ca2+; Ca2+
i, intracellular Ca2+; CaR, calcium-sensing receptor; CIA, collagen-induced 

arthritis; cPLA2, cytosolic Ca2+-dependent PLA2; COX, cyclooxygenase; DAG, diacylglycerol; DHT, 

5α-dihydrotestosterone; ECM, extracellular matrix; ERK, extracellular signal-regulated kinase;  

ET, endothelin; FGF, fibroblast growth factor; GPCR, G-protein-coupled receptor; GPI-PLD, 

glycosyl-PI specific PLD; HA, hydroxyapatite; IL, interleukin; IP3, inositol 1,4,5-trisphosphate; iPLA2,  

Ca2+-independent PLA2; LOX, lipooxygenase; LPA, lysophosphatidic acid; LPC, 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; LPI, 

lysophosphatidylinositol; LPL, lysophospholipid; LPS, lysophosphatidylserine; LRRc17, leucine-rich 

repeat-containing 17; MAP, mitogen activated protein; MPP, metalloproteinase; MV, matrix vesicle; 

NF-κB, nuclear factor κB; NFAT, nuclear factor of activated T cell; NPP, ectonucleotide 

pyrophosphatase phosphodiesterase; NSAID, non-steroidal anti-inflammatory drug; OA, osteoarthritis; 

OPG, osteoprotegerin; PA, phosphatidic acid; PAF, platelet-activating factor; PAF-AH,  

PAF-acetylhydrolase; PBMC, peripheral blood mononuclear cell; PC, phosphatidylcholine; PChol, 

phosphocholine; PE, phosphatidylethanolamine; PEA, phosphoethanolamine; PGD2, prostaglandin D2; 

PGE1, prostaglandin E1; PGE2, prostaglandin E2; PGF2, prostaglandin F2; PH, pleckstrin homology; 

PHOSPHO1, phosphatase orphan 1; PI, phosphatidylinositol; PI-PLC, PI-specific; PIP2, PI  

4,5-bisphosphate; PIP3, PI 3,4,5-trisphosphate; PKC, protein kinase C; PLA1, phospholipase A1; PLA2, 

phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; Pi, inorganic phosphate; PPi, 

inorganic pyrophosphate; PRIP, PLC-related but catalytically inactive protein; PS, phosphatidylserine; 

PS-PLA1, PS-specific PLA1; PTH, parathyroid hormone; PTX, pertussis toxin; PUFA, polyunsaturated 

fatty acid; RA, rheumatoid arthritis; RANKL, receptor activator of nuclear factor κB ligand; Runx2, 

runt-related transcription factor 2; SH, src homology; SM, sphingomyelin; SMase, sphingomyelinase; 

SMPD3, sphingomyeline phosphodiesterase-3; sPLA2, secreted PLA2; S1P, sphingosine-1-phosphate; 

STAT, signal transducer and activator of transcription; TNAP, tissue-non specific alkaline 

phosphatase; TNF, tumor necrosis factor; VSMC, vascular smooth muscle cell.  

1. Introduction 

1.1. Bone Biology and Physiological Mineralization 

The extracellular matrix (ECM) mineralization is a physiological process occurring in bone and 

teeth during skeletal growth in growth plate cartilage. In these tissues, this process is maintained by 

mineralization-competent cells, e.g., osteoblasts, odontoblasts, and hypertrophic chondrocytes. Bone 

formation begins when mesenchymal cells form condensations (Figure 1). During intramembranous 

ossification, which occurs in a few areas such as the flat bones of the skull, cells present in these 

condensations differentiate directly into bone-forming osteoblasts producing a matrix particulary rich 

in collagen I. At the end of the bone formation phase, osteoblasts may be subjected to apoptosis, 

become inactive osteoblasts, bone lining cells or osteocytes (Figure 1) [1]. The proportion of 

osteoblasts following each fate is not the same in all mammals and is not conserved among all types of 

bone [2]. In human cancellous bone, 65% of the osteoblasts undergo apoptosis and only about 30% 



Int. J. Mol. Sci. 2013, 14 5041 

 

 

transform into osteocytes [3], while in the antlers of the white-tailed deer (Odocoileus virginianus) 

10% osteoblasts transform into osteocytes [4]. In advanced bony fishes with acellular bone, the 

number of osteoblasts that turn into osteocytes is zero [5,6]. During endochondral ossification, which 

occurs in most condensations, the cells become chondrocytes (Figure 1), i.e., the primary cell type of 

cartilage, which secretes a matrix rich in collagen II [7]. Subsequently, chondrocytes in the centre of 

cartilage mould stop proliferating, become hypertrophic and start to produce collagen X. The 

hypertrophic chondrocytes are the principal engine of bone growth [8]. Hypertrophic chondrocytes 

direct the mineralization of the surrounding matrix, attract blood vessels and attract chondroclasts 

(closely related or identical to osteoclasts) [7]. These cells direct adjacent perichondrial cells to 

become osteoblasts. Finally, hypertrophic chondrocytes undergo apoptotic cell death [7]. Osteoblasts, 

lining cells and osteoclasts on the surface of bone as well as osteocytes in the interior of the bone are 

the four different types of bone cells (Figure 1). Osteoblasts originate from local mesenchymal cells 

called osteoprogenitor cells, while osteoclasts originate from bone marrow (BM) hematopoietic stem 

cells. Bone is a dynamic tissue that is constantly being reshaped by osteoblasts, which are in charge of 

matrix and mineral production, and by osteoclasts, which have long been recognized as cells that 

resorb the bone in normal bone remodelling and in pathological conditions when bone resorption is 

increased [9]. In fact, the mechanisms of mineralization used by mineralization-competent cells are 

very similar to each other. First, mineralization-competent cells differentiate under the control of the 

runt-related transcription factor 2 (Runx2). Then, they are able to secrete ECM, principally composed 

of fibrillar collagen, in which the calcium phosphate crystals with the hydroxyapatite (HA) structure 

are deposited [10]. The initiation of formation of calcium phosphate deposits is likely to start at matrix 

vesicles (MVs) [11], which are then released by the mineralization-competent cells into ECM. MVs 

are spherical bodies in 50–200 nm in diameter [11], enriched in tissue-non specific alkaline 

phosphatase (TNAP), which is indispensable for mineralization [12]. It was established a long time 

ago that inorganic pyrophosphate (PPi) or polyphosphate must be removed from the sites of 

mineralization, before calcification can occur [13]. On the other hand, it was commonly thought until 

recently that main function of TNAP is to generate inorganic phosphate (Pi) to sustain mineral 

formation. This discrepancy has been solved by demonstrating that TNAP initiates mineralization by 

hydrolysing PPi to Pi, therefore removing PPi which is a strong mineralization inhibitor [14]. 

Furthermore, the results of elegant experiments have provided evidence that TNAP itself may be 

sufficient to induce mineralization in any tissue containing fibrillar collagen [15]. Later, other factors 

were also identified and shown to be involved in the mineralization process. For instance, fetuin 

protein identified in serum that limits the production of calcium phosphate crystals and their deposition 

in the collagen fibrils [16]. In addition to the role of MVs as TNAP carriers during mineralization, it is 

also believed that these extracellular organelles are able to accumulate calcium and phosphate ions, 

which result in the precipitation of calcium phosphate crystals, and that these crystals, by a still 

unknown mechanism, are transferred from MVs into ECM. 
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Figure 1. Schematic representation of bone formation and resorption. Bone formation: 

During endochondral ossification: chondrocytes first synthesize a cartilage. Central 

chondrocytes undergo hypertrophic differentiation and then undergo apoptose inducing 

vascular invasion and formation of a primary ossification centre. During intramembranous 

ossification, mesenchyme condensations differentiate into osteoblasts, which synthesize 

and mineralize osteoid to form a new bone without the requirement for a cartilage 

intermediate. A large fraction of mature osteoblasts undergo to apoptosis while a small 

fraction of mature osteoblasts become osteocytes. Bone resorption: Hematopoietic stem cells 

of the monocyte/macrophage lineage differentiate to mature osteoclasts and resorb bone. 

 

Phosphate homeostasis maintained by the gut, bone and kidney is regulated by many hormones 

such as the classical ones, parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3  

(1α,25-(OH)2D3), as well as the fibroblast growth factor 23 (FGF23) which was recently reported to 

have a role in phosphate homeostasis. FGF23—a circulating hormone synthesized by osteocytes and 

osteoblasts in bone [17]—reduces serum phosphate and 1,25-dihydroxyvitamin D levels by acting on 

kidney through some FGF receptor [18]. FGF23 null mice have soft tissue calcifications, severe 

growth retardation, abnormalities of bone mineralization, a markedly shortened lifespan, and 

abnormalities of glucose metabolism [19,20]. 

1.2. Ectopic Calcifications and Defective Mineralizations 

The physiological mechanisms of mineralization described above are likely to take place also in 

tissues other than bones and teeth under specific pathological conditions. Vascular calcification for 

instance in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the 

mechanisms of bone formation [11,21–24]. Generalized artery calcification of infancy, a rare but 

severe autosomal recessive disorder characterized by calcification and stenosis of arteries [25], 
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calcification in cartilage (osteoarthritis (OA)) [26] tendons and/or in ligaments (calcific tendonitis or 

ankylosing spondylitis) [27] result from pathologic HA deposition in soft tissues. In patients with  

end-stage renal disease, FGF23 may exert a toxic effect on the cardiovascular system in a  

Klotho-independent manner [18]. Elevated levels of FGF23 have been associated with risks of  

end-stage renal disease, cardiovascular disease and mortality [28]. On the other hand, disorders that are 

caused by high circulating level of FGF23 are associated with hypophosphatemia while those 

corresponding to low circulating levels of FGF23 are associated with hyperphosphemia [20]. 

Heterotopic ossification is a pathological condition where bone formation occurs in extra skeletal 

tissues (skin, soft tissues, muscle). The two known genetic forms of heterotopic ossification are 

fibrodysplasia ossificans progressiva and progressive osseous heteroplasia. Fibrodysplasia ossificans 

progressiva is a rare heritable disorder of connective tissue disease characterized by congenital 

malformations of the great toes [29] and recurrent episodes of painful soft-tissue swelling that lead to 

heterotopic ossification [30]. Fibrodysplasia ossificans progressiva is associated with overexpression 

of bone morphogenetic protein 4 [31,32]. Progressive osseous heteroplasia is a developmental disorder 

of mesenchymal differentiation characterized by dermal ossification during infancy and by progressive 

heterotopic ossification of cutaneous, subcutaneous, and deep connective tissue during childhood [33]. 

In contrast, other diseases such as hypophosphatasia [34,35], osteoporosis [36] and rheumatoid arthritis 

(RA) [37] result from defective bone mineralization. Hypophosphatasia is a rare inherited disorder 

caused by mutations in the gene-encoding TNAP that cause a decrease in enzyme activity leading to 

defective bone and teeth mineralizations [34,35]. Osteoporosis is a skeletal disease characterized by 

low bone mass and microarchitectural deterioration resulting in bone fragility and in increasing 

number of bone fractures [36]. RA is characterized by inflammation in the synovium and symmetric 

polyarthritis. Infiltrations of the synovial tissues by inflammatory cells such as macrophages and T cell 

occur. Following this, local cellular proliferation of synoviocytes results in an expansion of the 

synovium—so called pannus—which invades and destroys articular structures [38,39]. Cytokine- and 

cell contact- activation of synoviocytes and monocytic cells occurs and for some of them differentiate 

into bone-resorbing osteoclasts [37]. Therefore, understanding the mechanisms of mineralization and 

bone resorption is important not only in the context of bone formation and modelling, but also in the 

field of calcific diseases, affecting skeletal and no-skeletal tissues [40]. Given that vascular 

calcification significantly increases the mortality risk in patients with chronic kidney disease [41] as 

well as in the general population [42], deciphering the molecular mechanisms of mineralization 

deserves broad consideration. 

1.3. Matrix Vesicles and Early Stages of Mineralization 

As it has been already mentioned, early stages of mineralization occur in MVs [11]. These 

organelles are enriched in phosphatases, especially TNAP [43–45] which can hydrolyze any 

phosphoesters including PPi, phosphatase orphan 1 (PHOSPHO1) [46,47] which can hydrolyze 

phosphocholine (PChol) or phosphoethanol producing Pi. MVs also house various ion-motive  

ATPases [48] providing Pi, as well as progressive ankylosis protein [45], a PPi transporter from the 

lumen of MVs or from cells to the extracellular medium, and ectonucleotide pyrophosphatase 

phosphodiesterase 1 (NPP1) [45,49], which produce PPi from ATP or UTP. The Pi pool generated by 
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TNAP, PHOSPHO1 and ATPases significantly affects the phosphate homeostasis and is indispensable 

for tissue mineralization. On the other hand, the PPi pool produced by ankylosis protein and NPP1 is 

inhibitory for mineralization [14]. Analysis of lipid composition of growth plate cartilage [50] and 

MVs [50–52] revealed significant phospholipase activity, although none of these enzymes have been 

isolated [53]. Other protein constituents of MVs and their possible roles in mineralization have been 

reviewed elsewhere [53,54]. 

1.4. Dietary Lipids and Bone Health  

The fat and bone connection plays an important role in the pathophysiology of age-related bone  

loss [55]. Several reviews reported that dietary lipids such as α-linolenic acid [56], conjugated linoleic 

acid [57], n-3 fatty acid [58–60] could promote bone health. Long-chain n-3 polyunsaturated fatty 

acids (PUFA) such as eicosapentaenoic acid and docosahexaenoic acid are beneficial for bone health. 

They can increase bone formation, affect peak bone mass in adolescents and reduce bone loss [61]. 

Such beneficial effects may include the prevention or reduction of RA [57] and of  

osteoporosis [59,62]. However, bone mineral density is negatively associated with saturated fat intake, 

and men may be particularly vulnerable to these effects [63]. On the other hand, the nature or type of 

the diet fat were not assessed and may possibly mask the beneficial effects of some PUFAs. 

Nevertheless, chronic exposure to free fatty acids can be deleterious to some cell types and may 

contribute to lipotoxicity [64] and lead to cardiomyopathy, hepatohepatitis and diabetes [65]. Diets 

containing foods naturally rich in antioxidants and n-3 PUFAs could be used to treat patients with 

inflammatory periodontitis. However, the effect of nutritional approaches to periodontal management 

still need to be evaluated [66]. Skeletal lipidomics is just emerging and targeted lipidomics have not 

been applied to bone tissue. A partial profile of endocannabinoids and endocannabinoid-like 

compounds has demonstrated the presence of several long-chain fatty acid amides, some of which 

display potent effects on osteoblasts and osteoclasts [67]. Therefore, it became clear that an 

understanding of the role of phospholipases, which produce various lipids, including fatty acids, would 

provide additional insights into the physiological and pathological mechanisms of mineralization 

leading to calcification. 

1.5. Groups of Phospholipases and Possible Roles during Mineralization 

There are two families of phospholipase A (PLA), PLA1 [68,69] and PLA2 [70–74] that hydrolyze 

the acyl group attached to the sn-1 and sn-2 positions of glycerophospholipids, respectively. In both 

cases, free fatty acids as well as lysophospholipids (LPLs) are liberated (Figure 2). 
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Figure 2. Glycerophospholipid structure and the site of action of phospholipases. The 

glycerophospholipid molecule consists of a glycerol-3-phosphate esterified at its sn-1 and 

sn-2 positions to non-polar fatty acids (R1 and R2, respectively) and, at its phosphoryl 

group to a polar head group, containing alcohol, X. Arrows indicate the sites of 

phospholipase-catalyzed hydrolysis. The carbon atoms of the glycerol backbone of the 

glycerophospholipid are indicated according to the stereochemical numbering (sn-1, sn-2 

and sn-3). 

 

Phospholipase C (PLC) cleaves the polar head phosphate from glycerophospholipids, producing 

diacylglycerol (DAG) [75,76], while phospholipase D (PLD) catalyzes the hydrolysis of the terminal 

phosphodiester bond of membrane glycerophospholipids, producing phosphatidic acid (PA) and free 

polar head group (Figure 2) [77,78]. Before discussing the potential roles of phospholipases during 

mineralization, it is necessary to discuss the general basis of their actions and their consequences 

during mineralization. Phospholipases are not only localized on cellular or organelle membranes but 

they can be secreted or reside in the cytoplasm. The secreted phospholipases can regulate in an 

autocrine or paracrine manner the osseous cells, osteoclasts and chondrocytes. Their catalytic products 

(Figure 3) can be involved in lipid-mediated signaling, in membrane remodelling, in endocytosis or in 

exocytosis of MVs. In addition, phospholipids contain phosphate, a precursor of HA formation. Their 

hydrolytic products may serve as a phosphate reservoir to sustain mineralization in MVs. There are at 

least two distinct types of targets for these lipolytic enzymes, namely those in mineralization 

competent cells and those in MVs (Figure 4). One can suppose that in a cell, the effects of 

phospholipase activities shall initiate membrane modelling, intracellular signaling events and 

exocytosis of MVs. In MVs, phospholipases shall break the membranous structure facilitating the 

release of HA crystals into ECM [11,79]. In addtion PLC and SMase will provide PChol or 

phosphoethanolamine (PEA) which are phosphate precursors, that could be further hydrolysed by 

phosphatase such as PHOSPHO1 to yield Pi [46,47]. To illustrate the potential roles of phospholipases 

in MVs, it is worth looking into the lipid comparison of MVs and chondrocyte membrane fractions, 

which reveals small but significant differences [53]. Among them one may notice an enrichment of 

MV membrane in phosphatidylserine (PS) (2.3–3.5 fold), sphingomyelin (SM) (1.9–2.8 fold) and total 

LPLs (1.3–3.6 fold), with concomitant depletion in phosphatidylcholine (PC) content (0.8–0.9 fold) in 

comparison to the membrane fractions isolated from proliferating chondrocytes ([53] and Table 1). An 

enrichment in SM but not in LPLs was observed in membrane fractions isolated from hypertrophic 

cells as compared with proliferating cells (Table 1) suggesting that SMases may be silent during 

hypertrophy, a phenomenon that precedes MV formation [53]. This suggests that the differences in lipid 
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compositions in membrane MVs and in plasma membranes could be not fortuitous but may have a 

functional significance. 

