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Aggregation of α-synuclein (αS) leads to the hallmark
neuropathology of Parkinson’s disease (PD) and related synu-
cleinopathies. αS has been described to exist in both cytosolic
and membrane-associated forms, the relative abundance of
which has remained unsettled. To study αS under the most
relevant conditions by a quantitative method, we cultured and
matured rodent primary cortical neurons for >17 days and
determined αS cytosol:membrane distribution via
centrifugation-free sequential extractions based on the weak
ionic detergent digitonin. We noticed that at lower tempera-
tures (4 �C or room temperature), αS was largely membrane-
associated. At 37 �C, however, αS solubility was markedly
increased. In contrast, the extraction of control proteins
(GAPDH, cytosolic; calnexin, membrane) was not affected by
temperature. When we compared the relative distribution of
the synuclein homologs αS and β-synuclein (βS) under various
conditions that differed in temperature and digitonin concen-
tration (200–1200 μg/ml), we consistently found αS to be more
membrane-associated than βS. Both proteins, however,
exhibited temperature-dependent membrane binding. Under
the most relevant conditions (37 �C and 800 μg/ml digitonin,
i.e., the lowest digitonin concentration that extracted cytosolic
GAPDH to near completion), cytosolic distribution was
49.8% ± 9.0% for αS and 63.6% ± 6.6% for βS. PD-linked αS
A30P was found to be largely cytosolic, confirming previous
studies that had used different methods. Our work highlights
the dynamic nature of cellular synuclein behavior and has
important implications for protein-biochemical and cell-
biological studies of αS proteostasis, such as testing the ef-
fects of genetic and pharmacological manipulations.

αS has been implicated as a key pathogenic protein in both
sporadic and familial PD (and related synucleinopathies) since
its discovery as the first PD-associated gene product (1) and
the major constituent of Lewy bodies (2), the hallmark cyto-
pathology of synucleinopathies. Early characterizations of pu-
rified recombinant αS identified the protein to be soluble (3, 4),
consistent with its immunogold-electron microscopical
detection throughout cytoplasmic matrices in axon terminals
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(5). Subsequently, however, biophysical and biochemical
studies concluded that αS can also bind to small unilamellar
and multilamellar vesicles and detergent micelles (6–8).
Chemically cross-linked αS in neuroblastoma cell homoge-
nates was also found in vesicle fractions by flotation centri-
fugation (9). Fractionated brain extracts, however, only
revealed a weak association of αS with synaptic vesicles (10,
11). Using a combination of fluorescence recovery after pho-
tobleaching and immunostaining approaches, Fortin et al. (12)
reported that αS exists in neurons in both cytosolic and
membrane-associated forms. These studies are consistent with
a model of αS as an aqueously soluble protein that can tran-
siently interact with vesicular membranes in a context-
dependent manner. The cellular equilibrium between soluble
and membrane-associated αS is expected to be finely balanced
and tightly regulated. Both familial PD αS missense mutations
and engineered variants were shown to shift the balance,
eventually leading to misfolding, insolubility, inclusion for-
mation, and cell toxicity (13–16).

Besides αS, the human synuclein protein family consists of
β-synuclein (βS) and γ-synuclein (γS). No studies have directly
associated βS or γS with a synucleinopathy (17–19). However,
occasional reports have identified βS and/or γS in synuclein-
opathy lesions, albeit not classical Lewy bodies (20–22). γS,
unlike αS and βS (23), is not prevalent in the central nervous
system (24, 25). Compared with αS, βS and γS were found to
be less membrane-associated in a study that associated
membrane binding rather than aggregation propensity with
synuclein toxicity (26). The exact cytosol:membrane distribu-
tion of the synucleins in human neurons, however, remains
unsettled, both in absolute and in relative terms.

We have now developed a simple and reproducible method
employing digitonin-based sequential extraction of first cyto-
solic and then membrane-associated proteins, which readily
enables us to characterize the cytosol:membrane distribution
of synuclein proteins under basal and experimental conditions.
We reasoned that centrifugal force and detachment of neurons
from culture dishes may lead to rupture of membrane and may
eventually influence our assessment. Thus, we adapted an on-
plate, centrifugation-free procedure. Using this method and
employing glyceraldehyde 3-phosphate dehydrogenase
(GAPDH; largely cytosolic) and calnexin (transmembrane) as
controls, we show that endogenous αS and βS in primary
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cortical neurons indeed seem to exist in an equilibrium of
soluble and membrane-associated forms. αS was found to be
more strongly membrane-associated than βS, while both syn-
ucleins exhibit a pronounced temperature dependence of their
membrane interactions: body temperature promotes cytosolic
localization up to 50% (αS) or >60% (βS), lower temperatures
are associated with predominant membrane association of the
synuclein proteins. Human wild-type (wt) αS expressed in rat
neurons behaved similarly to the endogenous protein while
familial-PD (fPD)-linked αS A30P was found to be largely
cytosolic, in line with previous studies that had used orthog-
onal methods (27).

