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A B S T R A C T

Thanks to methodological advances, large-scale data collections, and longitudinal designs, psychiatric neuro-
imaging is better equipped than ever to identify the neurobiological underpinnings of youth mental health
problems. However, the complexity of such endeavors has become increasingly evident, as the field has been
confronted by limited clinical relevance, inconsistent results, and small effect sizes. Some of these challenges
parallel those historically encountered by psychiatric genetics. In past genetic research, robust findings were
historically undermined by oversimplified biological hypotheses, mistaken assumptions about expectable effect
sizes, replication problems, confounding by population structure, and shared biological patterns across disorders.
Overcoming these challenges has contributed to current successes in the field. Drawing parallels across psy-
chiatric genetics and neuroimaging, we identify key shared challenges as well as pinpoint relevant insights that
could be gained in psychiatric neuroimaging from the transition that occurred from the candidate gene to (post)
genome-wide “eras” of psychiatric genetics. Finally, we discuss the prominent developmental component of
psychiatric neuroimaging and how that might be informed by epidemiological and omics approaches. The evo-
lution of psychiatric genetic research offers valuable insights that may expedite the resolution of key challenges
in psychiatric neuroimaging, thus potentially moving our understanding of psychiatric pathophysiology forward.

1. Introduction

The introduction of in vivo neuroimaging in the 1980s brought un-
precedented opportunities to explore the neurobiological basis of psy-
chiatric illnesses (Raichle, 2009). In the years that followed, researchers
have reported numerous neuroanatomical and functional correlates of
mental health problems, in youth and adulthood. Substantial efforts
were made to try and uncover biomarkers for the prediction and sub-
typing of mental illness (Brucar et al., 2023). Intriguing results were
reported. Findings were, however, preliminary. They have been pre-
dominantly based on small cross-sectional samples, which are more
prone to sampling variability, poorer replicability, and other biases
(Klapwijk et al., 2021; Marek et al., 2022). Over the past decade, large
neuroimaging samples and dense longitudinal data have become

increasingly available at an unprecedented scale (Paus, 2010). This in-
volves key studies like the Adolescent Brain Cognitive Development
(ABCD) (Casey et al., 2018) Study, Human Connectome Project (HCP)
(Elam et al., 2021), Healthy Brain Network (Alexander et al., 2017), and
UK Biobank (Littlejohns et al., 2020), as well as collaborative efforts
such as the Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) consortium (Thompson et al., 2020). These have offered
tremendous potential for studying the neurobiological basis of mental
health and disease, with the prospects of gaining deeper insights into the
origins of psychiatric problems, developing biologically-based diag-
nostic systems (Insel et al., 2010), and improving the accuracy of
prognostic predictions.

However, delivering on these potential targets has proven difficult. It
has become increasingly evident that a readjustment of expectations on
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the role of neuroimaging in psychiatric problems is necessary. First, in
terms of clinical utility, the highly distributed and small effects of psy-
chiatric neuroimaging have rendered challenging the search for neural
markers for disorders’ onset, diagnosis, and prognosis (e.g.,Schmaal
et al., 2020). No reliable biomarker with clinical utility has been iden-
tified to date in psychiatric neuroimaging (Abi-Dargham et al., 2023;
Tervo-Clemmens et al., 2023a). Yet, there are examples of successful
integration of neuroimaging into clinical practice, e.g., advanced im-
aging techniques can guide neurostimulation and neuromodulation in
the treatment of depression and obsessive compulsive disorder (Cole
et al., 2020; Acevedo et al., 2021). Second, in terms of associational
findings, while numerous differences between cases and controls have
been reported, their replicability remains contentious, especially when
it comes to regional convergence (i.e., location of associations). For
instance, a recent meta-analysis found no statistically significant
convergent structural or functional alterations for
attention-deficit/hyperactivity disorder (ADHD) in children and ado-
lescents (Samea et al., 2019), while a mega-analysis in ENIGMA found
cortical surface area differences, although these were restricted to
childhood (Hoogman et al., 2019). Other examples include bipolar
disorder (Harrison et al., 2020) and autism spectrum disorder, for which
consistent neuroanatomical alterations have not been identified to date
(Hiremath et al., 2021). Third, effect sizes in psychiatric neuroimaging
findings are smaller than previously expected (Marek et al., 2022b). For
example, a large-scale study of youths found that the magnitude of as-
sociations between imaging-derived and psychiatric phenotypes, at a
univariate and multivariate level, corresponded to effect sizes below 0.1
(Marek et al., 2022; Makowski et al., 2023).