Figure 3. Phospholipase metabolites with biological activity at various levels of 

mineralization process. (A) Production of eicosanoids by phospholipase A2 (PLA2);  

(B) phospholipase D (PLD)-catalyzed hydrolysis of phosphatidylcholine (PC) to 

phosphatidic acid (PA) and Choline; (C) phosphatidylinositol-specific phospholipase C 

(PI-PLC)-catalyzed hydrolysis of PIP2 generating membrane-associated second messengers 

(inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)). PC-PLC hydrolyzes PC to 

DAG and phosphocholine (PChol). PE-PC hydrolyzes phosphatidylethanolamine (PE) to 

DAG and phosphoethanolamine (PEA); (D) sphingomyelinase (SMase)-catalyzed 

hydrolysis of sphingomyelin (SM) to ceramide and PChol. 

 

Table 1. Total lipid composition of growth plate tissues: Chondrocytes, membranes, and 

matrix vesicles (MVs). The cell membrane fraction represents more dense membranous 

material that sediments more rapidly than MVs; it probably contains some MVs that are 

partially calcified. It does not specifically represent the plasma membrane. Adapted from [53]. 

% of Total lipid 

  Chondrocytes   
Lipid Whole cartilage Proliferating Hypertrophic Cell membranes MVs 
SM 8.6 ± 0.7 5.8 ± 0.4 8.0 ± 0.8 8.1 ± 0.8 13.4 ± 1.8 
PC 45.2 ± 1.9 47.6 ± 1.5 38.0 ± 1.5 53.2 ± 2.2 41.8 ± 2.5 

LPC 2.0 ± 0.6 1.9 ± 0.4 1.8 ± 0.4 3.5 ± 0.8 3.4 ± 0.8 
PE 17.6 ± 1.0 16.9 ± 0.7 14.7 ± 0.8 14.6 ± 1.8 14.9 ± 1.8 

LPE 2.0 ± 0.4 3.3 ± 0.7 2.4 ± 0.4 4.9 ± 1.2 6.5 ± 1.2 
PS 5.1 ± 0.8 3.3 ± 0.3 5.0 ± 1.0 5.4 ± 0.7 9.3 ± 1.1 

LPS 0.5 ± 0.2 0.2 ± 0.1 0.3 ± 0.2 2.2 ± 0.7 2.4 ± 0.8 
PI 7.2 ± 0.8 6.2 ± 0.8 6.4 ± 0.8 6.1 ± 0.8 6.6 ± 0.6 

LPI 1.1 ± 0.7 1.0 ± 0.6 0.5 ± 0.4 0.3 ± 0.2 1.1 ± 0.3 
PA 2.0 ± 0.5 0.8 ± 0.3 1.6 ± 0.5 1.1 ± 0.2 0.9 ± 0.3 
PG 1.2 ± 0.6 0.7 ± 0.3 1.2 ± 0.6 0.9 ± 0.2 1.3 ± 0.3 

di-PG 3.0 ± 0.6 2.5 ± 0.4 2.9 ± 0.6 1.7 ± 0.3 1.5 ± 1.4 
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Figure 4. Initial steps of mineralization in which particular phospholipases can  

be involved. 

 

2. Phospholipases A1 

2.1. Groups, Subgroups and Specificity 

There are at least nine known PLA1 molecules in mammals; at least six are extracellular enzymes—

belonging to the pancreatic lipase gene family—and the other three are intracellular enzymes [69] 

(Table 2). The extracellular PLA1 comprise PS-specific PLA1 (PS-PLA1) [80], membrane-associated 

PA-selective PLA1 (mPA-PLA1α and mPA-PLA1β) [81,82], hepatic lipase, endothelial lipase and 

pancreatic lipase-related protein 2. PS-PLA1 is specific to PS and gives a rise to lyso-PS (LPS), while 

mPA-PLA1α and mPA-PLA1β are specific to PA and form lyso-PAs (LPAs). Hepatic lipase, 

endothelial lipase and pancreatic lipase-related protein 2, in addition to PLA1 activity, can hydrolyze 

triacylglycerols [69,83,84]. In mammals, there are three intracellular PLA1, a PA-preferential PLA1, 

(iPLA1α) [85–87]; a p125 (iPLA1β) [88] and KIAA0725 (iPLA1γ) [89] (Table 2). The physiological 

functions of PLA1 remain largely unknown in bone cells and chondrocytes in contrast to those of PLA2 

and other phospholipases [69]. 

Table 2. PLA1 family (adapted from [69]). 

Types of PLA1 Groups Origin 

Extracellular PLA1 PS-PLA1 Human 
 mPLA1α Human 
 mPLA1β Human 
 Hepatic lipase Human 
 Endothelial lipase Human 
 Pancreatic lipase-related protein 2 Human 

Intracellular PLA1 iPLA1α Human 
 iPLA1β Human 
 iPLA1γ Human 
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3. Phospholipases A2 

3.1. Groups, Subgroups and Specificity 

To date there are more than 30 enzymes identified in mammals that possess PLA2 or related  

activity [90,91] (Table 3). There are six types of PLA2: the secreted small molecular weight 

extracellular enzymes (sPLA2s) [90,92–96]; the larger cytosolic Ca2+-dependent enzymes  

(cPLA2s) [97–102]; the Ca2+-independent enzymes (iPLA2s) [103–107], the platelet-activating factor 

(PAF) acetylhydrolases (PAF-AH) [108–116]; the lysosomal PLA2 (LPLA2) [117] and the  

adipose-tissue PLA2 (AdPLA2) [118,119] (Table 3). Among the subgroups of secreted PLA2 (sPLA2): 

IB, IIA, IID, IIE, IIF, III, V, XIIA, XIIB are of human origin. Among them, the group II subfamily 

(IIA, IID, IIE and V) is thought to play a role in the production of several lipid mediators especially in 

the delayed phase of the cell activation process, because their expression levels are up-regulated under 

various inflammatory conditions. In contrast, sPLA2-IB has long been thought to be a digestive 

enzyme, given its abundance in the pancreas. However, the discovery of the PLA2 receptor (PLA2R) 

which can bind sPLA2-IB suggests that IB sPLA2 could exerts various biological responses in addition 

to its digestive function [120]. sPLA2-IA is found in cobras and kraits, -IIB is evidenced in the Gaboon 

viper and –IX originates from the snail venom. sPLA2-IIC is found in rat/murine testis. sPLA2-XIA 

and -XIB are evidenced in green rice shoots. sPLA2-XIII has been evidenced in parvovirus and XIV 

was found in symbiotis fungus and bacteria [72]. Among the cPLA2 -subgroups, cPLA2α, cPLA2β, 

cPLA2γ are from human origin while the three others—cPLA2δ, cPLA2ε, cPLA2η—are of murine 

origin (Table 3). All the six calcium independent PLA2—group VI iPLA2—have been identified in 

humans (iPLA2 A,B,C,D,E,F) as well as all the PAF PLA2-VIIA, -VIIB, -VIIIA and -VIIIB (Table 3). 

Among PLA2s, so far only sPLA2-II, -V and -X as well as cPLA-IVA [91] and iPLA2β [121] have 

been evidenced to be involved in osseous diseases. Since AA is a precursor of prostaglandins, 

prostacyclins and thromboxanes, as well as leukotrienes and lipoxins (Figure 3A), PLA2 especially 

cPLA2-α is involved in cellular signaling affecting bone formation and resorption. cPLA2-α is 

constitutively expressed in most tissues although its level of expression can be increased in response to 

growth factors and proinflammatory cytokines. cPLA2-α is unique among the PLA2 enzymes in having 

a preference for phospholipids with arachidonic acid (AA) at the sn-2 position [122]. 

Table 3. PLA2 family (adapted from [91]). 

Type Group Subgroup Origin or commun source 

sPLA2 I A Cobras and kraits 

 I B Human/porcine pancreas 

 II A Rattlesnake/human synovial 

 II B Gaboon viper 

 II C Rat/murine testis 

 II D Human/murine pancreas/spleen 

 II E Human/murine brain/heart/uterus 

 II F Human/murine testis/embryo 

 III  Lizard/bee 

 V  Human/murine heart/lung/macrophage 
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Table 3. Cont. 

Type Group Subgroup Origin or commun source 

 IX  Snail venom 

 X  Human spleen/thymus/leucocyte 

 XI A Green rice shoots (PLA2-I) 

 XI B Green rice shoots (PLA2-II) 

 XII A Human/murine 

 XII B Human/murine 

 XIII  Parvovirus 

 XIV  Symbiotic fungus/bacteria 

cPLA2 IV A(α) 
Human macrophage-like U937 cells/Platelets/ 

Raw 264.7/rat kidney, ubiquitous 

 IV B(β) Human pancreas/liver/heart/brain/ubiquitous 

 IV C(γ) Human heart/skeletal muscle 

 IV D(δ) Murine placenta 

 IV E(ε) Murine heart/skeletal muscle/testis/thyroid 

 IV F(η) Murine thyroid/stomach 

iPLA2 VI A(β) Human/murine 

 VI B(γ) Human/murine 

 VI C(δ) Human/murine 

 VI D(ε) Human 

 VI E(ζ) Human 

 VI F(η) Human 

PAF-AH VII A(lipoprotein-associated-PLA2) Human, murine, porcine, bovine 

 VII B(PAF-AH II) Human, bovine 

 VIII A(α1) Human 

 VIII B(α2) Human 

Lysosomal 

PLA2 
XV  Human, murine, bovine 

Adipose PLA XVI  Human,mouse 

3.2. Presence of PLA2s in Chondrocytes and Possible Roles 

Experimental evidence of the presence of specific types of PLA2s such as sPLA2-IIA, sPLA2-V and 

sPLA2-X, cPLA-IVA and iPLA2β in chondrocytes arise from analysis of human synovial fluid, 

especially from RA or OA patients or from the effects of cell stimulation with interleukin-1 (IL-1) and 

tumor necrosis factor (TNF). sPLA2-IIA was found in human synovial fluid of arthritic  

knee [123,124]. PLA2s were evidenced in chondrocytes stimulated with IL-1 [125]. Indeed, the 

expression of sPLA2-IIA and -V is cytokine-dependent [124]. Immunohistochemistry of RA sections 

revealed that sPLA2-IIA was generally located in synovial lining and sublining cells and cartilage 

chondrocytes [124]. In healthy and in OA patients, sPLA2-IIA is predominantly located in blood vessel 

endothelium and in vascular smooth muscle [126]. sPLA2 in the inflammation joint may originate from 

chondrocytes [127–130]. Indeed, cultured chondrocytes synthetise and release sPLA2 [131]. IL-1 and 

TNF can stimulate the expression of mRNA encoding sPLA2 in chondrocytes [132,133]. IL-1 induces 

the secretion of PLA2 from chrondrocytes [134–137]. IL-1 and TNF can activate sPLA2 gene 



Int. J. Mol. Sci. 2013, 14 5050 

 

 

expression not only in chondrocytes, but also in fibroblasts, smooth muscle cells and endothelial  

cells [126,138]. sPLA2-IIA, -IID, -V as well as cPLA2-IVA expressions were upregulated in  

human-OA chondrocytes upon IL-1, TNF, IL-6 or IL-8 stimulations [139]. Usually, among the 

members of cPLA2-IVA (Table 3), cPLA2-α is the most ubiquitously expressed enzyme [102].  

3.3 Presence of PLA2s in Osteoblasts and Possible Roles 

Inflammatory processes are characterized by increased levels of extracellular PLA2, IL-1 and TNF. 

Stimulated Fetal rat calvarial bone forming cells, treated with recombinant human IL-1 and  

TNF stimulated extracellular sPLA2 [140] and the PLA2 activity in osteosarcoma cell lines is  

stimulated [141]. Fetal rat calvaria osteoblastic cells are emblematic since they continuously synthesize 

and release sPLA. 1α,25-(OH)2D3)—a regulator of bone biology—stimulates PLA2 activity  

in three osteoblastic cell lines: ROS 17/2.8 cells, MC-3T3-E1 cells, and MG-63 cells.  

1α,25-(OH)2D3-dependent alkaline phosphatase and PLA2 activities were correlated with production of 

prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) in the MC-3T3-E1 cells [142]. PLA2 inhibitors 

(such as quinacrine or mepacrine) [143–145] and PLA2 activators (such as melittin) [146,147] served 

to evaluate PLA2 in osteoblasts. In MC3T3-E1 cells, quinacrine showed partial inhibitory effect on 

prostaglandin F2 (PGF2) induced AA release [143] while it suppressed the thrombin-induced AA 

release [145]. Mepacrine, significantly inhibited the bradykinin-induced AA release [144] suggesting 

the presence of PLA2 in osteoblasts. Microtubule depolymerizing agents inhibit the expression and 

release of sPLA2 by fetal rat calvarial osteoblasts [148]. MC3T3-E1 cells originating from IIA  

sPLA2-deficient C57BL/6J mouse had delayed PGE2 generation but introduction of type IIA sPLA2 

augmented PGE2 production. This was accompanied by increased expression of both cPLA2 and 

cyclooxygenase-2 (COX-2) [149] revealing a particular cross-talk between the two PLA2 enzymes and 

COX-2. sPLA2 augments cPLA2 and COX-2 expression in mouse osteoblasts via endogenous  

PGE1 [150]. IL-1α treatment induced an augmentation of PGE2 production by mineralizing osteoblasts 

involving cPLA2, sPLA2, COX-2 and PGE synthase activities [151]. However, the crosstalk between 

sPLA2 and cPLA2 may not hold in other cellular responses. In mouse osteoblastic cells, cPLA2 mRNA 

and protein were constitutively expressed and increased approximately 2-fold by IL-1α treatment, but 

secretory sPLA2 mRNA was not detected [152]. Using arachidonoyltrifluoromethyl ketone—a cPLA2 

inhibitor—it was found that Cd increased cPLA2 activity followed by COX-2 induction, which 

resulted in PGE2 production in primary mouse osteoblastic cells [153,154]. However, the results 

obtained with arachidonoyltrifluoromethyl ketone should be analyzed with some caution since it is not 

a selective cPLA2 inhibitor and it may inhibit other enzymes, such as COX [155]. So far, most of the 

reports were focused on sPLA2 (among them IIA sPLA2) and a few were concentrated on cPLA2. Only 

recently, the presence of other PLA2 types in osteoblasts was evidenced. MC3T3-E1 cells possess high 

levels of native PLA2R and sPLA2-X is one of its high-affinity ligands. PLA2-VIA or iPLA2β is 

expressed in normal bone. It was suggested that iPLA2β mRNA is more abundant in bone forming 

osteoblast cells than in osteoclast cells [121]. From the findings based on knockout mice lacking 

iPLA2β, an unrecognized role of iPLA2β in bone formation is yet to be found. The absence of iPLA2β 

causes abnormalities in osteoblast function and BM stromal cells differentiation [121]. 
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3.4. Presence of PLA2s in osteoclasts and Possible Roles  

In BM cultures, IL-1 stimulated PGE2 production and osteoclast formation in cells from wild-type 

mice but not from those taken from cPLA2α
−/− mice [156] indicating that cPLA2-α is essential for 

PGE2 production. PGE2 may act to enhance osteoclast formation and action (Figure 5). In response to 

IL-1 (or other agents such as TNF-α), cPLA2-α is activated and PGE2 is produced and secreted. PGE2 

may act in autocrine manner modulating the stromal cell response or in a paracrine manner on the 

osteoclast precursor cells. Following this, the newly formed osteoclast activates bone resorbtion [122] 

(Figure 5). The Enzymatic activity of cytosolic PLA2 was detected in human osteoclasts extracted from 

human fetuses and in human osteoclast-like cells differentiated from peripheral blood mononuclear  

cells [157]. Human osteoclasts actively produced prostaglandin, and the COX-1 pathway was 

implicated in the control of bone resorption. COX-2 and sPLA2-IIA are also implicated in 

osteoclastogenesis as suggested by the results obtained with the use of DFU—an inhibitor of  

COX-2—and KH064—an inhibitor of sPLA2-IIA—in ovariectomized Wistar rats. KH064 suppressed 

increases in osteoclast surface induced by ovariectomy while the effect of COX-2 inhibition was  

less marked [158]. 

Figure 5. Possible role of cPLA2α in bone resorption. In response to 

lysophosphatidylserine (LPS), interleukin (IL)-1 or tumor necrosis factor-α (TNF-α), 

cPLA2α is activated and releases arachidonic acid (AA). AA is then transformed into 

prostaglandin E2 (PGE2) which may bind in an autocrine manner to a PGE receptor on the 

stromal cell or, in a paracrine manner, on the osteoclast precursor cell. Then osteoclasts 

derived from osteoclast precursor cells undertake bone resorption. Adapted from [122] 

(PL, phospholipid). 
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3.5. Presence of PLA2s in Smooth Muscle Cells and Possible Roles  

PLA2 was evidenced in vascular smooth muscle cells [159]. The isoenzyme sPLA2-IIA has been 

localized in smooth muscle cell [160–164] and has a close spatial relationship with collagen fibers [161]. 

3.6. The Expressions of PLA2s under Pathological Conditions 

sPLA2-IIA is highly expressed in synovial fluid [123,126,165,166], in chrondrocytes [131], in the 

joints of patients with RA and to a lesser extent in synovium of OA patients but not in healthy  

patients [126] (Table 4). Increased catalytic activity of group II sPLA2 was observed in synovial fluid 

of OA patients [167,168]. Circulating sPLA2 activity correlates with juvenile RA activity [169]. The 

sPLA2-IIA activity in the serum of 212 RA patients was determined and appeared to be correlated with 

the Lansbury index, number of effusions, number of damaged joints, erythrocyte sedimentation rate, 

platelet count and low hemoglobin [170]. However, the enzyme activity is not always correlated with 

the severity of the RA disease [171]. sPLA2-IIA, sPLA2-IID, sPLA2-IIE sPLA2-V are more often 

detected in active RA than in inactive RA synovial tissues, while sPLA2-X is diversely expressed in 

both active and inactive RA tissues [124] (Table 4). This suggests that transcriptional regulation of the 

groups -V and -X as well as group II subfamilies are distinct. Exogenous addition of sPLA2-IIA,  

dose-dependently amplified TNF-α stimulated PGE2 production accompanied by increased expression 

of COX-2 and cPLA2-IIA in cultured synovial cells [172]. Exogenous addition of Crotalus adamantus 

sPLA2-II, as well as continuous exposure to IL-1α inhibited mineralization of the osteoid formed by 

fetal rat calvaria cells [173]. In normal heart, sPLA2-IIA was detected in coronary vascular smooth 

muscle cells (VSMCs) and sPLA2-V in cardiomyocytes beneath the endocardium. In infarcted hearts, 

expression of sPLA2-IIA and sPLA2-V increased in damaged cardiomyocytes and VSMCs. Expression 

of sPLA2-IID and -IIE, which were indetectable in normal heart, was elevated in damaged 

cardiomyocytes and VSMCs, respectively [164] (Table 4). 

