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Clear cell renal cell carcinoma (ccRCC) was the most aggressive histological type of renal cell carcinoma (RCC) and accounted for
70–80% of cases of all RCC. The aim of this study was to identify the potential biomarker in ccRCC and explore their underlying
mechanisms. Four profile datasets were downloaded from the GEO database to identify DEGs. GO and KEGG analysis of DEGs
were performed by DAVID. A protein–protein interaction (PPI) network was constructed to predict hub genes. The hub gene
expression within ccRCC across multiple datasets and the overall survival analysis were investigated utilizing the Oncomine
Platform andUALCANdataset, separately. Ameta-analysis was performed to explore the relationship between the hub genes: EGFR
and ccRCC. 127 DEGs (55 upregulated genes and 72 downregulated genes) were identified from four profile datasets. Integrating
the result from PPI network, Oncomine Platform, and survival analysis, EGFR, FLT1, and EDN1 were screened as key factors in
the prognosis of ccRCC. GO and KEGG analysis revealed that 127 DEGs were mainly enriched in 21 terms and 4 pathways. The
meta-analysis showed that there was a significant difference of EGFR expression between ccRCC tissues and normal tissues, and
the expression of EGFR in patients with metastasis was higher.This study identified 3 importance genes (EGFR, FLT1, and EDN1)
in ccRCC, and EGFR may be a potential prognostic biomarker and novel therapeutic target for ccRCC, especially patients with
metastasis.

1. Introduction

Kidney cancer, one of the most common malignant tumor
globally, was estimated where nearly 64,000 new cases in
the USA were diagnosed in 2017 [1] and rose by 2–4% each
year steadily [2]. Clear cell renal cell carcinoma (ccRCC) was
the most aggressive histological type of renal cell carcinoma
(RCC) and accounted for 70–80% of cases of all RCC [3, 4].
Although the 5-year survival of ccRCCpatientswith early and
localized disease wasmore than 90%, for patients with distant
metastasis, the 5-year survival drops to 12% [5], and almost
20-40%patientswould experience distantmetastasis [6]. Due
to resistance to standard chemotherapy and radiotherapy,
ccRCC patients with metastatic had worse prognosis [6].
Hence, it is essential to identify the underlying molecular
mechanisms of ccRCC, which may be conducive to the risk
assessment of disease and guide clinical decision-making

and develop novel diagnostic and therapeutic strategies for
ccRCC.

The molecular pathogenesis of carcinoma was complex,
which was associated with inactivation and mutation of
tumor suppressor genes and activation of oncogene [7].
Recently, bioinformatics analysis based on gene expression
microarrays has emerged as an efficacious novel approach to
identify new genes and comprehend the underlying molec-
ular mechanisms of cancer [8]. For instance, Wang et al. [9]
have reported that RFC5, significantly overexpressed in lung
cancer, was closely related to the prognosis of lung cancer
andmight be a potential biomarker and therapeutic target for
lung cancer. In addition, Li et al. [10] have identified 451DEGs
between triple negative breast cancer (TNBC) and normal
breast tissues and ten hub genes like CCNB1 may be key
prognostic factor and potential target for TNBC therapy.
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In the current study, four gene chips (GDS505, GDS507
[11], GDS2880, and GDS2881 [12]) were downloaded from
NCBI-Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) to detect the differentially
expressed genes (DEGs) between ccRCC tissue and
normal renal tissue. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis and Gene
Ontology (GO) functional annotation analysis were applied.
Then a protein–protein interaction (PPI) network was
performed to identify hub genes associated with ccRCC.
After screening and confirmed by Oncomine dataset
(https://www.oncomine.org) and UALCAN (http://ualcan
.path.uab.edu), epidermal growth factor receptor (EFGR)was
deemed to a key factor and potential target for the treatment
of ccRCC. In order to further explore the relationship
between EGFR and ccRCC, we performed a meta-analysis.

2. Materials and Methods

2.1. Bioinformatics Analysis

2.1.1. Microarray Data. Four profile datasets (GDS505,
GDS507, GDS2880, and GDS2881) were downloaded from
the GEO database, a public functional genomics dataset. The
platform for GDS505 andGDS2881 was GPL96, [HG-U133A]
Affymetrix Human Genome U133A Array, and for GDS507
and GDS2880 was GPL97, [HG-U133B] Affymetrix Human
GenomeU133BArray.The data consisted of 38 ccRCC tissues
(9 in GDS505, 9 in GDS507, 10 in GDS2880, and 10 in
GDS2881) and 36 matched normal tissues (8 in GDS505, 8
in GDS507, 10 in GDS2880, and 10 in GDS2881).