In this review, we discuss how psychiatric neuroimaging may find
itself at a familiar crossroads, having the potential to draw insights from
other fields that have encountered and addressed similar challenges.
Psychiatric (molecular) genetics stands out as a prime example of a
discipline that has navigated through significant methodological issues
and is now steadily generating robust insights on the etiology of psy-
chopathology (Smoller, 2019). Over the past two decades, it has sub-
stantially changed, moving from candidate gene approaches in small
samples to large-scale studies across the genome (Smoller, 2019). We
first identify challenges that are common in both psychiatric genetics
and neuroimaging, to then explore how solutions developed in genetics
might also benefit, or not, the field of neuroimaging. Notably, one goal
of this review is to encourage discussion of strategies from genetics that
could move developmental psychiatric neuroimaging forward. It is not
our intent to capture all parallels across the two fields. We also recognize
that genetics and neuroimaging are distinct and have strengths on
different aspects of research (e.g., replicability for genetics, develop-
mental approach for neuroimaging). This offers learning opportunities
for each field from the other. Another goal of this review is to navigate
potential venues for designing, analyzing, and reporting brain imaging
studies, with the aim of improving the validity, reliability, and relevance
of neuroimaging research. This can be facilitated with population
neuroscience, an emerging field of neuroimaging that combines insights
from neurodevelopmental science, epidemiology, and genetics (Paus,
2010; Tiemeier and Muetzel, 2020).

2. How the challenges of psychiatric genetics can inform
psychiatric neuroimaging

We discuss five key challenges that have been faced by the psychi-
atric genetic and neuroimaging fields: (i) oversimplified biological hy-
potheses, (ii) distributed small effects, (iii) replicability issues, (iv)
confounding by population structure, and (v) shared biological signal
across disorders. To address the prominent developmental patterns of
neuroimaging, we additionally cover how epidemiological and other
developmentally-dependent fields (e.g., epigenetics) could benefit im-
aging. Table 1 illustrates how developmental psychiatric neuroimaging
studies fare on the listed challenges. We summarized the characteristics Ta
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of the most recent ten articles (start year: 2023) in child and adolescent
psychiatry and magnetic resonance imaging research, sourced from
three leading developmental psychiatry journals: Developmental Cogni-
tive Neuroscience (Son et al., 2023; Guldner et al., 2022; Petrican and
Fornito, 2023; Ladouceur et al., 2023; Hardi et al., 2023a; Dimanova
et al., 2023; Colich et al., 2023; Voldsbekk et al., 2023; Wiglesworth
et al., 2023; Sullivan-Toole et al., 2023), the Journal of Child Psychology
and Psychiatry (Bu et al., 2023; Hardi et al., 2023b; Pagliaccio et al.,
2023; Graziano et al., 2022; Kirshenbaum et al., 2022; Mewton et al.,
2022; Okada et al., 2022; Peterson et al., 2022; Yoon et al., 2022;
Postema et al., 2021), and the Journal of the American Academy of Child
and Adolescent Psychiatry (Auerbach et al., 2022; Geisler et al., 2022;
Wang et al., 2022; Vulser et al., 2023; Fortea et al., 2023; Romer et al.,
2023; Weeland et al., 2022; Chen et al., 2022; Bahnsen et al., 2022;
Dall’Aglio et al., 2023).