Table 4. Diseases and affected PLA2 expressions in human patients and in knockout mice. 

Types of PLA2 Expression levels Diseases References 

sPLA2-IIA Highly expressed in synovial fluid RA [123,126,165,166,169] 

sPLA2-IIA Highly expressed in chondrocytes RA [126] 

sPLA2-IID Overexpressed in synovial fluid RA [124] 

sPLA2-IIE Overexpressed in synovial fluid RA [124] 

sPLA2-V Overexpressed in synovial fluid RA [124] 

sPLA2-X More or less expressed in synovial fluid Active and inactive RA [124] 

sPLA2-IIA Overexpressed in synovial fluid OA [126,167,168] 

sPLA2-IIA Overexpressed in VSMC Infarctus heart [164] 

sPLA2-V Overexpressed in VSMC Infarctus Heart [164] 

cPLA2-α cPLA2-α
−/− mice loss in function Prevention in collagen-induced arthritis [174] 

iPLA2β iPLA2-β
−/− mice loss in function Low bone mass [121] 
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3.7. Transgenic Knockout Animal for PLA2 Enzymes as Models for Bone Formation and 

Mineralization Diseases 

There are at least five knockout mice for for sPLA2 isoforms (-IB, -IIA, -III, -V and -X) [74,90,95,175] 

as well as one for the cPLA2α isoform [74,176–178] and at least two for iPLA2 isoforms -β [179,180] 

and -γ [181–183]. The PLA2γ2a gene coding for sPLA2-IIA has been knocked out in BALB/c mice by 

breeding them with C57BL/6 mice and then backcrossing with BALB/c mice [184]. The PLA2γ2a−/− 

BALB/c mice displayed a reduced degree of arthritic inflammation in K/BxN autoantibody-induced 

mouse arthritis model as compared with wild-type BALB/c mice. This suggests that sPLA2-IIA is 

playing a pro-inflammatory role in this mouse arthritis model [184]. In contrast with PLA2γ2a−/− 

BALB/c mice, the PLA2γ5a−/− BALB/c mice lacking the sPLA2-V gene product exacerbated the 

K/BxN autoantibody-induced arthritis. Indeed, supplementation of sPLA2-V slowed down the K/BxN 

autoantibody-induced arthritis in PLA2γ5a−/− BALB/c mice by facilitating phagocytic uptake of the 

immune complex by macrophages. This suggests that sPLA2-V has an anti-inflammatory effect, while 

sPLA2-IIA has a pro-inflammatory effect [184]. cPLA2α
−/− mice were characterized by reduced 

severity and incidence in collagen-induced arthritis (CIA) indicating that cPLA2α, plays a key role in 

the development of CIA [174]. A patient having a heterozygous mutation of cPLA2α (PLA2γ4a) with 

loss of cPLA2α function develops small intestinal ulcers, presented platelet dysfunction, and globally 

decreased eicosanoid production [185]. It has been previously reported that cPLA2α
−/− mice have 

developed intestinal ulcerative lesions [186]. Therefore, pharmacologic inhibition of the cPLA2α 

enzyme may induce non-steroidal anti-inflammatory drug (NSAID)-like-induced gastric and intestinal 

lesions. Knockout mouse models [176] indicated that cPLA2 is important for macrophage production 

of inflammatory mediators, fertility, and in the pathophysiology of neuronal death after transient focal 

cerebral ischaemia. iPLA2β-null mice exhibit defective spermatozoa mobility [179], pancreatic islet 

insulin secretion [180] and lower bone mass associated with a decrease in bone strength [121]. It was 

concluded that iPLA2β may be an important factor of bone formation and BM stromal cell 

differentiation [121]. 

3.8. Inhibitors of PLA2 as Drug Therapy 

It was previously recognized that PLA2 may be an attractive therapeutic target since PLA2 

inhibition may lead to suppression of prostaglandins, leukotrienes, and PAFs (Figure 3A) [187]. 

Sulfasalazine—widely used in the therapy of RA, spondyloarthropathies and inflammatory level 

diseases—inhibited extracellular release of sPLA2 from fetal rat calvaria osteoblasts suggesting that 

the anti-inflammatory activity may be related, in part, to the selective inhibition of the extracellular 

release of proinflammatory sPLA2 [188]. sPLA2-IIA-inhibitor, LY333013, was administrated to 251 

RA patients. Although 12-week treatment with LY333013 or methyl Varespladib—a prodrug that is 

rapidly converted in vivo to Varespladib was well tolerated, it did not significantly affect RA  

activity [189]. One explanation is that sPLA2-V has an anti-inflammatory effect, while sPLA2-IIA has 

a pro-inflammatory effect [184]. Since the inhibitor could block both enzymes [90], its action may 

cancel the beneficial effect. Alternatively, the regulation of TNF-dependent prostaglandin production 

by exogenous sPLA2-IIA does not depend on its enzymatic activity. Indeed, sPLA2-IIA mutant H48Q 



Int. J. Mol. Sci. 2013, 14 5054 

 

 

having only 1% of the sPLA2-IIA enzyme activity is as effective as the fully functional enzyme in  

up-regulating PGE2 production and in over inducing TNF-mediated COX-2 production [190]. sPLA2-IB, 

sPLA2-IIA, sPLA2-V and sPLA2-X can produce proinflammatory cytokines and chemokines 

independently of the hydrolytic activity [191]. Nevertheless, methyl Varespladib is in phase III trials 

for the treatment of cardiovascular diseases [192]. There is an evidence that sPLA2-IIA is involved in 

the development of atherosclerosis [193]. One possible mechanism of atherogenesis may rely on the 

ability of sPLA2 to hydrolyze the phospholipids on LDL particles promoting lipid accumulation and 

leading to enhanced macrophage uptake [91]. On the other hand, inhibitor of cPLA2α could serve as 

drug to treat human RA [194]. Oral administration of pyrroxyphene in a CIA in mice results in  

anti-arthritic activity probably due to inhibition of cPLA2α activity and subsequent reduction in 

eicosanoid levels as well as suppression of metalloproteinase (MMP) and COX-2 mRNA expression [194]. 

3.9. Effects Mediated by Arachidonic Acid and Its Pathways at Cellular Level 

The fatty acid moieties that are incorporated into phospholipids vary, generating a broad range of 

molecular species. One of the most important fatty acids that can be released from phospholipids by 

PLA2 is AA which is converted via the COX- and lipooxygenase (LOX)-mediated pathways to 

eicosanoids, including prostaglandins, thromboxanes, prostacyclins, leukotrienes and lipoxins 

(eicosatetraenoic acid) (Figure 3A) [74,195]. sPLA2 does not show distinct preference for the sn-2 

position fatty acyl chains [91]. In general, most of the sPLA2s have higher activity towards anionic 

phospholipids such as phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and PS. sPLA2V 

and sPLA2-X can hydrolyze both PC and anionic phospholipids vesicles at comparable rates [196,197], 

while sPLA2-IA and sPLA2-XIV are more active against PC [91]. sPLA2 can release AA intracellularly 

prior to secretion [198], or after secretion into extracellular space. The latter is especially true for sPLA2-V 

and sPLA2-XV, which have high affinity for PC and act at the outer plasma membrane [199–207] or 

through a heparan sulfate proteoglycan (HSPG) shuttling pathway [205,207–211]. For example, 

sPLA2-IIA, -IID and -V often bind to HSPGs, internalized through caveolae/raft-dependent 

endocytosis, and then exert their function [205,207–211]. In addition, sPLA2 acts as a ligands for a  

M-type transmembrane sPLA2 receptor, which in turn activates cPLA2-IV [212]. cPLA2-IV  

(or cPLA2α) have a marked specificity for AA at the sn-2 position of phospholipids [97,99]. Most 

phospholipids such as PC, PE and phosphatidylinositol (PI) are substrates for cPLA2-IV. PC is a good 

substrate, especially radiolabeled PC, and has been often used to determine cPLA2-IV activity [97,98]. 

cPLA2-IV has a calcium-dependent phospholipase activity, as well as a transacylcyclase activity and a  

calcium-independent lysophospholipase activity [213]. Table 5 contains an overview of the overall 

beneficial or pathological effects of the AA pathway - including enzymes, their products and their 

metabolites - on bone formation or bone resorption. Most of information concerning the effects of AA 

metabolites comes from osteoblasts, osteoclasts and from RA chondrocytes. Several of the cytokines 

and growth factors implicated in the inflammatory processes in rheumatic diseases have also been 

demonstrated to impact osteoclast differentiation and function either directly, by acting on cells of the 

osteoclast-lineage, or indirectly, by acting on other cell types to modulate expression of the key 

osteoclastogenic factor receptor activator of nuclear factor κB ligand (RANKL) and/or its inhibitor, 

osteoprotegerin (OPG) [38]. In RA, synovial cells behave like osteoblasts in the induction of RANKL 
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which is an essential ligand for differentiation of bone-resorbing osteoclasts from macrophage 

precursors [38,214]. It was proposed that by targeting the pathways involved in osteoclast 

differentiation and function, focal articular bone erosion may be attenuated in the setting of 

inflammatory arthritis [38]. 

3.9.1. Effects Mediated by PGE2 

RA synovial cells have high COX-2 and microsomal prostaglandin E synthase-1 expression 

suggesting that both enzymes are mediatiators of PGE2 production in RA inflamed joints [38]. Mice 

deficient in COX-2 were protected from CIA [215] while selective inhibitors to COX-2 significantly 

reduced the severity of arthritis in murine CIA [216]. Mice deficient in microsomal prostaglandin E 

synthase also exhibited significant reduction in CIA [217] or collagen antibody-induced arthritis 

inflammation and joint destruction [218]. On the other hand, numerous data support the notion that 

COX enzymes play an important role in bone formation. COX-1 can be considered as a housekeeping 

enzyme and is present in healthy tissues, while COX-2 is activated by tissue damage. Both enzymes 

have a similar Km and Vmax values for their reaction with AA [219]. NSAIDs, ibuprofen [220,221] or 

indomethacin [220–223] that inhibit COX-1 and COX-2 activity have been reported to inhibit fracture 

healing in animals (Table 6). NSAIDS can decrease heterotopic calcification in humans [224–226]. 

Indomethacin was shown to decrease spinal fusion rate in an animal model [227], while keterolac 

significantly reduces the rate of spinal fusion in humans [228]. In cultured mouse cells, indomethacin 

decreased TNAP activity and mineralization without significantly affecting Runx2, collagen type I and 

osteocalcin levels [229]. In the skeleton, prostaglandins (Figure 3A), mainly PGE2 produced by 

osteoblasts under COX-2 stimulation, play either a stimulatory or an inhibitory role in  

bone metabolism, depending on the physiological or pathological conditions. PGE2 mediates  

anti-inflammatory [230] as well as inflammatory effects [38,231,232]. Prostaglandins are potent 

multifunctional regulators in bone [233] having both stimulatory and inhibitory effects in bone 

metabolism [234,235]. Under physiological conditions, prostaglandins can stimulate bone formation 

by increasing proliferation and differentiation of osteoblasts [236]. iPLA2β
−/− null mice showed an  

age-related bone loss that was not accompanied by an increase in osteoclast abundance/activity. 

However, it was linked to increased adipogenesis from BM stromal cells and decreased 

osteoblastogenesis associated with higher PPARγ and lower Runx2 levels [121]. These findings 

suggest that iPLA2β is involved in bone formation and BM stromal cells differentiation. On the other 

hand, under pathological conditions like osteoporosis, RA, OA and periodontis, prostaglandins can 

activate bone resorption by increasing the activity of osteoclasts [237,238]. PGE2 is detected at high 

level in the synovial fluid of RA patients [239,240]. PGE2 mediates pain and inflammatory  

responses [38,231,235]. Indeed COX-2 inhibitors are effective for decreasing pain in RA [231,241]. 

cPLA2 in osteoblasts, upon stimulation by IL-1, TNFα or lipopolysaccharide, produces PGE2 which 

may acts through one or more receptors in autocrine manner as well as in a paracrine manner on the 

osteoclast precursor cells. Then the number of osteoclast cells increases leading to bone resorption 

(Figure 5). Results obtained using MG63 osteoblast-like cells cultured on commercially pure titanium 

surfaces of two different roughnesses in the presence of media containing 1α,25-(OH)2D3 without or 

with quinacrine (a PLA2 inhibitor) indicated that surface roughness and 1α,25-(OH)2D3 transmit their 
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effects through PLA2, which catalyzes one of the rate-limiting steps in PGE2 production [242]. PGE2 

exerts indirect effects on osteoclastic differentiation through osteoblasts but can have direct effects on 

osteoclast precursor cells and mature osteoclasts [122,243]. A cPLA2α-deficient mice had reduced CIA 

symptoms which suggests that AA, as a precursor of prostaglandins (Figure 3A) and leukotrienes is the 

inflammatory mediator in the development of CIA [174]. Indeed, it was suggested that cPLA2 

antagonists might be effective in reducing inflammatory bone resorption associated with RA and 

periodontal diseases [122]. Therefore, analysis of AA metabolites should become an obvious target for 

further investigations with potential pathophysiological, therapeutic and regenerative outcomes [244]. 

Beneficial effects of n-3 PUFAs and conjugated linoleic acids on bone formation rate are likely due the 

modulation of COX-2 mediated biosynthesis of PGE2 [244]. It was proposed that increased 

consumption of foods providing n-3 PUFA and conjugated linoleic acid will balance eicosanoid 

biosynthesis by decreasing pro-inflammatory AA concentration and will help to prevent or relieve 

diseases associated with increased n-6 fatty acid derived eicosanoid production [244]. 

3.9.2. Effects Mediated by PGF2α and PGD2 

Other prostanoids and leukotrienes may also play a role in bone metabolism and bone remodeling 

but they are less defined. Prostaglandin F2α (PGF2α) contributes to osteoblast functions. Locally 

produced PGF2α might be beneficial in promoting osteogenic differentiation of adipose tissue-derived 

mesenchymal stem cells [245]. It has been reported [246] that PGF2 stimulates Na+-dependant 

phosphate transport (Pi transport) activity [247], playing important role in the mineralization of 

osteoblast-like cells. 15-deoxy-Δ12,14-prostaglandin J2, a prostaglandin D2 (PGD2) metabolite, by 

binding to and activating PPARγ, may also modulate TNAP expression and mineralization [248]. 

PGD2 has a stimulatory activity on osteoblast calcification [249]. In addition to COX-metabolized 

prostaglandins, LOX-mediated generation of leukotrien B4 may be involved in TNAP post-translational 

activation during osteoblastic differentiation [250]. 

Table 5. Beneficial or pathological effects of AA pathways on bone formation. 

Enzymes or products 

or animal models 

Expression level 

or concentration 
Physiological effects Pathological effects References 

COX-2 
Increase in 

synovial fluid 
 RA [38] 

mPGES-1 
Increase in 

synovial fluid 
 RA [38] 

Mice deficient in 

COX2 
Null-COX CIA reduction  [215] 

Mice deficient in 

mPGES-1 
Null-PGES-1 CIA reduction  [217] 

PGE2 
High level in 

synovial fluid 
 RA [239,240] 

Prostaglandin  Stimulate bone formation  [233] 

Prostaglandin   

Activate bone resorption in 

osteoporosis, RA, OA or in 

periodontis 

[238] 
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Table 5. Cont. 

Enzymes or products 

or animal models 

Expression level 

or concentration 
Physiological effects Pathological effects References 

PGD2  
Stimulate osteoblast 

calcification 
 [249] 

PGF2α  
Promote osteogenic 

differentiation 
 [251] 

15-Deoxy-Δ12,14-

prostaglandin J2 

Prostaglandin D2 

metabolite 

Activates PPARγ and 

TNAP expression 
 [249] 

n-3 PUFA or 

conjugated linoleic 

acid 

Exogenous 

addition 

Beneficial effects due to 

modulation of COX-2 
 [59] 

Table 6. Effect of cyclooxygenase (COX) inhibitors on bone formation. 

Cox inhibitors Physiological effects Pathological effects References

NSAIDS Ibuprofen Indomethacin  Inhibit fracture healing [221–223] 
Indomethacin  Decrease TNAP activity [222] 

NSAIDS  Decrease heterotopic calcification [224–226] 
Keterolac  Decrease in spinal fusion [228] 

COX-2 inhibitor Decrease pain in RA  [231,241] 

3.10. Effects Mediated by Lysophospholipids and Their Pathways at Cellular Level 

LPLs are produced either by PLA1 or PLA2 and are potential lipid mediators [252]. Among various 

LPLs detected lyso-PC (LPC) is the most abundant with a plasma concentration of several hundred 

micromoles per liter [252]. Other LPLs such as lysophosphatidylglycerol (LPG), lyso-PE (LPE),  

lyso-PI (LPI) and LPS are present at low concentration [252]. GPR55—a G protein-coupled receptor 

and cannabinoid-sensitive receptor—is activated by 1-acyl LPI [253–256]. GPR55 has only a distant 

phylogenetic relationship to CB1 and CB2 cannabinoid receptors, but clusters with the LPA receptor 

LPA4 [257]. Since LPI and LPA are similar, LPI is a good agonist of GPR55. The most active species 

is 2-arachidonyl-sn-glycero-3-phosphoinositol which can be considered as one of the possible natural 

substrates of GPR55 [258]. GPR55 expression was found to be 8-fold higher in osteoclasts than in 

monocytes from human healty donors. The GPR55-agonist LPI inhibited mouse osteoclast formation 

but it stimulated mouse and human osteoclast polarization and resorption in vitro [259]. Although 

GPR55-agonist LPI induced a decrease in osteoclast number it stimulated osteoclast function. 