2.1.2. Expression Analysis of DEGs. As described previously
[10], all raw data of data normalization and gene differential
expression analysis were performed with limma package
(http://www.bioconductor.org/pack- ages/release/bioc/html/
limma.html) in R. After the limma analysis, genes with
|logFC| > 1 and P value (adj P value) <0.05 were deemed to
be differentially expressed genes (DEGs).

2.1.3. Gene Ontology and Pathway Enrichment Analysis of
DEGs. TheDatabase for Annotation, Visualization and Inte-
grated Discovery [13] (DAVID, https://david-d.ncifcrf.gov,
ver. 6.8) provides a comprehensive set of functional annota-
tion tools for investigators to understand biological meaning.
It was applied for pathway enrichment analysis (KEGG) with
𝑃 value< 0.05 and Gene Ontology (GO) enrichment analysis
with P value< 0.01 to analyze the DEGs.

2.1.4. Protein-Protein Interaction (PPI) Network. With the
confidence >0.4 and “Homo sapiens” as a limit, DEGs of
PPI were gathered from String [14] (https://string-db.org,
ver.10.5), a database to forecasted protein-protein interac-
tions. The network visualization software Cytoscape was
utilizing to generated PPI networks. Then, the top ten degree
genes were chosen and deemed to hub genes using the plug-
in unit: cytoHubba. The Oncomine Platform featuring scal-
ability, high quality, consistency, and standardized analysis

was utilized to investigate hub gene expression within ccRCC
across multiple datasets.

2.1.5. Survival Analysis. UALCAN [15], a user-friendly, inter-
active web resource for analyzing cancer transcriptome data,
allows users to identify biomarkers and provides publication
quality graphs and plots depicting gene expression and
patient survival information based on gene expression. The
overall survival analysis was constructed using UALCAN
dataset.

2.2. Systematic Meta-Analysis

2.2.1. Literature Search and Selection. Published reports on
PubMed, Embase, Cochrane,Google Scholar, andCNKIwere
systematically investigated using the search terms “EGFROR
epidermal growth factor receptor” and “ccRCC OR clear cell
renal cell carcinoma” to October 2018.

Studies which should satisfy the following conditions
were screened by two investigators (Wang and Yu) indepen-
dently. Discrepancies were resolved by a senior investigator
(Chai).

Inclusion criteria were as follows: (1) all patients were
diagnosed with ccRCC using cytological histopathology or
cytology; (2) articles need to detect the alteration of EGFR
expression in ccRCC by immunohistochemistry.

Exclusion criteria were as follows: (1) abstract, comment,
review, and meeting; (2) EGFR expression detected by West-
ern blot, RT-PCR; (3) lack of sufficient information; (4)
duplication.

2.2.2. Data Extraction. Two reviewers extracted data from
eligible studies independently, including publishing infor-
mation (first author, year, and journal), age, pathological
grading, Furhman grading, Lymph node status, metastasis,
and expression alteration.

2.2.3. Quality Score Assessment and Publication Bias. As
described by Zheng [16], Newcastle Ottawa Scale (NOS) was
used to assess the quality of included trials. An asymmetry
funnel plot was also used to evaluate the likelihood of
publication bias in the meta-analysis.

2.2.4. Statistical Analysis. All analyses were calculated with
Review Manager software (Cochrane Collaboration, ver.5.3).
Weightedmeandifference (WMD) and 95% confidence inter-
val (95%CI)were calculated by inverse variance (IV)method;
for dichotomous data, Risk Ratio (RR) with 95% CI was
calculated by Mantel-Haenszel (M-H) method. Cochran’s 𝑄
statistic and Higgins’ 𝐼 squared statistic were used to assess
the heterogeneity. When P value < 0.1 or I2 > 50%, the
heterogeneity was appeared and a random-effect model was
applied, while P value > 0.1 or I2 < 50%, a fixed-model was
applied [17, 18].

3. Results

3.1. Bioinformatics Analysis

3.1.1. Identification of DEGs in ccRCC. A total of overlapping
127 DEGs (Figure 1 and Table S1) were identified in four
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http://ualcan.path.uab.edu
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Table 1: 10 hub genes (5 upregulated genes and 5 downregulated genes).