2.1. Overcoming oversimplified biological hypotheses

2.1.1. The challenge of limited knowledge of the underlying
pathophysiology

Given the limited mechanistic knowledge of the underlying patho-
physiology of psychiatric phenotypes, candidate gene selection in psy-
chiatric genetics was often based on hypotheses relying on the known
effects of psychiatric medications on biological pathways (Psychiatric
GWAS Consortium Coordinating Committee, 2009). For example,
medications for depression rely on serotonin, so researchers focused on
genes related to serotonin prediction and uptake (Psychiatric GWAS
Consortium Coordinating Committee, 2009). Yet, these hypotheses
proved to be inadequate in the search for causal genetic variants
(Psychiatric GWAS Consortium Coordinating Committee, 2009). Ge-
netic risk for psychiatric problems is driven by many variants that were
not hypothesized to be associated with psychiatric disorders in candi-
date gene research (Lander, 1996). Classical candidate gene studies
were unequipped to detect most of such risk variants, as they tested few
single nucleotide polymorphisms (SNPs), based on prior hypotheses.

In psychiatric neuroimaging, while there is extensive knowledge of the
function of many brain regions and networks, there remains a limited
understanding of the neuro-pathophysiology of psychiatric disorders,
especially in terms of regional specificity. To date, more traditional
psychiatric neuroimaging studies have tested regions of interest (ROIs)
based on hypotheses with biological plausibility for a given psychiatric
disorder, and findings from animal work. For instance, the volume of the
amygdala, which is central to processing fearful and threatening stimuli
(Baxter and Croxson, 2012), has been analyzed in relation to disorders
like anxiety and depression (Hamilton et al., 2008; Qin et al., 2014; Tye
et al., 2011). Such a region of interest approach parallels genetics’
candidate gene research. The prior knowledge and the translation to any
given biological measure tested may however not support a specific
hypothesis. While some antidepressants may exert their effect primarily
via the serotonergic systems, they may not necessarily help identify
genetic variants or brain structural and functional patterns that can
guide molecular and neurobiological research in depression (Border
et al., 2019; Moncrieff et al., 2023; Arnone et al., 2024). Overall, similar
to psychiatric genetics, the a priori approach in psychiatric imaging
relying on ROIs may be overly simplistic if psychiatric disorders are
caused by widespread and unknown structural and functional
variations.

2.1.2. Navigating potential ways forward
In psychiatric genetics, the literature became saturated with candidate

gene studies based on assumptions or prior beliefs about psychopa-
thology (Hirschhorn et al., 2002). This led to the transition to “unbiased”
genome-wide approaches (Sullivan, 2007, 2010). When technological
advances permitted it, Genome-Wide Association Studies (GWASs)
became routinely used, allowing for the normalization of
hypothesis-free approaches. This evolved into the testing of an

increasing number of hypotheses when better genome coverage and
more detailed imputations became available. Such genome-wide ap-
proaches revealed that prior candidate genes were generally not among
the salient genes identified by GWAS, and were often not even identified
as associated with the disorder of interest. For instance, several candi-
date genes for major depression and schizophrenia have not been
replicated in GWASs (Border et al., 2019; Liu et al., 2019). Importantly,
while initial GWAS efforts in psychiatry were characterized by null re-
sults or the identification of genes with no known biological relevance
(Sullivan, 2010; Beauchamp et al., 2011; Visscher et al., 2012), GWASs
have now robustly detected hundreds of loci associated with various
psychiatric phenotypes. Characterizing such widespread signals across
the genome has been paramount to understanding biological pathways
of clinical relevance. Based on the results of hypothesis-free analyses,
scientists have delineated the most relevant signals (e.g., with
fine-mapping of potentially causal variants (Schaid et al., 2018)) and
their associated functional patterns (e.g., gene-set enrichment (Leeuw
et al., 2015), transcriptome-wide analysis (Gusev et al., 2016)) to gain
greater insights into disorder mechanisms. Overall, facilitated by tech-
nological advances, psychiatric genetics moved beyond oversimplified
biological hypotheses by leveraging hypothesis-free approaches. These
could permit the identification of novel associations and their biological
mechanisms, which can eventually lead to the formulation of new or
revised, detailed hypotheses.