Treatment of human osteoclasts with LPI caused activation of RhoA and ERK1/2 [259] suggesting that 

activation of GPR55—via inducing a signaling pathway—promotes a regulatory mechanism in 

osteoclasts. Male GPR55−/− mice but not female GPR55−/− mice presented a decrease in bone 

resorption and an osteopetrotic phenotype with an increasing osteoclast number [259]. Although 

osteoclast number increased, osteoclast function was impaired, consistent with the role of GPR55 in 

stimulating osteoclast function [259]. GPR55−/− mice are resistant to neuropathic and inflammatory 

pain suggesting that GPR55 antagonists may serve to treat arthritic pain [260]. GPR55 has the 

potential to influence bone resorption and could be a target to treat bone diseases, such as osteoporosis, 
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by inhibitory drugs, or calcification diseases (osteopetrosis, etc.) by activatory drugs. The role of LPA 

in skeletal biology has been reviewed [261] and only selected findings will be discussed here. LPA is a 

stimulator of resting zone chondrocyte proliferation and maturation and an inhibitor of chondrocyte 

apoptosis. LPA decreases the abundance of p53 to alter p53-target gene expression resulting in the 

inhibition of caspase activity [262]. Different LPAs vary according to acyl chain length and degree of 

saturation. Typically, 1-oleoyl LPA is the specimen used in describing its effects on cell and  

tissues [261]. LPAs are present in plasma at around high nM to low µM concentrations [263–268] and 

at elevated levels at sites of tissue injury or inflammation [267]. LPA species with saturated fatty acids 

(16:0, 18:0) and unsaturated fatty acids (16:1, 18:1, 18:2 and 20:4) have been detected in serum, 

plasma, and activated platelets [269–271]. LPA is an important intermediate product of the synthetic 

pathway for phospholipids and triacyglycerols in many cell types from various species. In this 

pathway, LPA is produced by acylation of glycerol-3-phosphate. However, so far, there is no evidence 

of LPA release into the extracellular fluid or accumulation in plasma membrane and this pathway in 

not considered to be involved in extracelular LPA signaling [272]. LPA is produced both in the cells 

and in biological fluids, such as serum and plasma, by distinct pathways [273,274]. (1) In serum and in 

plasma, LPA is mainly converted from LPLs by a lyso-PLD [275]—later identified as autotaxin  

(ATX) [276,277]. LPL in plasma and serum are produced by PLA1-like enzymes [266,272] and by a 

lecithin: cholesterol acyltransferase [278] (Figure 6). Another source of LPLs (about half part of the 

total amount) in serum are activated platelets. In platelets, PS-PLA1 [279] is involved in the production 

of 2-acyl-LPL while sPLA2-IIA could be involved in the production of 1-acyl-LPL [70,280] (Figure 6). 

The PS-PLA1 and PE substrate-preferred sPLA2-IIA are extracellular enzymes. Since their substrates 

are in the inner leaflet of the lipid bilayer, the phospholipids asymmetry should be disrupted and 

indeed such phenomenon is known to occur in activated platelets, as well as in apoptotic cells and 

cytokine-stimulated cells [272]. The exposed phospholipids could be targets for PS-PLA1 and sPLA2-IIA 

enzymes. LPA production by this pathway could be involved in wound healing and inflammation [272]. 

LPAs are not only produced and released by activated platelets [281] but also by activated 

inflammatory cells such as erythrocytes and white blood cells [280]. In addition LPA may originate 

from cancer cells, fibroblasts or adipocytes. Lipoproteins are also a source of LPA. Therefore, the 

concept of local (autocrine, paracrine) action of LPA which has been demonstrated in platelet 

aggregation should be extended to other cellular responses. Moreover, several pathological conditions 

such as cancer, injuries, hematoma, renal failure, are associated with a relatively high production of 

LPA, thus constituting an interesting marker of cell aggression [282]. In contrast to LPA in plasma and 

serum, LPA in cells may originate from PA [273]. In this pathway, a PLD or DAG kinase convert 

lipids in PA and then PA is hydrolyzed by PLA1 or PLA2. There was no direct evidence of LPA 

production from PA by PLA2 (such as the secretory type or cytosolic type), however a PA-selective 

PLA1 (PA-PLA1a/LIPH or mPA-PLA1a) could be involved in the production of LPA [81]. As 

reviewed [273], very little is known about this pathway. For example, production of LPA by  

mPA-PLA1a has been evidenced in hair follicles. Then, the secreted LPA can activate the P2Y5 

receptor which is the closest homolog of LPA4, a G-protein-coupled receptors (GPCR) for LPAs [283] 

(Figure 6). Albumin binds with high affinity to LPAs and may serve as LPA carrier [284]. Synovial 

fluid of patients with RA contains a significant amount of LPA. To evaluate its effects, the synovial 

fluid from RA patients was used in fibroblast-like synovial cells and was found to stimulate COX-2 
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induction in these cells [285]. Lyso-PLD, LPC and LPA-producing enzymes are present in synovial 

fluid [285]. Platelets can contribute to LPA production in bone tissue [286,287]. LPA biosynthesis can 

occur in response to purinergic signaling via P2X7 receptors [288,289]. There are distinct mechanisms 

involved in the control of the paracrine secretion of LPA [280,286,290]. LPA can affect neighbouring 

cells in an autocrine/paracrine manner via interactions with a subset of six GPCRs for LPAs so called  

LPA1-LPA6 [291]. Addition of LPAs stimulated the proliferation of primary rat osteoblasts [292], 

osteoblast-like MC3T3-E1 cells [293], primary human osteoblasts [294], human osteosarcoma cell line 

G92 and MG-63 [294,295] as well as proliferation of rat primary chondrocytes [296]. LPA addition 

induced chemotaxis, elevated resistance to apoptosis, activated mitogen-activated protein (MAP) 

kinases, and elevated Ca2+ in osteoblasts, the precursors of osteocytes [292,294,297–299].  

LPA stimulated osteoblast fibronectin assembly and binding with concomitant changes to the  

cytoskeleton [300–302]. It was predicted that osteocytes could be a target for LPA and indeed LPA 

stimulated dentrite outgrowth in MLO-Y4 osteocytes [303]. LPA induced osteogenic differentiation of 

human mesenchymal stem cells hMSC-TERT by interacting with LPA1 and LPA2 receptors. LPA1 

receptor activation—coupled to a rise of Ca2+—promotes osteogenic differentiation while LPA4 

receptor activation, coupled to cAMP, inhibits differentiation [304]. LPA1
−/− mice exhibits impaired 

suckling behavior and neurological abnormalities [305,306] as well as defects in bone formation 

leading to osteoporosis [306]. Since LPA1 and LPA4 displays completely opposite effects, as expected 

LPA4
−/− mice had, as expected, an increased bone volume, trabecular thickness and trabecular  

number [304]. The potential effects of LPA on osteogenesesis or osteoclasis may depend on the 

respective expressions of LPA receptors [306]. In osteoclasts, LPA acts through multiple receptor 

subtypes to elevate intracellular Ca2+ (Ca2+
i), induce cellular retraction, activates nuclear factor of 

activated T cell 1 (NFAT1) and prolongs osteoclast survival [307]. Undifferentiated and differentiated 

ATDC5 chondroprogenitor cells were found to express LPA [308]. 

Figure 6. Production of lysophosphatidic acid (LPA) via two main pathways: Half of 

serum LPA is formed through the generation of lysophospholipids (LPLs), such as lyso-PC 

(LPC), lyso-PE (LPE), and LPS, by secreted PLA2 (sPLA2-IIA) or PS-PLA1 from 

membrane phospholipids of activated platelets, followed by conversion of the LPLs to 

LPA by autotaxin (ATX). The other half of serum LPA can be generated by sequential 

action of lecithin: cholesterol acyltransferase (LCAT) or PLA1 and ATX. LPA produced by 

ATX has various roles mediated by LPA receptors. LPA in cells may originate from PA. In 

this pathway, a PLD or DAG kinase convert lipids in PA and then PA is hydrolyzed by 

PLA1 or PLA2. 
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3.11. The Effects of PLA Metabolites at Matrix Vesicle Level  

In vivo, increasing content of LPLs in the growth plate is associated with the onset of mineralization 

events and participates in the breakdown of MV membrane. Depletion of PC and increase in LPC are 

characteristic of MVs and are already observed in the microvilli from which MVs derive [309]. Indeed, 

10%–15% of the total phospholipids in MVs from chicken growth plate cartilage are LPLs [52,310–312]. 

LPLs may destabilize the MV membrane, leading eventually to the loss of membrane integrity and 

release of MMP-3 into ECM, stimulating the ECM components digestion [294] as well as release of 

calcium phosphate crystals from MVs to ECM [50]. LPLs could also serve as a reservoir for 

generation of pro-mineralizing Pi, as TNAP was reported to hydrolyse LPLs [313]. This enzyme, 

purified from the osseous plate, displayed broad substrate specificity. In fact, TNAP from osseous 

tissues as well as hyperthrophic chondrocytes is a multifunctional enzyme capable of hydrolyzing 

phosphate monoesters, PPi and phosphodiesters [314,315]. In addition, NPPs present in MVs share the 

same capability to hydrolyze phosphodiester bonds, acting on distinct substrates that include 

nucleosides triphosphates, LPLs and choline phosphate esters [49]. The composition of lipids in 

chicken growth plate cartilage MVs has been described to change significantly during the process of 

mineralization and it is accompanied by a rise in free fatty acid and LPLs produced by PLAs identified 

in MVs [50]. By analysing chicken cartilage MV phospholipid content and composition, it was 

suggested that LPE, detected by UV absorption at 205 nm which indicates the presence of unsaturated 

fatty acids found in the MV membrane, must have arisen from action of PLA1 [50]. On the other hand, 

PLA in MVs displayed a PLA2 activity, which was Ca2+-dependent, highly selective for 

intramembranous, as opposed to externally added phospholipids substrates, had optimal activity at pH 

8 and hydrolyzed PC in preference of PE or other membrane phospholipids [53]. It has been observed 

that MVs released by hypertrophic chondrocytes contain higher levels of TNAP and PLA2 specific 

activities than MVs released by the resting zone cells [316,317]. Addition of 10−8 to 10−9 M of  

1α,25-(OH)D3 significantly increased PLA2 activity in MV but not in plasma membrane. 

4. Non-Specific Phospholipase C 

4.1. Groups, Subgroups and Specificity 

PLC cleaves the polar head phosphate from phospholipids, producing DAG (Figures 2,3C). The 

polar head phosphate is released into the cytoplasm, whereas DAG remains as an integral component 

of the membrane. The observation that certain activators of protein kinase C (PKC) function as DAG 

or potent tumor promoters [318] suggests the possibility that uncontrolled activation of PLC may 

trigger a mitogenic response. In mammalian cells, PLC has been implicated in intracellular signal 

transduction, vesicle transport, endocytosis, exocytosis, ion channel function, mitosis, cytoskeletal 

reorganization, and neuronal signal transduction [319]. On the basis of their substrate specificity, two 

major classes of PLC, namely PI-specific PLC (PI-PLC), with specificity towards PI and non specific 

PLC, PC-PLC, hydrolysing PE or PC, were identified. PC-PLC has been found in many organisms, 

from bacteria to mammals [319]. PC-PLC catalyzes the hydrolysis of PC, generating PChol and DAG. 

PC-PLC was found in the cytoplasm, plasma membrane, and the nucleus. PC-PLC is a potential target 

for therapy in inflammation-associated diseases such as atherosclerosis [320,321]. PC-PLC is 



Int. J. Mol. Sci. 2013, 14 5061 

 

 

implicated in cytokine signaling pathways, such those of interferon-γ [322], transforming growth 

factor-β [323] and TNF-α [324]. D609, an inhibitor of PC-PLC, blocked the progression of 

atherosclerotic lesions in ApoE−/− mice. The lesions contained less lipid and matrix MMPs, fewer 

macrophages and more smooth muscle cells and collagen [325]. In the future, PC-PLC might serve as 

a marker in diagnosis of atherosclerosis in the future and as a new target for atherosclerosis therapy.  

4.2. Presence of PC-PLC in Chondrocytes and in Osteoblasts and Its Possible Role 

To the best of our knowledge, there are almost no reports on the presence and role of PC-PLC in 

chondrocytes. A pathway for the liberation of AA in osteoblasts involves the non specific hydrolysis of 

PI and PE by PLC followed by the deesterification of DAG. This pathway can be activated by a 

phorbol ester through a protein kinase C-independent mechanism [326]. Little information is available 

on the roles of PC-PLC in osteoblasts, especially during intracellular cell signaling in osteoblast-like 

MCT3T3-E1 cells. IL-6 stimulates bone resorption and induces osteoclast formation [327]. IL-6 

synthesis is induced by IL-1 which is a potent resorptive agent and osteoblasts, rather than osteoclasts, 

have receptors for many resorptive molecules [328]. The regulatory mechanism of IL-1action in 

MCT3T3-E1 cells consists of activation of PKC via PC-PLC [329]. Inhibitors of PKC (staurosporine 

and calphostin) or of PC-PLC tricylodecan-9-yl xanthogenate (D609) enhanced the IL-6 secretion by 

IL-1 [329] suggesting that IL-1, by activating PKC via PC-PLC limits IL-6 synthesis, while possibly 

another pathway induced by IL-1 stimulates IL-6 synthesis. IL-6 synthesis is also regulated by TNF 

which activates PKC via PC-PLC in MCT3-E1 cells [330]. Hydrolysis of sphyngomyelin and PC are 

activated upon TNF stimulation [330]. PGF2α-induced proliferation in osteoblast-like MC3T3-E1 cells 

was accompanied by sustained increase in DAG which, in turn, was mediated mainly via tyrosine 

kinase(s)-dependent PC hydrolysis by a PC-PLC [331]. One of the mechanisms leading to  

lead-induced apoptosis in cultured rat primary osteoblasts may involve a PC-PLC activity [332]. 

4.3. Presence of PC-PLC in Osteoclasts and Possible Roles  

A possible role of a PC-PLC in BM cells has been evidenced using a PC-PLC specific inhibitor 

D609. It was found that TNF-α promoted RANKL-induced osteoclastogenesis, at least partially, 

through the PC-PLC/inositol-1,4,5-trisphosphate (IP3) receptors/NFAT1 pathway [333]. 

4.4. Presence of PC-PLC in Smooth Muscle Cells and Possible Roles  

IL-4 induced OPG mRNA levels and protein secretion by 5-fold in a dose- and time-dependent 

fashion in human coronary artery smooth muscle cells. Addition of inhibitor D609 decreased OPG 

expression controlled by IL-4-induced signal transducer and activator of transcription (STAT6) 

activation suggesting that PLC may participate in the transformation of smooth muscle cells towards 

an osteoblastic phenotype [334]. 

4.5. The Effect of PLC Metabolites in Matrix Vesicles 

It has been described [50] that the PE and PC content of the MV membrane decreases during 

mineralization with some accumulation of DAG in MVs, suggesting the involvement of a non-specific 
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PLC activity. In addition there was some accumulation of monoacylglycerol during MV mineralization 

indicating a lyso-PLC activity [50]. The MV membranes are rich in both PE and PC and may act as a 

reservoir for both phospholipid classes during early stages of mineralization. Among different enzymes 

involved in further metabolism of PLC metabolites (Figure 3C), PHOSPHO1, a soluble cytosolic 

phosphatase entrapped inside MVs [47,53,54], was found to be implicated in generation of Pi for 

mineralization [46,47]. PHOSPHO1 is capable to hydrolyse PEA and PChol to generate Pi [46,47]. 

The enzyme activity is highly Mg2+-dependent, with optimal concentration of Mg2+ between 1 and  

10 mM. The apparent Km values amounted to 3.0 µM for PEA and 11.4 µM for PChol [46,47]. It has 

also been hypothesized that PEA is a natural substrate for TNAP since an increase in its urinary 

excretion in patients diagnosed with hypophosphatasia has been observed [335]. Kinetic and 

biochemical analysis of TNAP isolated from human Saos 2 cells revealed that this enzyme possesses 

also phosphatase activity towards PEA [336]. One possible role of PLC in MVs is to produce PEA and 

PChol which can be further hydrolyzed by PHOSPHO1 and TNAP producing Pi necessary for  

MV-mediated mineralization [53]. So far, there are no reports that point out experimental evidences of 

PLC activity toward PC or PE in chondrocytes [53]. Alternatively, a sphyngomyelinase activity could 

contribute to the production of PEA and PChol.  

5. PI-Specific Phospholipase C 

5.1. Groups, Subgroups and Specificity	

PI hydrolysis by PLC results in the production of two second messengers, IP3 (Figures 2,3C) which 

mobilizes calcium ions from intracellular calcium stores, and DAG, a physiological activator of PKC 

isoforms [337]. PI-PLC is a soluble protein that is localized mainly in the cytoplasm and is 

translocated to the plasma membrane where it hydrolyzes PI 4,5-bisphosphate (PIP2) in response to 

cell activation [75]. PIP2 is a precursor not only of IP3 but also of PI 3,4,5-trsiphosphate (PIP3), which 

is produced by the action of PI-3 kinase. Strict regulation of the levels of PIP2 and PIP3 is very 

important for maintaining homeostasis of the body. PIP2 regulates a variety of cells functions, among 

them cytoskeletal rearrangement [338], membrane trafficking such as endocytosis of the EGF  

receptor [339], ion channel activity [340]. PIP3 transduces intracellular signals related to cell 

proliferation or motility. Therefore defects in the generation/degradation of PIP3 cause cancer, diabetes 

and inflammation [341,342]. Thirteen different mammalian PI-PLC isoforms have been described, and 

divided into six subclasses namely β [343–345], γ [343,346,347], δ [343], ε [348–351], ζ [352] and  

η [353–355] each of which comprising different isoenzymes: PI-PLC-β1–β4, γ1 and γ2, δ1–δ4, ε, ζ 

and η. The activation mechanisms of several PLCs have been clarified [356] (Table 7). The isoforms 

can be divided on the basis of amino-acid sequence and their ways of activation. All the PI-PLC 

isoforms contain catalytic X and Y domains. Outside of the core conserved regions, there is diversity 

in protein structure that reflects the range of mechanisms utilized for regulation of these enzymes. 