Results

Digitonin-based, centrifugation-free sequential extraction to
achieve minimally disruptive cytosol:membrane protein
separation

αS has been demonstrated to exhibit several aspects of dy-
namic behavior in its natural cellular environment, as reviewed
recently by Yeboah et al. (28). In the present work, we sought
to study the extent of αS-membrane interaction in a minimally
disruptive way. As a model system we chose primary cortical
rat neurons because they i) are rich in αS, ii) are easy to cul-
ture, iii) are readily available in large amounts for extensive
optimization experiments, and iv) possess mature synapses
after �14 days of culture (29). To assess αS cytosol:membrane
distribution in situ, i.e., without lifting cells off the culture
dishes, we turned to digitonin-based sequential extraction of
cellular proteins. Previous work from the Edwards lab had
Figure 1. Temperature-dependent digitonin-based sequential extraction
brane) were sequentially extracted, analyzed by western blotting, and cytoso
process were: A, 4 �C; B, RT; C, 37 �C. Digitonin concentrations of the first extrac
step (membrane) 0.5% Triton-X-100 was used. D–F, αS and βS were analyzed
cations shown in A–F (C, cytosol and M, membrane). N = 3 independent experim
***p < 0.001 and ****p < 0.0001.
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taken advantage of the same principle: to study only
membrane-associated αS by fluorescence microscopy, the au-
thors removed cytosolic αS by permeabilizing αS-expressing
HeLa cells with digitonin before fixation (11). It is widely
accepted that digitonin at low concentrations selectively per-
meabilizes the plasma membrane, thereby releasing soluble,
cytoplasmic proteins (30).

Sequential extraction of control proteins

We decided to pursue a two-step biochemical sequential
extraction strategy. In the first step, we extracted the soluble
proteins (“cytosol”) by gently permeabilizing the plasma
membrane, but not internal membranes such as endoplasmic
reticulum or vesicle membranes. To achieve optimal strin-
gency, we employed a wide range of digitonin concentrations
(200–1200 μg/ml) and tested them under three different
temperatures: 4 �C, room temperature (RT), and 37 �C (Fig. 1).
The resulting cytosolic lysates were collected. In the second
step, we incubated the cells in a buffer containing 0.5% of the
detergent Triton-X-100, thereby largely extracting membrane
proteins (“membrane”). The resulting membrane lysates were
collected. Next, cytosolic and membrane lysates were analyzed
by western blotting. To confirm the identity of the fractions,
we employed the transmembrane control protein calnexin as
well as GAPDH, which is widely used as a cytosolic marker
(e.g., Fig. 2A in ref. (31)). Under all conditions tested, calnexin
was detected exclusively in the membrane fractions, as ex-
pected (Fig. 1, A–C and bottom panels in Fig. 1, G–I). In
contrast, GAPDH was not solely detected in cytosolic
of αS and βS. A–C, control proteins GAPDH (cytosol) and calnexin (mem-
l:membrane ratios were calcuated. The temperatures during the extraction
tion step (cytosol) were as indicated in the legend; in the second extraction
analogous to A–C. G–I, representative western blot images to the quantifi-
ents, performed on different days in n = 4 independent wells (total n = 12).



Figure 2. The human αS A30P mutant is predominantly cytosolic. Cytosolic and membrane fractions were sequentially extracted from cortical neurons
expressing human wt or A30P αS at 37 �C (A). The solubility of control proteins GAPDH and calnexin is depicted in panel B. Representative western blot
images to the quantification are shown in panel C. Digitonin concentration, 800 or 900 μg/ml. (C, cytosol and M, membrane). N = 3 independent
experiments, performed on different days in n = 12 + 4 + 4 independent wells (total n = 20). ****p < 0.0001. ns, not significant.
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fractions: at lower digitonin concentrations (200, 400, 600 μg/
ml), relevant amounts were found in the membrane fraction
(Fig. 1, A–C, and third panel from the top in Fig. 1, G–I). This
either indicated incomplete extraction or could be explained
by reports on GAPDH functions beyond its role as a cytosolic
glycolytic enzyme (reviewed in ref. (32)). However, at 800 μg/
ml and above, GAPDH was extracted to near completion, and
the remaining contaminations in the membrane fraction
appeared negligible for our purpose (it should be noted that in
the first extraction step, cytosolic proteins will be highly
enriched in the large extracellular volume, but a portion will
also remain present in the small intracellular volume). Another
glycolytic enzyme, phosphoglycerate kinase 1 behaved simi-
larly to GAPDH (not shown).