Gene Score Gene Score
EGFR 17 PLG 12

up-regulated EDN1 7 down-regulated KNG1 8
genes ALDOA 7 genes NOX4 5

FLT1 6 ABCB1 4
SAMHD1 5 CLCN5 4
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Figure 1: 127 DEGs were identified in four profile datasets (GDS505, GDS507, GDS2880, and GDS2881). (a) 55 upregulated genes; (b) 72
downregulated genes.

profile datasets (GDS505, GDS507, GDS2880, and GDS2881),
including 55 upregulated genes and 72 downregulated genes
(|logFC| >1 and P value<0.05). The cluster heatmaps of the
top 20 DEGs and the results of normalization of each dataset
were shown in Figure 2.

3.1.2. GO and KEGG Analysis. DAVID 6.8 was performed
to analyze GO and KEGG analysis of DEGs in ccRCC. As
shown in Figure 3, GO analysis consists of cell composition
(CC)molecular function (MF) and biological processes (BP).
GO analysis demonstrated that, in CC, DEGs of ccRCC were
mainly enriched in 13 terms, such as integral component of
membrane, extracellular exosome, and plasmamembrane; in
MF, DEGs were mainly enriched in 2 terms, ATP binding
and transporter activity; in BP, DEGs were mainly enriched
in 6 terms, such as transmembrane transport and sodium
ion transport. Four pathways associated with DEGs were
enriched (Figure 4), HIF-1 signaling pathway, bile secretion,
carbon metabolism, and fructose and mannose metabolism.

3.1.3. Protein-Protein Interaction (PPI) Network. We input
DEGs into string to forecast protein-protein interactions,
and then the date of PPI network was processed utilizing
Cytoscape. In the PPI network (Figure 5), red nodes, green
nodes, and violet nodes represent upregulated genes, down-
regulated genes, and other human proteins interacting with
DEGs, separately. Using the plug-in unit, cytoHubba, ten
hub genes were screened (Figure 6 and Table 1), including
5 upregulated genes (EGFR, EDN1, ALDOA, FLT1, and
SAMHD1) and 5 downregulated genes (PLG, KNG1 NOX4,

ABCB1, and CLCN5). We input hub genes into Oncomine
Platform to investigate gene expression within ccRCC across
multiple datasets. The results revealed that the expression
of EGFR, ALDOA, PLT1, SAMHD1, and END1 in ccRCC
had marked differences among different analysis datasets
(Figure 7).

3.1.4. Survival Analysis. The overall survival analysis of ten
hub genes was performed by UALCAN dataset (Figure 8).
The result revealed that high expression levels of EGFR, FLT1,
PLG, EDN1, CLCN5, and ABCB1 were associated with worse
survival of ccRCC patients.

3.2. Systematic Meta-Analysis

3.2.1. Characteristics of Eligible Studies. As shown in selection
flowchart (Figure 9), a total of 113 published documents
involving EGFR expression in ccRCC were identified with
the literature search, and only 10 studies [19–28] met the
inclusion criteria finally. Among the 10 eligible researches,
1513 ccRCC tissues and 88 normal tissues were involved
in this meta-analysis. Five studies [21, 22, 24, 26, 28] were
published in China, 3 studies [18, 19, 27] were published in
Germany, 1 study [25] was published in Croatia, and 1 study
[23] was published in Turkey, from 2005 to 2016.The baseline
characteristics of 10 trials were summarized in Table 2.

In quality score assessment, 6 trials [20, 21, 24–26, 28]
reached a score of 8, 2 trials [19, 23] reached a score of 9, 1
trial [27] reached a score of 10, and 1 trial [22] reached a score
of 7.
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Figure 2: Continued.
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Figure 2:The normalization and cluster heatmaps of the top 20 DEGs in each dataset. (a)The normalization and cluster heatmaps of the top
20 DEGs in GDS505. (b)The normalization and cluster heatmaps of the top 20 DEGs in GDS507. (c)The normalization and cluster heatmaps
of the top 20 DEGs in GDS2880. (d) The normalization and cluster heatmaps of the top 20 DEGs in GDS2881.
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Figure 3: GO enrichment analysis of DEGs in clear cell renal cell carcinoma.
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3.2.2. Association between EGFR Expression and ccRCC. We
analyzed the association between EGFR expression and
ccRCC in 6 trials [20–22, 24, 26, 28] with 365 cancer
tissues and 88 normal tissues. As indicated in Figure 10,
there was no significant heterogeneity among individual
trials (P=0.76; I2=0%). Accordingly, the statistical analysis
would be carried out under fixed effect model.The combined
effects demonstrated the expression of EGFR in ccRCC was
higher than normal tissues (95% CI [0.24, 0.58], Z test =

4.32, p<0.0001). Funnel plot (Figure 15(a)) did not show the
presence of publication bias.