Except for PI-PLC-ζ, all PLC isoenzymes have a pleckstrin domain (PH) which binds membrane 

phosphoinositides or regulatory proteins [356,357]. PI-PLC β1–β4 isoenzymes are composed of 

subtype specific domains and conserved domains, such as catalytic core regions designated as the X 

and Y domains, which are located between the EF-hand motif and two phospholipid-binding regions 
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the PH and C2 domains [356]. The catalytic core of PI-PLC-γ isozymes comprises a split PH domain 

flanking two tandem src homology 2 (SH2) domain inserts of the catalytic core of PLC-γ and SH3 

domain between the two halves of the TIM Barrel catalytic domain [356]. Members of the PLCγ class 

are regulated by receptors that are coupled to tyrosine kinases [357]. PI-PLC-δ, comprising of a PH 

domain, EF hand motif, X and Y domains and a C2 domain is considered as the most basic isozyme 

due to its simple structure [356]. PI-PLCε is unique in relation to other PLC isoforms in terms of its 

ability to be regulated by multiple signaling inputs from both Rho family GTPases and heteromeric G 

protein. [358,359]. Two forms of PI-PLC-ε differing in size by 25 kDa were found and are designated 

as PI-PLC-ε1a and PI-PLC-ε1b [360]. No functional differences between the two splice variants have 

as yet been identified. The identification of an independent nuclear polyphosphoinositides signaling 

machinery has paved the way to find new roles for these molecules. Although several distinct 

isozymes of PI-PLC have been detected in the nucleus, the isoform that has been most consistently 

highlighted as being nuclear is PI-PLC-β1 where signaling occurs not only at the plasma membrane 

but also in the nucleus [356]. Indeed, all the four members of PI-PLC-β contain a high proportion of 

basic residues at their C-terminal domain, critical for nuclear localization [361,362]. Nuclear  

PI-PLC-β1 has been linked with either cell proliferation or cell differentiation [363]. The presence of 

other PI-PLC isozymes, such as PI-PLC-γ1, -δ1, -δ4, and PLC-ζ, in the nucleus have been  

reported [362]. PLC-γ1 is essential for cell proliferation and cell differentiation [364–367]. 

Table 7. PLC family (according to [319,343,356,357,359,368]). 

Type Group Origin 

Non-specific PLC  Mammalian 

PI-specific PLC-β PLCB1, PLCB2, PLCB3, PLCB4 Mammalian 

PI-specific PLC-γ PLCG1, PLCG2 Mammalian 

PI-specific PLC-δ PLCD1, PLCD3, PLCD4 Mammalian 

PI-specific PLC-ε PLCE1 Mammalian 

PI-specific PLC-η PLCH1, PLCH2 Mammalian 

PI-specific PLC-ζ PLCZ1 Mammalian 

Phospholipase C-like PLCL1, PLCL2 Mammalian 

Zinc-dependent prokaryotic PLC  Bacterial 

PI-DAG-lyase  Trypanosome 

SMase 

Neutral SMase1 

Neutral SMase2 (SMPD3) 

Neutral SMase3 

Lysosmal acid SMase 

Secreted zinc-dependent acid SMase 

Alkaline SMase 

Mammalian 

Mammalian 

Mammalian 

Mammalian 

Mammalian 

Mammalian 

5.2. PI-PLC in Tissues 

The distribution of PI-PLC isozymes is tissue and organ specific [356,359,362,369]. PI-PLC-β1 is 

highly expressed in the cerebral cortex and hippocampus [370] compared to limited expression of  

PI-PLC-β2 in hematopoietic cells [369,371]; PI-PLC-β3 is found in brain, liver, and parotid  

gland [372]; PI-PLC-β4 is present at the highest level in cerebellum and retina [373]. Two mammalian 
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subtypes of PI-PLC-γ isozymes have been identified. PI-PLC-γ1 is abundantly expressed in embryonal 

cortical structures, neurons, oligodendrocytes and astrocytes [374]. The expression of PI-PLC-γ2 is 

primarily limited to cells of hematopoietic lineage. PI-PLCδ1 is present at high abundance in brain, 

heart, lung, skeletal muscle and testis. PI-PLC-δ3 is detected abundantly in brain, skeletal muscle and 

heart [375]. PI-PLC-δ4 mRNA is expressed in various tissues with the highest levels detected 

selectively in brain, skeletal muscle, testis and kidney [376]. PI-PLC-ε mRNA expression has been 

detected in brain, lung, and colon, with the highest expression detected in heart. PI-PLC-ζ expression 

within the testis is sperm-specific. Two PI-PLC-η isozymes, PI-PLC-η1 and PI-PLC-η2, were 

identified in humans and mice. The highest level of PI-PLC-η1 mRNA was observed in brain and 

kidney and smaller levels were detected in lung, spleen, intestine, thymus and pancreas [353].  

As evaluated from the EST database in NCBI Unigene (http:/www.ncbi.nlm.nih.gov/sites/ 

entrez?db=unigene), PI-PLC-β2, PI-PLC-γ1, PI-PLC-γ2, PI-PLC-δ1 and PI-PLC-ε genes are expressed 

in bone tissues but to a limited degree compared with their expressions in other tissues [356]. 

5.3. Presence of PI-PLC in Chondrocytes and Possible Roles 

Chondrocytes treated with PLC from Clostridium welchii divided repeatedly but failed to 

synthesize metachromatic matrix [377] suggesting that PLC may have a functional role in 

chondrocytes. Most of the experimental evidence of PI-PLC in chondrocytes comes from the use of  

U-73122, a PLC inhibitor. Earlier experimental evidence of PLC activity derived from articular 

chondrocytes upon fluid-induced shear. The shear-induced change in matrix molecule metabolism was 

influenced by NO synthesis, G protein activation and PLC activation [378]. The molecular 

mechanisms on the effects induced by mechanical stress indicate the participation of PI-PLC. 

Mechanical stress induced Ca2+ influx in primary cultures of rabbit articular chondrocytes and 

stimulated PI-PLC activity [379]. Periodic mechanical stress of rat chondrocytes—leading to 

chondrocyte area expansion and migration—implies phophorylation of tyrosine kinase protein Src, 

which in turn activates PI-PLC that regulates ERK1/2 activity [380]. Since the later activity was 

inhibited by U73122, it was assumed that a PI-PLC-γ1 was involved in this pathway [380] probably 

due to its activation by tyrosine protein kinase [381]. The use of calcium blockers or ionophores served 

to identify the presence of Ca2+-sensitive PI-PLC. Insulin-like growth factor-1 induced an increase in 

Ca2+
i that was pertussis toxin (PTX) dependent in articular chondrocytes from 21-day-old rabbits. 

Treatment with U-73122 [382] partially blocked the Ca2+
i increase suggesting that PLC coupled to a 

PTX-sensitive G protein was present in chondrocytes [383]. In HIG-82 synovial cells, the ionophore 

ionomycin stimulated phosphoinositide hydrolysis indicating the expression of a Ca2+-sensitive  

PI-PLC activity in these cells [384,385]. PI-PLC (very often abbreviated as PLC) activity has been 

evidenced during determination of signaling pathways induced by vitamin D metabolites, sex 

hormornes, 17β-estradiol, adrenocorticotrpin, eotaxin-1, FGF-3, etc. The resting zone  

chondrocytes from costochondral cartilage responds preferentially to the vitamin D metabolite  

24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3), whereas hypertrophic chondrocytes respond 

preferentially to 1α,25(OH)2D3 [386,387]. In chondrocytes from the costochondral cartilage growth 

zone, 1α,25(OH2)D3 causes a rapid increase in PLA2 activity [388] producing AA and LPL. AA can 

stimulate PKC activity [389] and can serve as a substrate for COX-1. LPL activates PI-PLC (possibly 
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PI-PLC-β) since it is a G protein sensitive (Gαq) pathway- resulting in IP3 and DAG production which 

contributes to PKCα activation and downstream activation of ERK1/2 [388,390–393]. PI-PLC-β1 and 

PI-PLC-β3 were proposed to be involved in LPL-activation of PI-PLC [393] but they are not expressed 

in bone or in BM [356]. Growth-plate chondrocytes respond to17β-estradiol in a sex-specific manner 

by inducing an increase in IP3 which suggests the involvement of PI-PLC activity [394] as reported 

earlier [395,396]. It was suggested that in resting zone chondrocytes, 24R,25(OH)2D3 was initiating 

LPA mediated stimulation of G-induced PI-PLC activity [397]. Resting chondrocytes treated with 

melanocortin peptide or/and ACTH showed elevated basal Ca2+ level that was decreased [398] by  

U-73122 [382]. The sex hormorne, testosterone, and its metabolite, 5α-dihydrotestosterone (DHT), 

play an important role in skeletal development in males during adolescence [399]. The effects of DHT 

were observed in resting-zone chondrocytes from rats in a sex-specific manner i.e., only in males.  

PI-PLC was required for the DHT–dependent activation of PKC [400] as evidenced by the effect of  

U-73122. The eotaxin-dependent matrix metalloproteinase secretion in human chondrosarcoma cell 

line SW1353 is regulated by a PI-PLC-PKC cascade and c-Jun N-terminal kinase/MAP kinase 

pathways [401]. PI-PLC-γ mediates FGF-3-induced a STAT1 in ATDC5 chondrogenic cells [402]. 

5.4. Presence of PI-PLC in Osteoblasts 

Osteoblast-like osteosarcoma UMR-106 cells possess at least two distinct PLC activities, one 

predominant in the cytosol and activated by increasing cytosolic Ca2+ with PI as the substrate. The 

second enzyme, a GTP-activated PI-4, 5-bisphosphate (PIP2)-specific PLC is found in the plasma 

membranes [403]. PI-PLC-β1, -β3, -γ1, -γ2, and -δ1 were detected by Western blot in osteosarcoma 

MG-63, MNNG/HOS, OST, U-2/OS, and SaOS-2 cell lines, while PI-PLC-β2 was only expressed in 

MG-63 and MNNG/HOS cells [404]. PI-PLC-β2 is involved in the mechanotransduction in primary 

osteoblasts [404]. PLC-γ1 plays an important role in the regulation of cell proliferation and 

differentiation by generation of the second messengers, DAG, and IP3. PLC-γ1, ERK1/2, and nuclear 

factor κB (NF-κB) signaling pathways are stimulated while p38 MAP kinase is inhibited by  

H2O2-induced oxidative stress during rabbit BM stromal cell differentiation. [405]. Elevated 

extracellular Ca2+ (Ca2+
e) stimulates both chemotaxis and mitogenesis of MC3T3-E1 osteoblasts via a 

calcium-sensing receptor (CaR). Ca2+
e-mediated chemotaxis of these bone-forming cells is dependent 

on PLC [406]. Alternatively, most of the evidence of the presence of PI-PLC in osteoblasts originates 

from ligand-induced signaling pathways involving Ca2+
i increase with the production of DAG and IP3 

as reported below. 

5.4.1. Endothelin-1 Induced Signaling Pathway 

Endothelin-1 (ET-1)—a vasoactive peptide derived from endothelial cells—by binding to  

high-affinity receptors in MC3T3-E1 osteoblast cells, induces PLC activation with the production of 

two second messengers, IP3 and DAG and a biphasic increase in Ca2+
i, as measured with a fluorescent 

indicator, fura-2 [407,408]. It has been shown that ET-1 inhibits osteoclast bone resorption by a direct 

effect on cell motility and that it can also activate PLC in the osteoblast [409]. In MC3T3-E1 

osteoblast-like cells, ET-1 acting through ET receptor, links to a stimulation of Pi transport via 

activation of PKC through both phosphoinositide and PC hydrolyses [410]. In osteoblast-like MC3T3-E1 
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cells, various ET peptides and their homologous sarafotoxins generate PGE2 release through an ET(A) 

receptor subtype. PLC-dependent calcium activation mechanisms seem to be involved [411]. 

5.4.2. Basic FGF Induced Signaling Pathway 

Basic FGF selectively stimulates sodium coupled Pi transport activity in osteoblast-like cells. 

Signaling mechanisms responsible for this effect involve mainly activation of PI-PLC-γ and PKC, with 

some possible contribution of the p38 MAP kinase [412]. Basic FGF, which is able to increase the rate 

of bone formation, stimulates fibronectin expression by binding to FGF-2 receptor and activation of 

PI-PLCγ2, PKCα, c-Src in rat osteoblasts [413].  

5.4.3. Platelet-Derived Growth Factor Induced Signaling Pathway 

Platelet-derived growth factor (PDGF) is a potent and selective stimulator of Pi transport in 

osteoblastic cells. The mechanism responsible for this effect is not mediated by MAP kinases  

but involves tyrosine phosphorylation-dependent activation of PLCγ and PI-3-kinase [414].  

PDGF-mediated chemotaxis of MC3T3-E1 osteoblast-like cells is dependent on both PLC and  

PI-3-kinase [415]. Moennings et al. [416] showed for the first time that PDGFRα signaling stimulates 

osteogenesis of neural crest cells-derived osteoblasts by activating the PI-PLC-γ pathway. This may 

suggest an involvement of this pathway in the etiology of human craniosynostosis. 

5.4.4. Parathyroid Hormone Induced Signaling Pathway 

PTH is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH 

may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and  

PLC [417,418]. In osteoblasts, PI-PLC-β2 transduces the signals from PTH, PGE2, and other 

prostanoids [419,420]. Several reports suggest that PTH activation of PKC, via the stimulation of PLC, 

plays a role in stimulating the synthesis and release of transforming growth factor-b1 (TGF-b1) [421] 

as well as in the PTH-stimulated synthesis of insulin-like growth factor binding protein-5 [422]. Both 

of these factors stimulate bone deposition by activating osteoblast growth and differentiation and may, 

therefore, play a role in the coupling of bone resorption to bone deposition. Regulation of the PLC 

pathway through the PTH1R can be significantly increased by elevating the expression of G(11)α in 

osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by activation of  

AP-1 factors: c-jun and c-fos [423]. 

5.4.5. PGD2 Induced-Signaling Pathway 

PGD2 stimulates Ca2+ influx from the extracellular space and activates phosphoinositide  

(PI)-hydrolyzing PLC and PC-hydrolyzing PLD independently of PGE2 or PGF2α in osteoblast-like 

MC3T3-E1 cells [251,424]. Thrombin raises Ca2+
i, in UMR 106-H5 rat osteoblast-like osteosarcoma 

cells by activating PI-PLC [425]. Exogenous PA appears to increase IP3 accumulation in  

osteoblast-like cell line MOB 3-4 by activating PI-PLC [426].  
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5.4.6. PGE2 Induced-Signaling Pathway 

U-73122 and calphostin C reduced the PGE2-induced phosphorylation of p44/p42 MAP kinase and 

p38 MAP kinase. These results indicate that PGE2 stimulates the induction of HSP27 through  

PKC-dependent activations of both p44/p42 MAP kinase and p38 MAP kinase in osteoblasts [427]. 

Bradykinin increased both IL-6 and PGE2 synthesis in osteoblastic cells via B2R. PLC, IP3-induced 

Ca2+
i, and MAP kinases were involved in signal transduction in these cells [428]. PGE2 evoked a Ca2+

i, 

rise via a PI-PLC pathway in MC3T3-E1 osteoblasts, particularly in the growing phase [429]. The 

proton induced COX-2 expression and PGE2 production were mediated through the ovarian cancer G 

protein–coupled receptor/Gq/11/PLC pathway in human osteoblastic cells [430]. 

5.4.7. PGF2 Induced-Signaling Pathway 

PGF2α induces phosphoinositide hydrolysis by PLC and PC hydrolysis by PLD through 

heterotrimeric GTP-binding protein, resulting in the activation of PKC in osteoblast-like MC3T3-E1 

cells. PGF2α can also stimulate the synthesis of DNA [431,432]. Zinc reduces PGF2α-induced IL-6 

synthesis via suppression of phosphoinositide-hydrolyzing PLC and PC-hydrolyzing PLD in 

osteoblasts [433]. It is well known that osteoporosis is a common complication in patients with 

glucocorticoid excess. Glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of 

PI hydrolysis by PLC as well as PLA2 in osteoblast-like cells [434]. Contrary to sphingosine  

1-phosphate (S1P), sphingosine inhibits PGF2α-induced phosphoinositide hydrolysis by PLC via p38 

MAP kinase in osteoblasts. [435,436]. 

5.4.8. Vitamin D-Induced Signaling Pathway 

Only PI-PLC-β1 linked to a PTX-insensitive G-protein and PLC-β2 coupled to a PTX-sensitive G 

protein are involved in the effects of calcitriol and 17β estradiol (the hormonally active form of 

vitamin D,) respectively, on the mobilization of Ca2+ from Ca2+
i stores. [437]. PLC-β1 is the target 

effector of Gα(q/11), whereas PI-PLC-β2 is only activated by βγ subunits; this specificity may help to 

generate membrane receptor-specific responses in vivo [438]. When osteoblasts are cultured on 

surfaces of increasing micro roughness, they exhibit decreases in proliferation, increases in 

differentiation and local factor production, and enhanced response to 1α,25(OH)2D3. The cells interact 

with surfaces through integrins, which signal by the same pathways used by 1α,25(OH)2D3, i.e., they 

activate PKC via PLC and protein kinase A via PLA2. This provides opportunities for crosstalk that 

may contribute to the synergistic effects of surface roughness and the vitamin D metabolite [439]. 