In psychiatric neuroimaging, similar hypothesis-free approaches
proved useful to gain a more holistic overview of disorder mechanisms
and etiology. Brain-wide analyses of ROIs, vertices, voxel- and vertex-
based analyses, machine learning, and other data-driven methods are
common (Table 1). Candidate region or network analyses remain often
used (Table 1). This is exemplified by a recent editorial summarizing
functional ROI studies as such that disruptions in the default mode
network underlay the increase in youth mental health problems
(Nasrallah, 2023). This reliance on candidate region analyses is likely
because hypothesis-free approaches in imaging are intrinsically tied to
larger sample sizes and collaborative efforts (discussed in 2.3. Addressing
replicability challenges), which have been challenging to obtain until
recently. Hypothesis-free approaches in large neurodevelopmental co-
horts, such as the Generation R and ABCD studies, have revealed novel
or different regions of association, similar to GWASs. For instance, for
ADHD, frontal and temporal areas of associations that did not belong to
usual candidate regions were observed (Dall’Aglio et al., 2022). Like in
modern genetic approaches, such associational findings could be further
characterized to gain insights into the pathophysiology of a psychiatric
disorder and develop data-driven biological hypotheses. First, atlases
can be inputted into existing software to elucidate associational findings
in terms of other brain characteristics, with multi-modal parcellation
(Glasser et al., 2016), and brain functional maps based on resting-state
functional MRI (rsfMRI) and task fMRI data (Schaefer et al., 2018;
King et al., 2023). Second, other biological data can be coupled with
neuroimaging findings. These can include histological information from
the recently-developed NextBrain (Casamitjana et al., 2024), cytoarch-
itecture from post-mortem tissue from the BigBrain Atlas (Amunts et al.,
2013), molecular (gene expression) (Hawrylycz et al., 2012), metabolic
(glucose and oxygen) (Vaishnavi et al., 2010), neurophysiological (e.g.,
delta, theta power) (Tadel et al., 2011), as well as evolutionary (Hill
et al., 2010) and developmental (Reardon et al., 2018) expansion maps
(Markello et al., 2022). Such resources can be combined with the neu-
romaps tool, which finds a common space across different brain maps
(Markello et al., 2022). More broadly, any type of spatial overlap be-
tween brain maps can be evaluated with tools such as SPIN
(Alexander-Bloch et al., 2018), SPICE (Weinstein et al., 2021), and
BrainSMASH (BrainSMASH, 2024). Moreover, methods have been
recently developed to further interpret multivariate findings through
enrichment approaches (Li et al., 2024). Overall, the use of
hypothesis-free approaches and linkage to other types of neural and
omics data could be a way forward for neuroimaging, as it was for
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genetics, to better understand the underlying pathophysiology of mental
illness.

2.2. Embracing widespread effects of small size

2.2.1. The challenge of small effect sizes in complex disorders
Throughout the course of psychiatric genetics, the search for genes

conferring disorder liability was guided by the substantial heritability
estimates reported in family-based studies of psychopathology, in which
about 30% (e.g., depression) to 80% (e.g., schizophrenia) of the variance
in psychiatric disorders was attributable to genetic variation (Pettersson
et al., 2019). Early efforts to map psychiatric risk genes were often
conducted with the expectation of relatively large, overestimated effect
sizes for specific genetic variants, as was the case for Mendelian diseases
like cystic fibrosis (e.g., CFTR gene) (NIH, 2023). Yet, for complex
common disorders like psychiatric problems, for evolutionary purposes,
risk must be predominantly polygenic (Lander, 1996). Genetic liability
is thus, in large part, driven by the cumulation of small effects from
many contributing variants (Lander, 1996). In fact, most replicated
psychiatric GWASs show variant effects will allelic odds ratios of
1.05–1.15 or less (Smoller, 2019; Psychiatric GWAS Consortium Coor-
dinating Committee, 2009). This required the field to grapple with
fundamental questions related to estimating and understanding a com-
plex constellation of individually small genetic effects and how they
work in concert.