3.2.3. Association between EGFRExpression andClinicopatho-
logical Parameters of ccRCC. Association between EGFR
expression and clinicopathological parameters was reported
in 9 trials [19–21, 23–28]. Among 9 trials, 7 trials [21,
23–28] reported the association between EGFR expression
and Furhman grading, 5 trials [19–21, 25, 27] reported
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Table 2: The baseline characteristics of 10 trials.

Study Country Age Case Control Outcome Quality
Axel 2005 Germany 63 149 0 ACD 9
Atkins 2006 Germany NA 99 15 AE 8
Chen 2011 China 56 30 12 ABE 8
Duan 2008 China 53.5 80 24 E 7
Duygu 2016 Turkey 58 100 0 BCD 9
Feng 2009 China 50.8 66 15 BE 8
Gordana 2012 Croatia 61 94 0 AB 8
Ju 2014 China 68.3 51 12 BE 8
Minner 2011 Germany NA 711 0 ABCD 10
Zhao 2012 China 56.9 39 10 BE 8
NA: no mention; A pathological grading,B Furhman grading,C lymph node status, Dmetastasis, andE normal tissue.

Figure 7: 10 hub genes’ expression among different analysis datasets.

the association between EGFR expression and Pathological
grading, and 3 trials [19, 23, 27] reported the association
between EGFR expression and lymph node status or metas-
tasis. As indicated in Figure 11, using random-effects model
(P=0.001; I2=73%), there was no difference in EGFR expres-
sion between Furhman grading 1,2 and Furhman grading 3,4
(95% CI [0.52, 1.12], Z test = 1.37, p=0.17). Also, in Figure 12,
therewas nodifference inEGFR expression betweenT 1,2 and
T 3,4 (95% CI [0.66, 1.29], Z test = 0.45, p=0.65) under the
random-effects (P=0.006; I2=73%). For association between

lymph node status and EGFR expression (Figure 13), meta-
analysis showed that lymph node status was not correlated
with EGFR expression (95% CI [0.44, 1.28], Z test = 1.05,
p=0.29) under the random-effects model (P=0.04; I2=73%).

As indicated in Figure 14, there was significant hetero-
geneity (P=0.008; I2=79%) among the 3 trials reporting the
association between EGFR expression and metastasis. The
result showing a higher EGFR expression was detected in
ccRCC with metastasis (95% CI [0.40, 0.87], Z test = 2.67,
p=0.008).
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Figure 8: Prognostic values of 10 hub genes for overall survival in ccRCCpatients. Patients were divided into low- and high-expression groups
according to the median of each DEG expression.

The heterogeneity test of the association between EGFR
expression and nuclear grade, pathological grading, lymph
node status, or metastasis was performed as shown in Figures
15(b), 15(c), 15(d), and 15(e).The funnel plot showed that there
was asymmetry in all 4 meta-analyses.

4. Discussion

ccRCC is one of the most common kidney malignancy [29]
and accounts for ∼3% of adult cancer [30]. Five-year survival
of ccRCC patients with metastasis is only 12% and almost
20-40% patients would experience distant metastasis [5, 6].
It is important to understand the molecular mechanism
of carcinogenesis and development of ccRCC. Microarray
analysis with high-throughput sequencing technologies have
been widely used to determine potential diagnosis and
therapeutic targets in the progression of diseases [31, 32].

In the present study, a total of overlapping 127 DEGs
(55 upregulated genes and 72 downregulated genes) were

identified from four profile datasets. GO analysis revealed
that 127 DEGs were mainly enriched in 21 terms, such as
integral component ofmembrane, extracellular exosome, and
plasma membrane. In addition, 127 DEGs were analyzed by
KEGG analysis and showed that they were mainly enriched
in 4 pathways. In the PPI network, ten genes with high
degree were chosen as hub genes, including 5 upregulated
genes (EGFR, EDN1, ALDOA, FLT1, and SAMHD1) and
5 downregulated genes (PLG, KNG1 NOX4, ABCB1, and
CLCN5).