5.4.9. Interleukin-1-Induced Signaling Pathway  

PI-PLC-β1 is specifically localized in the nucleus of Saos-2 osteoblast, where it is activated when 

cells are stimulated with IL-1 [440,441]. Saos-2 cells are characterized by the expression of high 

affinity receptors for IL-lα, which is one of the most potent stimulators of bone resorption [442]. A 

recent report [443] demonstrated that nuclear activation of PI-PLCβ1 was dependent on its 

phosphorylation by the MAP kinase. The MAP kinase pathway is implicated in the pathogenesis of 

RA because it is activated by proinflammatory cytokines, such as TNF-α and IL-1β [444]. 
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5.4.10. Miscelanous Ligand Binding Stimulated PI-PLC in Osteoblasts 

Pasteurella multocida toxin, a mitogenic toxin, acts to inhibit differentiation, in particular of bone 

cells. In vitro, it prevents the formation of mineralized bone nodules. P. multocida toxin action 

stimulates PLC leading to activation of protein kinase C, an increase in inositol phosphates, and a rise 

in Ca2+
i [445]. In human osteosarcoma MG63 cells, thymol causes a Ca2+

i rise by inducing  

PLC-dependent Ca2+release from the endoplasmic reticulum and Ca2+ entry via protein kinase  

C-sensitive store-operated Ca2+channels [446]. CGRP a peptide produced locally in bone, and that may 

act as a cytokine on bone cells, is not coupled to adenylate cyclase but increases Ca2+
i levels in CGRP 

receptor-positive OHS-4 osteosarcoma cells, suggesting that in these cells CGRP induces downstream 

events driven by PLC in these cells [446]. N-formyl-methionyl-leucyl-phenylalanine -stimulated 

osteogenic differentiation of human mesenchymal stem cell which was mediated via the  

N-formyl peptide receptor-PLC/PLD-Ca2+-calmodulin-dependent kinase II-ERK-CREB signaling 

pathways [447]. The pretreatment of human osteoblast SaM-1 cells with U-73122, a PLC inhibitor, 

stopped IL-6 and IL-8 synthesis in response to extracellular LPA. The proposed mechanism may 

involve activation of PLC and IP3-mediated Ca2+
i release in human SaM-1 cells [448]. 

5.4.11. Purinergic and Serotonin-2 B Receptors 

Under certain stress conditions that lead to release of nucleotides from the rat osteoblastic cell line 

ROS-A 17/2.8, the stimulation of specific purinergic receptors such as P2Y2, sensitizes mechanical 

stress activated Ca2+ channel through a mechanism that involves PI-PLC activation. [449]. U-73122 

and thapsigargin, a calcium-pump inhibitor, both significantly inhibited the increase in Ca2+
i induced 

by extracellular ATP in TBR31-2 cells. This suggests that the increase in Ca2+
i is due to Ca2+

i release 

from the calcium store following activation of PLC [450]. Mice knocked out for the serotonin-2B 

receptor (5-HT2BR) show defects in bone homeostasis. In C1 osteogenic cells the positive action of  

5-HT2BR on TNAP downstream from eicosanoids requires the activity of the glycosyl-PI-solubilizing 

enzyme PI-PLC [250]. 

5.5. Presence of PI-PLC in Osteoclasts 

During bone resorption osteoclasts remove large amounts of ECM. At the beginning of the 

resorption cycle, the plasma membrane in contact with the bone expands through fusion of lysosomes 

and intracellular vesicles into the convoluted ruffled borders. Consistent with the function of 

osteoclasts, some of the PI-PLC identified in osteoclasts are involved in membrane trafficking and in 

cytoskeletal rearrangement. PI-PLCγ2 modulates bone homeostasis by affecting osteoclast recruitment 

and function. PI-PLCγ2 is implicated in actin cytoskeletal reorganisation in osteoclasts and 

neutrophils. It is an important regulator of α(v)β(3) integrin-mediated bone osteoclast cell adhesion, 

migration, and in bone resorption [346,451,452]. Although PI-PLCγ1 is expressed in osteoclasts, it 

cannot compensate for the absence of PI-PLCγ2 [346], suggesting that PI-PLCγ1 and PI-PLCγ2 are 

implicated in distinct signaling pathways. Experimental evidence of the presence of PI-PLC in 

osteoclasts arises from the analysis of the mechanisms induced by endocrine and paracrine factors that 

regulate osteoclast formation and activity. Such factors include calcitonin, RANK ligand, Ca2+, H+, 
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nucleotides regulating osteoclast activity in several ways. Very often, the PLC activity in osteoclasts 

was evidenced by the use of PLC inhibitors such as U-73122.  

5.5.1. Calcitonin Induced Signaling Pathway 

Calcitonin inhibits the activity and changes the morphology of osteoclasts by interfering with 

trafficking to and from the ruffled border [453,454]. Such action makes it a possible therapeutic target 

for the treatment of osteoporosis [455]. Using U-73122, PLC was shown to be implicated in the 

inhibition of endocytosis from the ruffled borders of rabbit osteoclasts induced by a calcitonin 

treatment. The PLC inhibitor reversed the calcitonin effect and restored endocytic trafficking to the 

level equivalent to 75% of that in untreated controls [456].  

5.5.2. Intracellular Ca2+ Induced Signaling Pathway 

It is essential to make a distinction between the effect of Ca2+
e in osteoclasts that may stimulate the 

rise in Ca2+
i in osteoclasts and the effect of other ligands that may induce an increase in Ca2+

i 

concentration. The latter may affect osteoclast differentiation and function differently although both 

may involve PLC activity. Increasing Ca2+
e to levels comparable to those resulting from local bone 

resorption inhibits osteoclast differentiation and osteoclastic bone resorption [457]. Osteoclasts can 

sense increasing levels of Ca2+
e, which in turn trigger a rapid rise in the cytosolic calcium 

concentration, disassembly of podosomes, and osteoclast apoptosis [458–461]. RANKL induced an 

increase in Ca2+
i of extracellular origin resulting of the opening of calcium channels—possibly 

transient receptor potential vanilloid channels 5—on the surface of human osteoclasts [462]. Ca2+
i 

oscillation could be triggered by a RANKL-dependent receptor potential vanilloid channels 2 calcium 

channel in preosteoclast RAW264.7 cells [463]. Similarly to RANKL, Ca2+
e (20 mM) appeared to 

trigger rapid and significant nuclear translocation of NF-κB in a CaR- and PLC-dependent  

manner [464,465] (Figure 7). The CaR is coupled to PLC activity that induces an increase in Ca2+
i 

concentration. Sre
2+—which exerts both an anti-catabolic and an anabolic effect on bone cells—acts 

through CaR and induces osteoclast apoptosis through a signaling pathway similar to but different in 

certain respects from that of Cae
2+ (Figure 7) [465]. The cation sensing by osteoclast-like GCT23 cells 

is mediated by a PLC-coupled receptor [466]. Osteoclast activity is inhibited by elevated Ca2+
e that 

induce a PLC-dependent rise in Ca2+
i Lyn [467,468] as well as leucine-rich repeat-containing 17 

(LRRc17) [469]—by interfering with the PI-PLC-γ1—both down-regulated Ca2+
e signaling and 

inhibited osteoclast differentiation [467]. In constrast to the inhibition effects on osteoclasts induced by 

Lyn or LRRc17, calcitonin increases Ca2+
i via a PLC-PKC-calcium signaling pathway, stimulating 

endocytosis in osteoclasts [456]. Several reports confirmed the involvement of PLC in the increase in 

Ca2+
i. U-73122 blocks the calcium sensitive component in avian osteoclasts [470]. Extracellular 

nucleotides caused elevation of Ca2+
i in osteoclasts—isolated from femora and tibiae of rat or rabbit 

pups—by activating P2Y receptors [471]. Inhibition of PLC with U-73122 or inhibition of 

endoplasmic reticulum Ca2+-ATPase with cyclopiazonic acid or thapsigargin abolished the rise of Ca2+
i 

induced by the binding of nucleotides to P2Y receptors [471]. RANKL acting on osteoclasts isolated 

from the long bones of neonatal Wistar rats or or New Zealand white rabbits elevated Ca2+
i in  

Ca2+-containing and Ca2+-free media. The increase in Ca2+ was prevented by U-73122 [472,473]. It 
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was suggested that PI-PLC-γ could regulate Ca2+ channel during RANKL-signaling for terminal 

differentiation of osteoclasts and that RGS12 was essential for the terminal differentiation of 

osteoclasts induced by RANKL [474]. It was proposed that PI-PLC-γ2 mediates RANKL-induced 

osteoclastogenesis and is a potential candidate for the antiresorptive therapy [475]. Other proteins such 

as RGS10 can mediate PLC activation and Ca2+
i oscillations [474]. The Ca2+

i calmodulin complex 

competes for the PIP3-binding site on RGS10 and frees the bound PIP3. Once the Ca2+
i concentration 

reaches its peak, Ca2+
i begins to reload into the endoplasmic reticulum and the Ca2+

i calmodulin 

complex dissociates from RGS10 at the low Ca2+
i concentration. Free PIP3 activates PLC and then 

binds RGS10 again. PLC activation triggers a release of Ca2+
i from intracellular stores by generating 

IP3 to induce a second peak. This process continues to repeat itself, causing Ca2+
i oscillations. RGS10 

mediates PLC activation and Ca2+
i oscillations through its Ca2+

i -dependent dual interaction with Ca2+
i 

calmodulin and PIP3 [474]. 

Figure 7. Calcium and strontium induce distinct intracelular calcium signaling. Upon 

stimulation by extracellular calcium, calcium-sensing receptor (CaR) activates PLC, which 

is responsible for the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the 

nucleus in mature osteoclasts, in an IP3-dependent manner. Upon stimulation by 

extracellular strontium, CaR also activates PLC inducing the DAG-PKCβII signaling 

pathway and then promoting translocation of NF-κB from the cytoplasm to the nucleus in 

an IP3-independent manner. Taken from [465]. 

 

5.5.3. Osteoprotegrin Induced Signaling Pathway 

OPG-inhibitor of osteoclast differentiation—directly binds to RANKL, whereas LRRc17 acts as a 

negative regulator of RANKL-induced murine osteoclast differentiation by blocking PI-PLCγ 
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signaling [469]. PLC exerts indirect effect in endothelial cells of the bone vasculature, modulating 

development, remodeling, and bone repair by secreting OPG which acts on osteoblastic and 

osteoclastic lineage cells. For example, IL-4 and IL-13 induced OPG expression through activation of 

a PLC-sensitive STAT6 pathway in human umbilical vein endothelial cells [476].  

5.5.4. RANK Induced Signaling Pathways 

Mice lacking the tyrosine kinases Btk and Tec show severe osteopetrosis caused by a defect in bone 

resorption indicating that Btk and Tec kinases are crucial in the regulation of osteoclast  

differentiation [477]. RANKL induced tyrosine phosphorylation of PI-PLCγ1 and PI-PLCγ2 was 

markedly suppressed in Tec−/− Btk−/− cells. Taken together the findings suggest that RANKL binding 

to RANK results in activation of classical pathways involving TRAF6 and c-Fos. In addition, Tec 

kinases are phosphorylated by RANK (Figure 8). ITAM phosphorylation results in the recruitment of 

Syk, leading to activation of adaptor proteins such as BLNK and SLP-76, which function as scaffolds 

that recruit both Tec kinases and PI-PLCγ to form the osteoclastogenic signaling complex (Figure 8). 

This complex is required for calcium signaling to activate NFAT1, the key transcription factor for 

osteoclast differentiation [477]. A molecular mechanism for the long-term link between RANK and 

ITAM signals has been proposed. A domain in RANK is dispensable for the early phase of RANK and 

ITAM signaling but is essential for the late-phase signaling, which involves PI-PLC-γ2 binding to  

RANK [478] (Figure 8). A linker for activation of T cells (LAT), regulates RANKL-induced osteoclast 

differentiation and is involved in RANKL-induced PI-PLC-γ activation and NFAT1 induction [479]. 

PI-PLCγ1 is also involved in RANKL-induced Ca2+ oscillations as shown by marked inhibition of the 

oscillations in BM-derived monocyte/macrophage precursor cells in which PI-PLCγ1 was knocked 

down with PLCγ1 siRNA [480]. The absence of PI-PLC-γ1 is not compensated by the presence of  

PI-PLCγ2, suggesting that both PI-PLC-γ1 and PI-PLC-γ2 participate in RANKL-induced Ca2+ 

oscillations. RANKL induced a significant increase in Ca2+
i of extracellular origin, probably as a result 

of the opening of TRPV-5 calcium channels on the surface of human osteoclasts. Mutant forms of 

SH3BP2—occuring in patients with cherubism- potentiate RANKL-induced phosphorylation of  

PI-PLC-γ isoforms, suggesting that SH3BP2, as well as PLC-γ2, are potential targets in the treatment 

of disorders characterized by excessive osteoclastic development [481,482]. 

5.5.5. Parathyroid Hormone Induced Signaling Pathway 

As in most cells expressing the PTH/PTH-related peptide receptor in cells, stimulation with with 

PTH agonists results in the activation of two G protein-dependent signaling pathways, the 

Gαs/adenylyl cyclase/cAMP/protein kinase A pathway and the Gαq/11/PLC/IP3/Ca2+/PKC pathway, as 

many other GPCRs, activates several signaling pathways, including the Gq/11-linked PI-PLC-PKC 

signaling pathway as determined in cell cultures. However, there are only few reports investigating 

whether such signaling occurs in vivo [483]. Estrogens modulate the catabolic effects of PTH on bone 

in vivo and in vitro. Estrogens suppress PTH-stimulated osteoclast-like cell formation by blocking both 

the cAMP-dependent protein kinase A pathway and the PLC-coupled calcium/PKC pathway [304,484]. 
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Figure 8. Integration of the RANK and ITAM Signals by Tec Kinases. RANKL binding to 

RANK results in activation of pathways involving TRAF6 and c-Fos. Tec kinases are 

phosphorylated by RANK. ITAM phosphorylation results in the recruitment of Syk, 

leading to activation of adaptor proteins such as BLNK and SLP-76, which function as 

scaffolds that recruit both Tec kinases and PLCγ to form the osteoclastogenic signaling 

complex. This complex induces calcium signaling required for the induction and activation 

of NFATc1, the transcription factor for osteoclast differentiation. Adapted from [477]. 

 

5.6. Presence of PI-PLC in Smooth Muscle Cells and Possible Roles 

Most of experimental evidence on the presence of PI-PLC in smooth muscle cells originates from 

analysis of signaling pathways [485–487] and the use of general PLC inhibitor U73122 or PLC isotype 

inhibitors D609 and ET-18-OCH3. No evidence was obtained by Western blotting for the presence of 

PLC-β, PLC-γ and PLC-δ in bovine mesenteric lymphatic smooth muscle cells. However, a PLC 

activity was concentration-dependently stimulated by Ca2+ [488]. In rat thoracic aortic smooth muscle 

cell, vasopressin induces V1 receptors to release AA, DAG and PChol via activation of both a PI- and 

PC-PLC [489]. Both isotypes of PLC were involved during VSMC proliferation [490]. S-1-P in  

Rat arterial VSMC induced time-dependent activation of PI-PLC-β as evidenced by the use  

of U-73122 [491]. 

5.7. Presence of PI-PLC in Odontoblasts and Possible Roles 

Odontoblasts—extracted from dental pulp of newborn Wistar rats—demonstrated an IP3-induced 

Ca2+ release activated by PLC-coupled receptors [492]. Calcium ions and PLC were required for the 

capsaicin-induced expression of OPG in human periodontal ligament, which is known to play an 

important role in the bone-remodeling process [493]. U73122 was able to ablate the basic FGF-induced 

neuronal differentiation of dental pulp stem cell (DPSC) and the authors suggested that basic  

FGF-induced neuronal differentiation of DSPC could involve a PI-PLC-γ pathway [494]. 
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5.8. Genetic Models 

Genetically manipulated mice revealed that the lack of some PLC isozymes causes defects in 

fertilization and development of the circulatory, hematopoietic, immune, and skin systems [495].  

PI-PLC-ζ and PI-PLC-δ4 are critical in fertilization [495]. Liao et al. [496] reported that 

vasculogenesis is impaired in PLC-1 knockout embryos. PI-PLC-δ1/-δ3 knockout mice show mainly 

placental vascular defects [497]. PI-PLC-β3 plays some role in angiogenesis [498]. PI-PLC-γ1 is 

essential for renal development and for the development of hematopoietic stem cells [499]. PLC-γ1 

and PLC-γ2 play important roles in the immune system, in development of B cells [500] as well in in 

bone homeostasis [501–506]. PI-PLC-γ2 null mice (PLC-γ2−/−) are osteopetrotic, i.e., shox features of 

a hereditary disease marked by abnormally dense bone, and by the common occurrence of fractures of 

the affected bone. [452]. PI-PLC-γ2 knockout mice have less osteoclasts due to defective upregulation 

of NFAT2, which is a critical transcription factor activated by RANKL that controls osteoclast 

differentiation [507]. These findings indicate that PLC-γ2 regulates osteoclastogenesis as a 

downstream effector of RANKL in mice. PI-PLC-γ2 is essential for RANK signaling, and its 

deficiency leads to defective lymph node organogenesis and osteoclast differentiation [508]. PI-PLCγ2 

activation/function may provide opportunities to develop targeted therapeutic approaches for treatment 

of inflammatory and osteolytic diseases. However, PLC-γ2−/− mice proved that PI-PLC-γ2 is not a 

major player in ovariectomy-induced bone loss, indicating that PLC-γ2 may not be a suitable 

therapeutic target in postmenopausal osteoporosis [509]. 

6. PLC-Related but Catalytically Inactive Protein 

PLC related but catalytically inactive protein (PRIP) is a novel molecule in bone biology research 

and was originally identified as IP3-binding protein. This protein is similar to PLC-δ1 but is 

catalytically inactive [510,511]. The PRIP family consists of at least two types of proteins (PRIP-1 and 

PRIP-2 subfamilies). PRIP has a number of binding partners, including the catalytic subunit of protein 

phosphatase 1α (PP1α) and PP2A [512,513] and the phosphorylated (active) form of Akt [514] in 

addition to IP3 and PIP2 [515]. PRIP gene-deficient mice (prip−/−), genetically deficient in type 1 or 

type 2 isoforms or both, brought light the physiological functions of PRIP: modulation of GABAA 

receptor signaling [516], dysfunction of reproduction, negative regulation of multiple-hormone 

secretion [517] and bone properties [518]. PRIP is involved in the phosphorylation-dependent 

modulation of exocytosis in PC-12 cells [519]. Exocytosis of various peptide hormones, such as 

gonadotropins and insulin, was up-regulated in prip−/− mice, indicating that PRIP is likely to be 

involved in dense core vesicle exocytosis in a negative manner. PRIP is implicated in the regulation of 

bone formation in a negative manner, partly through the regulation of SMAD phosphorylation [518]. 