αS membrane association is temperature-dependent

Importantly, the calnexin and GAPDH extraction patterns
did not obviously differ between different temperatures (Fig. 1,
A–C). For αS, in contrast, we observed pronounced
temperature-dependent effects: at 4 �C and RT, αS was largely
detected in membrane fractions; even at high digitonin con-
centrations (800–1200 μg/ml), less than 20% of αS was cyto-
solic (Fig. 1, D and E and first panels from the top in Fig. 1, G
and H). At 37 �C, however, a shift from membrane to cytosolic
fractions was observed, and αS solubility increased to up to
50% (Fig. 1F and first panel from the top in Fig. 1I).

βS membrane association is temperature-dependent as well
and reduced relative to αS

We next compared the relative solubility of the two synu-
clein homologs that are prevalent in brain neurons, αS and βS
(the third homolog, γS, exhibits a different tissue distribution).
Unlike αS, βS has not been directly implicated in the patho-
genesis of neurologic disorders. Similar to the extraction of αS,
we found βS cytosol:membrane distribution to be temperature-
dependent: at 4 �C, 20 to 40% of βS was extracted at low
(200–600 μg/ml) and 50 to 60% at high (800–1200 μg/ml)
digitonin concentrations (Fig. 1D and second panel from top in
Fig. 1G). These numbers were only slightly higher at RT (Fig. 1,
E and H). At 37 �C, however, we extracted 30 to 60% of βS at
low (200–600 μg/ml) and 60 to 70% at high (800–1200 μg/ml)
digitonin concentrations (Fig. 1, F and I). Thus, βS solubility
was significantly higher than αS solubility under all conditions
tested, as quantified in Figure 1, D–F.

fPD-linked αS A30P is largely cytosolic

Employing what we considered the most relevant conditions
(37 �C and 800–900 μg/ml digitonin, i.e., the lowest digitonin
concentrations that extracted GAPDH to near completion), we
then tested the relative cytosol:membrane distribution of hu-
man αS wt and fPD-linked αS A30P. Transduced cultured rat
cortical neurons were subjected to sequential extraction and
immunoblotting using a human-specific antibody. Consistent
with published reports that had used orthogonal methods (27),
human αS A30P was observed to be largely cytosolic (cytosolic
distribution: 90.4% ± 1.5%), exhibiting a distribution pattern
similar to GAPDH (Fig. 2, A–C). Human wt αS, in contrast,
partitioned 49.4% ± 5.2 between cytosolic and membrane
fractions (Fig. 2, A and C), similar to endogenous rat αS
(Fig. 1).

Discussion

Stringent sequential extraction of synuclein proteins in
cultured neurons

Here, we systematically developed a stringent in situ
sequential extraction method to study the cytosol:membrane
distribution of synuclein proteins in primary rat cortical neu-
rons. We employed a two-step approach: in a first step, we
selectively permeabilized the plasma membrane using the mild
detergent digitonin at various concentrations (200–1200 μg/
ml) to extract cytosolic proteins. In a second step, we solubi-
lized the more strongly membrane-associated proteins using
the detergent Triton-X-100 at 0.5%. Cytosol (GAPDH) and
membrane control proteins (calnexin) confirmed the validity
of our approach. The results that we obtained for αS and βS
are consistent with the notion that those proteins transiently/
imperfectly interact with (vesicular) membranes (33).

A surprising temperature dependence

When establishing our method, we found that αS and βS
cytosol:membrane distribution strongly depends on tempera-
ture. At 4 �C and even at RT, αS, but also the homolog βS, was
J. Biol. Chem. (2021) 296 100271 3
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largely membrane-associated. Only at body temperature (37
�C) 50% or more of the synuclein proteins were recovered in
the cytosolic fraction that was characterized by the presence of
the soluble enzyme GAPDH and absence of the trans-
membrane protein calnexin. This observation once again
highlighted the dynamic nature of cellular synuclein proteo-
stasis: a temperature difference of only �12 �C (RT versus 37
�C) appears to have major consequences on cellular αS
localization (and, related to that, folding). The implications on
the design of biochemical and cell-biological studies of synu-
clein proteins are obvious: synuclein homeostasis is best
studied at 37 �C while lower temperatures should be avoided,
even for short periods of time. This means that standard
protocols may have to be modified in the case of synuclein. For
example, it is common to perform cell lysis on ice, which may
lead to artifacts when αS is studied.