In order to further verify the relationship between ten
hub genes and ccRCC, we compared the expression of hub
genes across multiple datasets using the Oncomine Platform.
Five genes (EGFR, ALDOA, PLT1, SAMHD1, and END1)
had marked differences among different analysis datasets.
Furthermore, overall survival analysis based on UALCAN
revealed that high expression levels of EGFR, FLT1, PLG,
EDN1, CLCN5, and ABCB1 were associated with worse
survival of ccRCC patients.
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113 citations reviewed 
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2 lack of sufficient information 

Figure 9: The study selection flowchart.

Figure 10: Forest plot for association between EGFR expression and ccRCC (cancer tissues versus normal tissues).

Integrating the result from PPI network, Oncomine
Platform, and survival analysis, EGFR, FLT1, and
EDN1 were considered as key factors in the prognosis
of ccRCC and potential targets for the treatment of
ccRCC.

Epidermal growth factor receptor (EGFR), a member
of receptor tyrosine kinases of the ErbB family, plays a
significant role in promoting cell proliferation and opposing
apoptosis [33–35]. Amplification and mutations of EGFR
have been shown to be driving events in many cancers, like
non-small cell lung cancer [36], renal carcinoma [37], and

basal-like breast cancers [38]. For instance, Smith et al. [39]
had identified that EGFR may be a critical determinant of
HIF-2A-dependent tumorigenesis and a credible target for
treatment of VHL / renal carcinoma.

For better understanding the relationship between
expression of EGFR and ccRCC, we performed a meta-
analysis and explore the survival rate of ccRCC in different
pathological stage using UALCAN dataset (Figure 16). To
the best of our knowledge, this is the first meta-analysis
to assess the association between EGFR expression and
ccRCC. A total of 10 studies [19–28] were enrolled in this
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Figure 11: Forest plot for EGFR expression in ccRCC with different Furhman grading (Furhman grading 1,2 versus Furhman grading 3,4).

Figure 12: Forest plot for EGFR expression in ccRCC with different Pathological grading (T 1,2 versus T 3,4).

Figure 13: Forest plot for EGFR expression in ccRCC with different lymph node status (LN- versus LN +).

Figure 14: Forest plot for the association between EGFR expression and metastasis (M0 versus M1).

meta-analysis. The pooled results showed that there was a
significant difference of EGFR expression between ccRCC
tissues and normal tissues, and the expression of EGFR in

patients with metastasis was higher. It was further testified
that EGFR may be a potential biomarker and therapeutic
target for ccRCC, especially patients with metastasis.



12 BioMed Research International

SE(log[RR])

RR
0.1 1 100.01 100

1

0.8

0.6

0.4

0.2

0

(a)

SE(log[RR])

RR
0.1 1 100.01 100

2

1.5

1

0.5

0

(b)

SE(log[RR])

RR

0.5 1 2 50.2
0.5

0.4

0.3

0.2

0.1

0

(c)

SE(log[RR])

RR
0.2 1 5 200.05

1

0.8

0.6

0.4

0.2

0

(d)

SE(log[RR])

RR

1001 100.10.01
0.5

0.4

0.3

0.2

0.1

0

(e)

Figure 15: Funnel plot for publication bias test between EGFR expression and ccRCC or progression. (a) Funnel plot for association between
EGFR expression and ccRCC (cancer tissues versus normal tissues). (b) Funnel plot for EGFR expression in ccRCC with different Furhman
grading (Furhman grading 1,2 versus Furhman grading 3,4). (c) Funnel plot for EGFR expression in ccRCCwith different Pathological grading
(T 1,2 versus T 3,4). (d) Funnel plot for EGFR expression in ccRCC with different lymph node status (LN- versus LN +). (e) Funnel plot for
Forest plot for the association between EGFR expression and metastasis (M0 versusM1).

5. Conclusion

In summary, our study identified 127 DEGs, and 3 genes
(EGFR, FLT1, EDN1) may be involved in the occurrence
and progression of ccRCC based on integrated bioinformatic
analysis. The results may contribute to a better understand-
ing of ccRCC at the molecular level. Our meta-analysis

showed that EGFR may be a potential prognostic biomarker
and novel therapeutic target for ccRCC, especially patients
with metastasis. However, further experimental studies both
in vivo and in vitro are required to confirm the find-
ing of this study, which may help to confirm identified
gene functions and bring the mechanisms of ccRCC to
light.
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Figure 16: The association between EGFR expression and the survival rate of ccRCC with different pathological stage.
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