Since PC-PLC contributes to the progression of atherosclerosis, it was proposed that pharmacological 

blockade of PC-PLC is a possible approach to atherosclerosis therapy. 
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7. Sphingomyelinase 

7.1. Groups, Subgroups and Specificity 

Sphingomyelinase (SMase), which may be considered as a subtype of PLC, cleaves SM (ceramide 

phosphorylcholine) to yield ceramide and PChol (Figure 3D). Ceramide, subsequently metabolized by 

ceramidase and sphingosine kinase to sphingosine and S1P, respectively, appeared to be a lipid second 

messenger in programmed cell death, cell differentiation and cell proliferation [368,520,521]. There 

are at least five isoforms of acidic, neutral, and basic SMases differing mainly on pH profiles, cation 

requirements, and cellular localization. Smpd3 encodes neutral SMase 2, a membrane-bound enzyme, 

and is highly expressed in bone. A local neutral SMase2 (also called sphingomyeline phosphodiesterase 3 

(SMPD3)) activity is required for a normal bone mineralization and for physiological apoptosis of 

hypertrophic chondrocytes in the cartilage during early skeletal development [522]. 

7.2. Presence of Sphingomyelinase in Chondrocytes and Possible Roles 

Six years ago it has been shown for the first time [523], that articular chondrocytes express both 

acidic and neutral SMases and are able, in response to the appropriate external signal, to raise levels of 

endogenous ceramide; depending on which SMase is activated, an inflammatory (neutral SMase) or 

apoptotic (acidic SMase) response is observed. SMase is implicated in both chondrocyte apoptosis and 

ECM degradation during cartilage degeneration [524]. Ceramide stimulated synthesis of specific 

MMPs which in turn induced degradation of ECM and cell death in cartilage. This suggests that the 

SMase pathway could participate in vascular invasion of the growth plate by disrupting cartilage-ECM 

homeostasis, resulting in down-regulation of the type II collagen [524]. In addition, some ceramide 

metabolites have been implicated in the cartilage degradation and arthritic disease. For example, in 

Farber’s disease, the lack of ceramidase causes excessive accumulation of ceramide within the 

cartilage and bone, and is associated with joint pain and arthritis-like joint degeneration [525]. SMase 

down-regulates type II collagen in articular chondrocytes via activation of the ERK signaling cascade, 

redistribution of SOX9, and recruitment of c-Fos [526]. These findings provide direct evidence for a 

role of SMase metabolites in human arthritic disease. This enzyme could represent a target for 

pharmacological intervention against cartilage loss in arthritic diseases. 

7.3. Presence of Sphingomyelinase in Osteoblasts and Possible Roles 

Information regarding the effects of ceramide in cells of skeletal origin is limited and conflicting. 

Ceramide in vitro may be either a pro-death agent or it may protect cells, depending on the 

experimental conditions. Moreover, TNF-α, IL-1, platelet-derived growth factor and vitamin D3 as 

potent regulators of bone remodelling may utilize sphingosine metabolites such as ceramide or S1P as 

second messengers in their respective signal transduction pathways via activation of SMase. This 

suggests that sphingosine metabolites are operating as intracellular signaling molecules in osteoblasts 

and osteoclasts. In fact, these metabolites are able to mimic the biological actions of the above 

cytokines in osteoblasts. The proapoptotic agent TNF-α has been reported to induce osteoblast cell 

death in a process involving ceramide [527]. However, conversely, ceramide was shown to be 
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mitogenic in MC3T3-E1 osteoblast cells [528]. Among SM metabolites, ceramide enhances the BMP 

stimulated osteocalcin synthesis in osteoblasts and its effect is exerted at a point upstream from 

p44/p42 MAP kinase [529]. Scyphostatin—a neutral SMase inhibitor—revealed that neutral  

SMase-induced release of ceramide directly activated the intrinsic mitochondrial apoptotic  

pathway [530]. Ceramide signals osteoblast survival and apoptosis through different intracellular 

pathways, and alteration in the intracellular levels of ceramide may play an important role in bone 

remodeling [531]. S1P acts as a second messenger for tumor necrosis factor-α-induced synthesis of  

IL-6 in MC3T3-E1 cells and the p44/p42 MAP kinase is involved in the signaling [330,435,532,533]. 

It has been shown that not ceramide but sphingosine and S1P transiently mobilize Ca2+
i from 

intracellular stores in osteoblast-like MC3T3-E1 cells [534]. 

7.4. Presence of Sphyngomyelinase in Osteoclasts and Possible Roles 

Sphingolipid metabolism is implicated in osteoclastogenesis. Acid SMase gene was identified as a 

gene induced by NFAT2 during the late stages of osteoclastogenesis [535]. SMase and C2 ceramide 

inhibited bone resorption by suppressing osteoclast activity through suppression of F-actin ring 

formation essential for ruffled border formation [536]. 

7.5. Genetic Models 

Bone deformities in mouse models lacking a functional Smpd3 gene underscore the importance of 

sphingolipid metabolism in skeletal tissues [522,537,538]. Stoffel et al. [538,539] characterized the 

skeletal phenotypes of the Smpd3−/− mice as chondrodysplasia and speculated a systemic role for 

neuronal SMPD3 in the regulation of the skeletal development.  

7.6. Effects of Sphyngomyelinase Metabolites at Matrix Vesicle Level 

SM is a structural component of MVs released by pre-hypertrophic/upper hypertrophic 

chondrocytes. SM is specifically enriched in MVs as compared to plasma membrane of growth plate 

chondrocytes from which they derive, Table 1 [53]. During cartilage MV-induced mineralization, there 

is a progressive disappearance of SM [53]. It was suggested that a neutral SMase-2 could be a possible 

candidate for the SM hydrolysis [53]. Indeed, SMPD3 has been identified in MVs isolated from 

osteoblast-like Saos-2 cells [540]. The hydrolytic activity of SMPD3 may serve as additional source of 

Pi, since SMase produces PChol which is hydrolysed by PHOSPHO1 present in MVs [47,523,541]. 

This gives rise to the possibility of a novel mechanism by which phosphate may be unleashed through 

the action of PHOSPHO1 and SMase such as SMPD3 to contribute to the changes in Pi concentration 

inside MV lumen. Exosome formation in multivesicular bodies is triggered by hydrolysis of 

sphingolipids and release of ceramide. This reaction is catalyzed by SMPD3 and an inhibitor of 

SMPD3, GW4869, efficiently abrogates exosome release in the oligodendroglial cell line OLI-neu. 
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8. Phospholipase D  

8.1. Groups, Subgroups and Specificity 

PLD belongs to a large superfamily of enzymes which hydrolyzes the phosphodiester bonds of 

membrane phospholipids, producing PA and polar head group (Figures 2,3B). A large subset of 

enzymes with PLD activity share a conserved HxKx4Dx6GSxN motif (HKD) [542] or a variation of 

thereof, which is responsible for catalytic activity [77]. Non-HKD enzymes—such as glycosyl-PI 

specific PLD (GPI-PLD), N-acyl PE-PLD, cytochrome P450 1A2 and 2E1 as well as ATX- have a 

PLD activity but have divergent structures and catalytic mechanisms [77] (Table 8). PA is also 

produced by a DAG kinase from DAG or by LPA acyltransferase from LPA. Alternatively, PA can be 

also be synthesized by sequential enzyme catalyzed alcylation from glycerol-2-phosphate [77].  

PA—due to its small negatively charged group—binds to protein and facilitates changes in lipid 

bilayer and therefore is implicated in vesicular trafficking, exocytosis and endocytosis [543,544]. PA is 

also precursor to other lipid signaling molecules such as DAG and LPA. DAG is a well known 

activator of PKC [545–548]. To date 10 isotypes of PKC have been identified, which are subgrouped 

in three categories: classical PKC (PKC-α, -β and -γ) require Ca2+, DAG and phospholipids; novel 

PKC (PKC-δ, -ε, -η and -θ) are Ca2+-independent but DAG and phospholipid dependent; and atypical 

PKC (PKC-ζ, -1/λ and -µ) are insensitive to Ca2+ and DAG [549]. DAG can be converted to AA, a 

precursor of eicosanoids [550]. In addition, PA—as a lipid messager, can interact with several 

signaling proteins including Raf-1 [551,552] and the mammalian target of rapamycin (m-TOR) [553]. 

PA is involved in signaling cascades affecting cell- growth, proliferation and survival [77]. PLD 

catalyzes the reaction of transphosphatidylation using water or primary alcohols (ethanol or 1-butanol) 

as nucleophiles to generate PA, phosphatidylethanol or phosphatidylbutanol , respectively [554]. PLD 

activity has been evidenced in various organisms, including plants, mammals, bacteria and yeast. In 

humans, two genes, pld1 and pld2, encoding the PLD enzyme were found. pld1 encodes the 124 kDa 

protein PLD1a (1074 amino acids), and an alternatively spliced form PLD1b (1036 amino acids), 

which lacks 38 amino acid residues, the most studied variants. There are two other PLD1 splice 

variants PLD1c and PLD1d. PLD2 encodes a 106 kDa protein with 50% homology to PLD1 [77,554]. 

PLD2 has three variants PLD2a, 2b and 2c (Table 8). The PLD2b variant lacks 11 amino acids in its  

C-terminus compared to PLD2a, but it is still functional [555]. Both isoforms are capable of 

hydrolyzing PC, PE, PS but are not capable of hydrolyzing PI, PG or cardiolipin [77]. In addition, PLD 

can hydrolyze LPC and LPS and produce LPA. Two other mammalian PLD enzymes have been 

identified with significant sequence homology to viral PLD: PLD3 or Hu-K4 [556] and an 

endonuclease-like mitochondrial PLD enzyme [557]. PLD3 activity has not been detected [77], while 

mitochondrial PLD hydrolyzes cardiolipin to generate PA [557]. It is usually stated that PLD1 and 

PLD2 are expressed in nearly all mammalian tissues [77,558] and that PLD plays an important role in 

modulating cellular function [559]. However, very little is known about the presence and function of 

PLD in osseous tissues. Although both isoforms catalyze the same reactions and utilize similar 

substrates to generate PA or transphophatidylation species, they have usually distinct subcellular 

localizations [77]. As reviewed [77], it is generally accepted that PLD1 is localized to perinuclear 

membranes, including early endosomes and Golgi, under basal conditions [560]. Upon stimulation, 
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PLD1 translocates to the plasma membranes or late endosomes [77]. PLD2 is usually located in the 

plasma membrane under basal conditions and translocates to the recycling vesicles [77]. PLD2 also 

binds to β-actin [561]. PLD1 [562] and PLD2 [563] are palmitoylated at two cystein residues and both 

contain PH and phox homology lipid binding domains. The palmitoylation and the two lipid binding 

domains contribute to the association of PLD with membrane lipids [554]. PLD activity is regulated by 

many factors, including phosphoinositides. PLD1 has a low basal activity and is extensively regulated 

by PKC and members of the ARF and Rho (RhoA, Rac1, Cdc42) families of small GTPases. PLD2 

has a higher basal activity than PLD1 but has been shown to respond to ARF and PKC [564]. It has 

been reported that PLD/PA can directly activate regulatory proteins playing key roles in cell 

physiology, such as PI-4-phosphate 5-kinase, PKC, PLCγ, Raf-1 kinase and MAP kinase [565]. These 

proteins are also considered as candidates mediating cellular signaling during osteoblast proliferation 

and differentiation [566] but also during osteoclast differentiation [567]. PLD and its enzymatic 

product, PA, regulate the actin cytoskeleton, vesicle trafficking for secretion and endocytosis, and 

receptor signaling [568]. Free choline is not thought to fulfil any intracellular signaling roles [568]. 

Although PLD is important for many physiological processes, its function in bone metabolism is 

unclear. Their presences in chondrocytes and in osteoblasts have been reported. 

Table 8. PLD family (according to [77]). 

Type Variants Origin 

PLDs with HKD motif   
PLD1 PLD1a, PLD1b, PLD1c, PLD1d Mammalian 
PLD2 PLD2a, PLD2b, PLD2c Mammalian 
PLD3  Mammalian 

Endonuclease-like mitochondrial PLD  Mammalian 
Non-HKD PLDs   

GPI-PLD  Mammalian 
N-acyl PE-PLD  Mammalian 

cytochrome P450 1A2  Mammalian 
cytochtome P450 2E1  Mammalian 

ATX  Mammalian 

8.2. Presence of PLD in Chondrocytes and Possible Roles 

A PKC-regulated PLD activity stimulated by phorbol 12-myristate 13-acetate (a known PLD 

stimulator) has been evidenced in chondrocytes. This activity could be inhibited with staurosporine—a 

PKC inhibitor [569]. Other experimental evidence of PLD presence in chondrocytes, which provided 

more insight into the possible roles of PLD in biomineralization, originated from the determination  

of growth plate chondrocyte regulation by vitamin D3 metabolites [570]. 1α,25-(OH)2D3 and  

24R,25-(OH)2D3 vitamine D3 metabolites are found in growth plate cartilage, indicating that they are 

implicated in regulation mechanisms of growth plate cartilage. Indeed, in the absence of vitamin D3, 

the growth plate fails to mineralize and the hypertrophic zone becomes enlarged [571,572]. Not only 

chondrocytes but osteoblasts produce 1α,25-(OH)2D3 and 24R,25-(OH)2D3 which may function as 

autocrine regulators of matrix events, including MV formation, enzyme activity and matrix protein 
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remodelling during longitudinal growth, calcification, and growth factor activation [573]. The growth 

plate is an ideal model since the lack of a vasculature ensures that only one cell type, the chondrocyte, 

is present in the growth plate. The cells can be subdivided into maturation zones (post-proliferative, 

pre-hypertrophic and upper hypertrophic zones so-called “growth zone”) and resting zones [387]. 

Using rat costochondral growth zone and resting zone chondrocytes cultures, it has been shown that 

resting zone chondrocytes respond preferentially to 24R,25-(OH)2D3 [574,575], while hypertrophic 

chondrocytes respond preferentially to 1α,25-(OH)2D3 [317,576]. Vitamin D3 metabolite, 1α,  

25-(OH2)D3, caused stimulation of PKC activity via a PI-PLC in growth zone chondrocytes [390,391]. 

In resting cells, 24R,25-(OH)2D3 caused also a rapid increase of PKC activity but the mechanism 

involved was independent of PI-PLC [577]. 24R,25-(OH)2D3 exerts its effect through a vitamin D 

receptor [578] resulting in activation of PLD2 (based on G-protein-independent property) [391,570] 

and production of LPA [262]. Both pathways produce DAG and cause PKC activation but their time 

course differs [579]. The mechanisms that render the 1α,25-(OH2)D3 pathway silent in resting zone 

chondrocytes and the 24R,25-(OH)2D3 pathway silent in growth zone chondrocytes is controlled by a 

PLA2 activity. Inhibition of PLA2 blocks the effect of 1α,25-(OH2)D3 on growth zone cells while 

activation of PLA2 with melitin mimics the effects of 1α, 25-(OH2)D3 on growth zone cells [580]. 

Inhibition of PLA2 activates PKC and mimics the effect of 24R,25-(OH)2D3 on resting zone cells 

whereas activation of PLA2 blocks the effect of 24R,25-(OH)2D3 on PKC [581]. RT-PCR and Northern 

blot analysis revealed the presence of PLD1a, PLD1b and PLD2 mRNAs in both resting zone and 

growth zone chondrocytes. PLD activity was detected in both resting zone and growth zone 

chondrocytes and could be inhibited by wortmannnin—a known PLD inhibitor [570]. PLD activity 

stimulated by 24R,25-(OH)2D3 in resting chondrocytes may have two functional roles. The first one is 

an indirect increase of DAG (which is not obtained via PLC) which activates PKC, increases MV 

production [582], maturation and cell survival [583]. So far it is not clear how DAG is produced in this 

pathway. The second hypothetical role of the PLD stimulation by 24R,25-(OH)2D3 in resting 

chondrocytes could be evoked is an increase of LPA that could then bind in an autocrine manner to the 

LPA1 or LPA3 receptor [262,397]. Although there is no dispute that resting zone chondrocytes contain 

intracellular and secrete extracellular LPA (among them, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphate), 

which can be activated through a membrane-associated vitamin D receptor [578], the possible pathway 

of LPA production from PA needs to be ascertained. So far, there is no experimental evidence that the 

production of PA catalyzed by PLD in the resting chondrocytes is the only source of secreted LPA. 

Indeed no information on the type of PLA2 implicated in the hydrolysis of PA forming LPA in resting 

zone chondrocytes is reported for this pathway. Alternate pathways for the 24R,25-(OH)2D3 induced 

LPA production need to be considered. The actin cytoskeleton plays an essential role in adhesion and 

PLD is physically and functionally linked to actin cytoskeleton [584]. It has been reported that the 

release of MVs from cultured epiphyseal chondrocytes was correlated with changes in cellular actin 

distribution [309]. PA—the product of hydrolysis of phospholipids by PLD is a fusogenic lipid [585], 

implicated in different steps of vesicular trafficking and intracellular membrane fusion events [586–588]. 