Absolute and relative cytosol:membrane distribution of αS
and βS in neurons

Our data do not permit a definite statement on the exact
cytosol:membrane distribution of αS and βS in cultured neu-
rons. There has been some debate about the lifetime of the
membrane-bound αS state, and the reported numbers range
from millisecond for purified recombinant αS in reductionist
systems (34) to seconds or even minutes in cultured cells or
animals (35–37). All these values, however, are below the
duration of our first extraction step that recovers cytosol-
enriched proteins within the timeframe of 15 min. αS parti-
tioning is not expected to be “static” during the extraction, and
the fact that the plasma membrane becomes “leaky” and
additional, extracellular volume becomes available for soluble
proteins may increase the observed fraction in the soluble phase
(see “Nernst’s distribution law”). Consequently, our approach is
more likely to detect false-positive cytosolic αS than false-
positive membrane-associated αS. Out of the conditions that
we have tested, it appears plausible to identify 37 �C and
800 μg/ml digitonin (the lowest digitonin concentration that
extracted GAPDH to near completion) as most relevant and
most likely to be close to physiology. Under these conditions,
cytosolic distribution was 49.8% ± 9.0% for αS and 63.6% ± 6.6%
for βS. These values are largely in agreement with the literature
on synuclein as a transiently membrane-associated protein, as
reviewed by Yeboah et al. (28). The relative distribution of αS
and βS, i.e., increased solubility of βS relative to αS, was a highly
consistent finding throughout all conditions tested and, thus, is
very likely to reflect the underlying biology. Along those lines,
we characterized human αS A30P in Figure 2 as an abundantly
cytosolic protein (cytosolic distribution: 90.4% ± 1.5%), while
human αS wt behaved like a protein that populates both
cytosolic and membrane-associated states to a largely similar
extent (cytosolic distribution: 49.4% ± 5.2), similar to the
endogenous rat protein (Fig. 1).

Pathological implications of αS and βS solubility

The enhanced membrane association of αS relative to βS
may explain certain aspects of αS pathogenicity. Indeed, Volles
4 J. Biol. Chem. (2021) 296 100271
et al. (38) have reported, based on studying purified αS and αS-
expressing yeast, that αS toxicity is directly linked to its
membrane affinity, instead of its aggregation propensity. In the
same study, the authors demonstrated that βS is more soluble
and less toxic than αS (38). Our work, performed in cultured
rodent neurons in situ, is consistent with this notion, sup-
porting hypotheses of increased αS membrane association
being a driver of its relative toxicity (38, 39). Increased
membrane interaction of the PD-linked αS relative to the non-
disease-relevant βS adds validity to therapeutic approaches
aimed at reducing αS membrane interaction, such as SCD
inhibition (40–42). It should not be ignored, however, that not
all of the PD-linked αS missense mutations increase mem-
brane interaction; at least A30P has been reported to reduce it
(27), and our own data confirm this notion (Fig. 2). A simple
model in which αS membrane interaction is either entirely
“good” or entirely “bad” would not be consistent with the
literature that has highlighted both excess membrane inter-
action (15, 39) and excess solubility (43) as potential starting
points of αS-related pathology. Our new, stringent approach to
biochemically testing synuclein membrane interactions in
cultured neurons with minimal perturbation of the system
promises to shed light on the role of transient membrane
binding on the pathobiology of αS point mutations as well as
the effects of genetic and environmental factors on αS ho-
meostasis. Membrane interactions of αS are expected to be
upstream of its proteinaceous aggregation. Thus, our work has
important implications for assessing the ability of novel ther-
apeutic strategies to maintain or reestablish normal αS cyto-
sol:membrane interactions as a key aspect of αS proteostasis.

Experimental procedures

Plasmids

αS-wild-type or A30P lentiviral plasmids were generated as
follows: first, the EF1α promoter sequence in pLVX-EF1α-
IRES-mCherry (from TaKaRa) was replaced by human syn-
apsin promoter, and then mCherry coding sequence was
removed. The resultant parental plasmid (pLVX-SPΔ) was
used to clone synthetic cDNA sequence coding for human αS
wild-type or A30P variant into SpeI/NotI restriction sites. The
expression of transgene is driven by human synapsin
promoter.

Lentivirus production

293-T cells were transfected with αS wt or A30P plasmids
along with pMD2.G and psPAX2 (packaging plasmids:
Addgene #12259 and #12260, respectively). Culture superna-
tant containing viral particles was further purified/concen-
trated by ultracentrifugation.

Antibodies

As primary antibodies we used mAb Syn1 to detect rat
endogenous αS (Becton-Dickinson), mAb MJFR1 to detect
only human αS (Abcam), mAb EP1537Y to βS (Abcam), mAb
6C5 to GAPDH (Santa Cruz), and pAb C4731 to Calnexin
(Sigma). Secondary antibodies were anti-rabbit Fluorescent
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LiCor IRDye 800CW and anti-mouse Fluorescent LiCor IRDye
700DX.

Primary neuron cultures

Primary neurons were cultured from E18 Sprague-Dawley
rats (Charles River, Wilmington, MA). Rats were euthanized
with CO2 followed by bilateral thoracotomy. Embryonic
cortices were isolated and dissociated with trypsin/EDTA and
trituration. 250,000 cells were plated on poly-D-lysine coated
24-well plates and cultured in neurobasal medium supple-
mented with B-27, 2 mM GlutaMAX. Half of the medium was
replaced every 4 days. For lentiviral transduction, DIV9 neu-
rons were transduced with αS wt or A30P virus at MOI 5.
Institutional animal work protocols were followed.

Sequential protein extraction

DIV18–DIV21 neurons were used throughout. The on-plate
sequential extraction of cytosolic and membrane-bound pro-
teins was carried out as follows in 24-well plates: 1) neurons
were rinsed once with HBSS. 2) In total, 125 μl of buffer
“cytosol” (10 mM PIPES pH 7.4, 100 mM NaCl, 300 mM su-
crose, 5 mM MgCl2, 5 mM EGTA) supplemented with the
respective concentration of digitonin (D141, Sigma) and pro-
tease inhibitors was added to the wells. Note: 50 mg/ml digi-
tonin stock was prepared freshly. 3) The plates were incubated
at the respective temperature undisturbed for 15 min. The
resultant cytosolic protein fraction was carefully collected into
a 1.5 ml tube. 4) Subsequently, 125 μl buffer “membrane”
(10 mM PIPES pH 7.4, 100 mM NaCl, 300 mM sucrose, 5 mM
MgCl2, 5 mM EGTA, 0.5% Triton-X-100 and protease in-
hibitors) was added to the wells and incubated for 15 min at
the respective temperature. 5) The resultant membrane frac-
tion was carefully collected into a 1.5 ml tube.

Gel electrophoresis and immunoblotting

Samples were prepared for electrophoresis by dilution with
the respective lysis buffer, addition of 4X NuPAGE LDS
sample buffer supplemented with 1.25% β-mercaptoethanol,
and boiling for 5 min. Samples were electrophoresed on
NuPAGE 4 to 12% Bis-Tris gels with NuPAGE MES-SDS
running buffer and SeeBlue Plus2 molecular weight marker
(all by Invitrogen) at 140 V and transferred in the iBlot 2
system (Invitrogen) to nitrocellulose membranes (iBlot 2 NC
regular stacks; IB23001). Membranes were fixed for 10 min in
0.4% paraformaldehyde (in PBS). Nitrocellulose membranes
were blocked in blocking buffer (5% milk in TBST) for 1 h and
incubated in primary antibody in blocking buffer overnight at
4 �C. Membranes were washed 5 × 5 min in TBST. Secondary
antibodies were prepared in the blocking buffer and incubated
for 1 h at RT. Membranes were washed 5 × 5 min in TBST and
scanned (Odyssey CLx, Li-Cor).

Statistical analyses

We performed paired t-test or two-way ANOVA and Sidak’s
multiple comparisons test using GraphPad Prism Version 8
following the program’s guidelines. Normal distribution and
equal variance were observed for all values. Graphs
include ± SD. Criteria for significance were: ***p < 0.001 and
****p < 0.0001. Sufficient experiments and replicates were
analyzed to achieve statistical significance, and these judg-
ments were based on earlier, similar work.

Data availability

All data will be made available upon request. Please contact
N.R. (nramalingam@bwh.harvard.edu) or U.D. (udettmer@
bwh.harvard.edu).
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