Laulagnier et al., 2004 [589] have observed the enrichment of active PLD2 on exosomes secreted by 

RBL-2H3 cells and shown that PLD2 was necessary to obtain maximal exosome secretion. Taken 

together the overall findings may suggest that PLD-dependent remodelling of actin cytoskeleton could 

participate in promoting MV formation from chondrocytes as well as from osteoblasts. 
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8.3. Presence of PLD in Osteoblasts and Possible Roles 

The earliest experimental evidence of PLD activity in osteoblasts and its regulation originated from 

osteoblast-like MC3T-E1 cells. Despite that the fact that a lot of information on the activation of PLD 

is available, little is known about the possible role of PLD in osteoblasts. In these cells, PLD can be 

activated by PKC or in a Ca2+ dependent manner. PLD is activated in a PKC dependent manner by the 

platelet-derived growth factor [590] and by thromboxane A2 [591], while PLD is activated Ca2+ 

dependently by PGD2 [424,592], PGE2 [593], extracellular ATP [559] and thrombin [594]. PLD is 

activated Ca2+ dependently by PGF2 [595] and independently of the activation of PKC [596], while 

retinoic acid suppresses the PLD activity activated by PGF2 [597]. Tyrosine kinase may regulate PLD 

activity in these cells [598,599]. Other factors such as ET-1 [600,601] and basic FGF [602] activate 

PLD activity in osteoblast-like MC3T-E1 cells independently of PKC. NaF activated PLD and induced 

Arf/Rhoa translocation in osteoblast-like Saos-2 cells [603]. More information on possible functional 

roles of PLD is gained from osteoblast-like UMR-106 cells. A phorbol 12-myristate 13-acetate 

treatment of osteoblast-like UMR-106 cells activated PLD and lead to the production of PGE2 but not 

PGF2α [604] confirming for the first time that in osteoblasts, PA can be converted in PGE2 via a PLD/ 

phosphatidate phosphohydrolase/DAG lipase/COX pathway [605–607]. Arachidonate metabolites 

such as PGE2 were found to play an important role in bone and cartilage metabolism [608]. These 

findings reveal a new aspect of PLD action [604] as a possible mediator in bone metabolism. Other 

factors also revealed the functional roles of PLD in osteoblasts. For example, PTH stimulates bone 

formation by preventing osteoblast apoptosis [609] and by activating diverse signaling pathways. PTH 

can stimulate PLD activity in UMR-106 cells [605–607]. Another example is provided by epidermal 

growth factor (EGF) which participates in the regulation of bone resorption in mice and mouse calvaria 

in vitro organ cultures [610]. EGF activates PLD signaling cascade in osteoblasts from  

Sprague-Dawley 21-day fetal rat calvaria, suggesting a general mechanism of PLD signaling pathway 

in osteoblasts [611]. MG63 osteoblast-like cells showed increased PLD activity, phosphatase alkaline 

activity and osteocalcin production on sandblasted titanium surface suggesting that PLD regulates 

osteoblast differentiation [612]. PLD1 activity may promote adhesion-dependent osteoblast 

differentiation response [612]. It was reported that both PLD1 and PLD2 can mediate the response of 

osteoblasts to surface microstructure although they did so in a different manner [613]. PLD, by virtue 

of producing PA, could turn up the mineralization process by affecting Pi concentration because 

human alkaline phosphatase isoenzymes are able to hydrolyze phosphatidates with various fatty acyl 

chains (e.g., phosphatidate and dioleoyl, distearoyl, dipalmitoyl, dimyristoyl and dilauroyl 

phosphatidates) [614]. On the other hand it has been shown [426] that long-term incubation with PA 

increased TNAP activity in osteoblast-like cell line, MOB 3-4. It has been proposed that LPA, acting 

via its LPA1 cell surface receptor, is able to induce cell membrane bleb [288], the process that may be 

related to MV formation, mineralization and apoptosis. In addition, it has been reported that LPA 

production in response to ATP is necessary to trigger osteogenesis [289]. LPA1 deficient mice showed 

craniofacial dysmorphism attributed to abnormal development of the facial bones [305]. Moreover, 

LPA1-deficient osteoblasts were characterized by lower differentiation potency in vitro [306]. 
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8.4. Presence of PLD in Osteoclasts and Possible Roles 

The role of PLD in osteoclasts is best exemplified under pathological conditions such as lung 

cancer metastasis and RA. Therefore, PLD signaling in osteoclasts is proposed as possible therapeutic 

strategies to prevent bone destruction. Bone is a frequent target of lung cancer metastasis that has a 

significant impact on morbidity [615,616]. Elevated levels of IL-8 and/or its receptors have been 

evidenced in cancer cells, endothelial cells, infiltrating neurotrophils and tumor-associated 

macrophages [617,618]. After activation of heterotrimeric small G proteins, IL-8 signaling promotes 

activation of the PI-3-kinase, PLC and PLD [619,620]. Exposure of human peripheral blood 

mononuclear cells (PBMC) to conditioned medium derived from lung cancer lines A549 and  

NCI-H460 as well as to sera from invasive lung cancer patients increased osteoclastogenesis in PBMC 

that was associated with augmented PLD activity. Depletion of IL-8 in CM derived from lung cancer 

lines A549 and NCI-H460 reversed the induction of osteoclastogenesis in PBMC [621]. Taken 

together these findings suggest that IL-8 secreted by human lung cancer cells—by increasing PLD 

activation—can promote osteoclast differentiation of PBMC and that PLD is involved in bone 

resorption by stimulating osteoclast differentiation [621]. IL-8 or IL-8-mediated PLD signaling may 

constitute an attractive therapeutic target for osteolytic bone metastases in lung cancer patients [621]. 

Under normal conditions, RANKL is produced mainly by osteoblasts and BM stromal cells. However, 

under pathological conditions such as RA, RANKL is also produced by T and B lymphocytes, 

macrophages/monocytes and synovial fibroblasts. RA synovial tissue seems be a suitable 

microenvironment for osteoclastogenesis since activated synovial cells and fibroblast express RANKL 

in situ [622,623]. The proinflammatory cytokine interleulin-15 (IL-15) can induce multinucleation of 

osteoclast-like cells in rat BM cultures [624]. IL-15 produced by RA T cells can induce 

osteoclastogenesis in cocultured autologous monocytes [625]. This suggests that IL-15 can mediate 

inflammatory bone destruction and stimulate osteoclastogenesis. IL-15 stimulation of human RA 

synovial fibroblasts induces simultaneous the expression of RANKL and PLD1 but not PLD2 [567]. 

Synovial fibroblasts treated with IL-15 induced osteoclastogenesis and PLD1 activation through the 

MAP kinases and NF-κB signaling pathways [567]. PLD1 may be an efficient therapeutic strategy for 

preventing bone destruction in RA [567]. 

8.5. Genetic Models  

A recent generation of transgenic mice that do not express PLD1 [626] or PLD2 [626,627] 

indicated that platelets lacking PLD1 activity displayed impaired integrin activation under high shear 

conditions [626]. However, the skeletal formation in transgenic mice was not evaluated. The effects of 

silencing PLD genes on bone formation and on mineralization process were not determined. 

8.6. Effects of PLD Metabolite at Matrix Vesicle Level 

By using a fluorescence coupled-enzyme assay a phosphorylation-dependent PLD activity in MVs 

has been shown [628]. It is not yet known which type of PLD (PLD1 or PLD2) is predominant in MVs 

or what function PL has in MV. Since MV main function is to initiate HA formation, the hydrolytic 

activity of PLD leading to the production of PA may contribute to the mineralization process. Indeed, 
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human alkaline phosphatase isoenzymes are able to hydrolyze phosphatidates with various fatty acyl 

chains (e.g., phosphatidate and dioleoyl, distearoyl, dipalmitoyl, dimyristoyl and dilauroyl 

phosphatidates) [614] forming Pi. Alternatively, PA can itself alter membrane curvature and 

contributes to the breaking of MV membrane. 

9. Non-HKD Enzymes—GPI-PLD 

9.1. Groups, Subgroups and Specificity 

The glycosyl-PI specific PLD (GPI-PLD) activity has been characterized and implicated in the 

regulation of anchoring, thereby influencing the dispersal of anchored proteins or their maintenance on 

the cell surface, and in this way, possibly, cell signaling [629]. The only enzyme known to date that 

has specificity for cleavage of the GPI anchor is GPI-PLD, which cleaves the GPI structure to generate 

PA and the soluble protein. Although only one GPI-PLD cDNA has been identified in mouse [630] 

and ox [631], two have been described in human [632]. GPI-PLD is likely to be accessible to all cells 

of the body due to its abundance in serum. GPI-PLD expression has been detected in several tissue or 

cell types such as BM, liver and islets [633–637]. A potential role of GPI-PLD during bone formation 

certainly depends on the presence of suitable substrates. One GPI anchored protein that has a defined 

role in bone mineralization is TNAP. It is possible that TNAP found in bone tissue represents a 

substrate for endogenous GPI-PLD, which converts it from a membrane-bound to a soluble  

form [634]. Other GPI-anchored molecules that may be involved in bone formation include a subset of 

proteoglycans, as well as glypicans, which are part of collagen framework of the highly specialized 

ECM of cartilaginous tissue [638]. 

9.2. Presence of GPI-PLD in Chondrocytes and Possible Roles 

Glypicans expressed by chondrocytes can act as cellular modulators of responses to bone 

morphogenetic factors [639] and defects in the glypican-3 gene cause an overgrowth and dysmorphic 

syndrome, the Simpson–Golabi–Behmel syndrome [640]. In addition, the GPI-anchored urokinase 

plasminogen activator receptor has been detected on the surface of chondrocytes [641], and it has been 

suggested that the plasminogen system may play a role in bone development by mediating effective 

degradation of the bone matrix. Deficiencies in this system can lead to bone overgrowth and 

malformations [642]. In addition, an endogenous GPI-PLD releases basic FGF-heparan sulfate 

proteoglycan complexes from human BM stromal cells. This mechanism of GP1 anchor cleavage 

could be relevant for mobilizing biologically active basic FGF in BM [633]. Gregory et al. [634] 

describe the first evidence of GPI-PLD expression during mouse embryonic ossification. GPI-PLD 

expression was detected predominantly at sites of skeletal development, increasing during the course 

of gestation. GPI-PLD was observed during both intramembraneous and endochondral ossification and 

localized predominantly to the ECM of chondrocytes and to primary trabeculae of the skeleton. In 

addition, the mouse chondrocyte cell line ATDC5 expressed GPI-PLD after experimental induction  

of differentiation. 
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9.3. Presence of GPI-PLD in Osteoblasts and Possible Roles 

Decreasing GPI-anchored proteins by overexpressing GPI-PLD in MC3T3-E1 osteoblastic cells 

inhibits fluid flow induced Ca2+
i mobilization and ERK1/2 phosphorylation, suggesting that  

GPI-anchored proteins in cell membranes may serve as transducer to transmit fluid shear stress to 

biochemical responses [643]. 

10. Non-HKD Enzymes—Autotaxin 

10.1. Groups, Subgroups and Specificity 

Autotaxin (ATX, NPP2) is an ecto-nucleotide pyrophosphatase/phosphodiesterase which 

hydrolyzes phosphodiester bonds of various nucleotides and nucleotide derivatives [644–647]. ATX 

hydrolyzes various LPL including LPC [277], LPE [266] and LPS [266] leading to the formation of 

LPA. ATX is encoded by a single gene on human chromosome 8 whose transcription, is regulated by 

diverse transcription factors, results in three alternatively spliced isoforms (α, β and γ) [648]. The 

expression of ATX is ubiquitous. Relatively high levels of ATX are expressed in brain, kidney and 

lymphoid organs [648]. As a lipid mediator LPA participates in many physiological processes.  

It promotes platelet aggregation and thrombosis, smooth muscle contraction, anti-apoptosis  

wound-healing, angiogenesis, development of the nervous systems through the cell surface G  

protein-coupled receptor pathways [268,646,647,649]. Thus LPLs and LPA may have a significant 

regulatory impact on the function of cells which are primarily involved in bone formation. On the other 

hand, LPLs are precursors of S1P which is a potential target for RA therapies [650]. Although the 

major source of S1P originates from the phosphorylation of sphingosine by sphingosine kinase, a part 

of S1P is hydrolyzed from sphingophosphorylcholine by ATX [651] or by S1P phosphatase and S1P 

lyase [650]. It has been suggested that ATX may be a potential target for the treatment of patients with 

RA [652]. In a CIA model, treatment with type-1 SphK siRNA suppressed articular inflammation and 

joint destruction and down regulated S1P, IL-6, TNF-α, and IFN-γ levels [653]. S1P level in synovial 

fluid from RA patients is higher than that from OA patients. S1P level in serum is about 2.5 times 

lower than that in RA synovial fluid [654]. S1P in serum is around 600–1000 nM [655]. S1P functions 

frequently in inflammatory processes, but is also implicated in autoimmune diseases as well as in 

cellular survival, proliferation and transformation, prevention of apoptosis and stimulation of 

angiogenesis [650]. S1P exerts its action via two distinct pathways: 1) intracellularly as a second 

messager; 2) extracellularly via activating specific GPCR [650]. So far, intracellular targets of S1P 

have not been found although they are implicated in the regulation of cellular proliferation, 

suppression of apoptosis and calcium homeostasis [650]. Five GPCR have been found on the cell 

surface: S1P(1–5) [656]. The S1P1 was markedly expressed in synovial lining cells, vascular endothelial 

cells and inflammatory mononuclear cells from RA synovial tissues when compared to those from OA 

synovial tissues, as determined by immunostaining [654]. S1P/S1P1 signaling enhanced synovial cell 

proliferation and COX-2 induced PGE2 production [654] and may enhance osteoclastogenesis via 

RANKL expression in RA synoviocytes and CD4+ cells [657]. Since the inflammation in RA is related 

to COX-2 induced PGE2 production by synoviocytes and since S1P/S1P1 signaling may induce 
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synovial hyperplasia and inflammation in RA, S1P/S1P1 signaling could be a therapeutic target  

in RA [657]. 

10.2. Presence of ATX in Chondrocytes and Possible Roles 

The presence of ATX in chondrocytes has been ascertained for the first time during the 

differentiation of cells. In C3H10T1/2—a multipotential cell line with the ability to differentiate into 

the major mesenchymal cell types such as myoblasts, adipocytes, osteoblasts, or chondrocytes the atx 

gene was expressed during BMP2-mediated osteo-/chondrogenic differentiation in vitro [658]. Atx 

expression in chondrocytes has been ascertained during murine embryogenesis [659]. The involvement 

of an α5β1 integrin in either the cartilage differentiation program or the joint formation program has 

been checked by blocking α5β1 integrin. Blocking α5β1 integrin resulted in the joint formation as 

indicated by the induction of an ectopic joint that expressed ATX as well as Wnt14, the earliest joint 

inducer and other specific markers of joints such as Gdf5, chordin and CD44 [660]. 

10.3. Presence of ATX in Osteoblasts and Possible Roles 

So far the presence of ATX in osteoblasts has not been documented by immunoblot analysis. 

However, atx expression in preosteoblasts and osteoblasts has been ascertained during murine 

embryogenesis [659]. Possible roles of ATX have been proposed from the findings based on the 

involvement of LPA during bone metastases. Bone metastases are frequent complications in patients 

suffering from different types of cancers such as breast, kidney, lung, prostate and tyroid cancers [661]. 

Bone metastases have two distinct features, excessive bone loss involving osteoclasts and excess bone 

formation involving osteoblasts. Both types of bone lesions can occur in patients with metastatic 

prostate cancers [662]. Most of the information on the role of ATX during bone metastases comes 

from the synthesis of LPA and expression of its receptors LPA1, LPA2, LPA3 and LPA4 [662]. LPA 

can be produced as a result of tumor-cell-induced platelet aggregation, by ATX-dependent or 

independent expression or following by P2X7 activation in osteoblasts. [662]. Then LPA can act 

directly in bone cells [299,303,663]. LPA can stimulate osteoblast proliferation and differentiation as 

well as can stimulate platelet aggregation which may initiate an amplification loop. LPA can stimulate 

osteocyte dentrite outgrow that thus could contribute to inhibition of bone formation [662]. Although it 

has been reported that atx expression is elevated in cancers compared to normal tissues [277], atx 

expression in primary tumors was not correlated with the occurrence of bone-metastases over a  

five-year period in a cohort of 167 breast cancer patients [664]. It was proposed that stratification of 

patients following the breast cancer intrinsic subtype’s classification should be carried to better 

evaluate the relationship between ATX and bone metastases [662]. Altough the atx expression levels in 

tumor cells have been reported [277,664], the expression changes of atx in osteoblasts during 

osteosclerosis were never determined. Silencing atx expression in 4T1 cells impaired their capacity to 

form osteolytic bone metastases in immunocompetent Balb/C mice [664] suggesting that LPA—the 

secreted product of 4T1-cell ATX activity—may act on osteoblasts. Taken together the findings tend 

to suggest that LPA production is a better marker for bone-metastases than the atx expression level. In 

this respect, LPA prevents PI3K-dependent apoptosis of osteoblasts [665], promotes cytoskeletal 

rearrangement and cell migration [299], induces differentiation of osteoblastic MG63 cells 
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synergically with 1α,25-(OH)2D3 [295] and the osteoblastogenesis of BM stem cells [666]. Based on 

Lpa1-4-deficient mice, it was concluded that LPA may induce osteoblast differentiation through LPA1 

and LPA4 receptors [304]. 

10.4. Presence of ATX in Osteoclasts and Possible Roles 

Incubation of BM cells with recombinant ATX in increased significantly M-CSF/RANK-L-induced 

osteoclast differentiation, suggesting that LPA generated by ATX in the presence of serum might 

directly control osteoclast differentiation [664]. LPA can act directly on osteoclast precursors to induce 

their differentiation and/or on mature osteoclasts to promote survival and bone resorption activity [662]. 

10.5. Presence of ATX in Smooth Muscle Cells and Possible Roles 

Atx expression in smooth muscle cells has been ascertained during murine embryogenesis [659]. A 

time-dependent increase of around 2.5 fold of ATX in the vessels has been determined by 

immunoblotting after ligation injury of the carotid artery in mice. Mice deficient in LPA1 and LPA2, 

were protected from intimal hyperplasia in response to vascular injury. This indicates that LPA may 

regulate vascular development and function [667]. 

11. Concluding Remarks 

Critical analysis of available reports revealed that phospholipases are implicated in the 

mineralization process at various levels of organization of the living matter. At the molecular level, 

phospholipases can provide precursors of Pi such as phosphatidates, PChols and PEAs, that can be 

further hydrolysed by other enzymes in mineralizing tissues and cells. At the membrane level, the 

degradation of phospholipids by phospholipases can affect the structural integrity and curvature of the 

plasma membrane from which MVs are released as well as membranes of mature MVs in ECM, 

favouring deposition of calcium phosphate complex formed inside MV into ECM. Last but not least, at 

cellular level, phospholipases, by producing signal molecules, may modulate cellular responses of 

mineralization-competent cells to the signals for mineralization. Gaining further knowledge about 

involvement of phospholipases in the mineralization process at distinct levels can contribute to our 

better understanding of the molecular mechanisms of lipid degradation during physiological  

and pathological mineralization, and can also help to create new targets for the cure of  

mineralization-related human diseases. 
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