In psychiatric neuroimaging, less guidance on the explanatory poten-
tial of brain features on mental health problems is available. While large
effect sizes were initially expected for morphological characteristics of
many brain regions of interest, growing evidence suggests that neuro-
anatomical signal for psychopathology arises from distributed effects
that are individually small in size. For instance, large meta-analyses, like
those conducted by the ENIGMA consortium, find that psychiatric dis-
orders are generally associated with multiple brain regions that span
different lobes (Sripada et al., 2021; Kelly et al., 2018), as opposed to a
more discrete set of neuroanatomical features. Moreover, a recent study
by Marek and colleagues used data from the ABCD, HCP, and UK Bio-
bank datasets to conclude that regional brain-psychopathology re-
lationships are small in nature (Marek et al., 2022b). This has been
debated (Spisak et al., 2023). Despite this, it remains evident that effect
sizes are generally larger in smaller samples, suggesting that the psy-
chiatric neuroimaging field might have encountered effect overinflation
(further discussed in 2.3 Addressing replicability challenges)
(Tervo-Clemmens et al., 2023b). This realization parallels historical
developments in psychiatric genetics, where GWAS results demon-
strated that effect sizes were substantially smaller than those tradition-
ally reported in the candidate gene literature.

2.2.2. Navigating potential ways forward
In psychiatric genetics, several methodological advances have allowed

the field to embrace the polygenicity of psychopathology, and evaluate
the small molecular effects in aggregate. For instance, genome-wide
complex trait analysis (GCTA-GREML) was developed to estimate the
heritability of phenotypes like psychiatric disorders using variant-level
genetic data (Yang et al., 2011). Additionally, polygenic risk scores
(PGSs) aggregate genetic risk for a given trait or disorder into
individual-level indices representing how high the genetic liability of a
participant is (Choi et al., 2020). These approaches opened doors for
investigations into how cumulative genetic liability to a given disorder
would reflect onto other traits, such as other psychiatric problems, the
exposome, or individual treatment responses (Lewis and Vassos, 2020;
Torkamani et al., 2018). Although these methods have advanced the
field, they did not capture the whole extent of polygenicity in psychiatric
disorders, i.e., all distributed small effects. A substantial portion of
variance explained remained “missing”, with parts of it having been
increasingly “found” through augmented statistical power, better
coverage of the genome from technological advances, and more

sophisticated designs which included non-additive models (Génin,
2020). Overall, to embrace the small and distributed effect sizes in ge-
netics, approaches to aggregate such effects have been developed, and
facilitated by technological advances and modelling techniques.

In psychiatric neuroimaging, methods to capture distributed effects
have been available for decades (e.g., SPM99 (Papadopoulos, 2009)),
although with likely limited statistical power until recently (see 2.3.
Addressing replicability challenges). The field has tried to quantify the
explanatory power of imaging phenotypes in psychiatric problems with
methods like the zero-inflated variance estimator (Ren et al., 2023) or
morphometricity (Sabuncu et al., 2024). For instance, in the ABCD
study, it was revealed that each imaging modality explains up to 5% of
psychiatric symptoms in children (Ren et al., 2023). Bayesian ap-
proaches are also being developed to quantify explained variance in
imaging (BRAINIAC) (Zablocki et al., 2023). Moreover, cumulative
scores akin to PGSs are being constructed, such as the neuroimaging
association scores (NASs) (Axelrud et al., 2021), the poly-vertex score
(Zhao et al., 2021), brain-wide risk scores, and genetically-driven neu-
roimaging scores (PIDS) (Schleifer, 2024). These explain low variance in
cognitive and psychiatric phenotypes, suggesting that their utility for
prediction research is currently limited (Axelrud et al., 2021; Zhao et al.,
2021). At an etiological level, their associations with psychiatric phe-
notypes may be non-causal due to genetic and environmental con-
founding including reverse causality (Axelrud et al., 2021). The
usefulness of such scores is thus yet to be established. Nonetheless, PGSs’
clinical utility in psychiatry also remains limited, although such an
approach is showing promise for risk prediction in breast cancer for
example (Lewis and Vassos, 2020). Yet, we cannot expect methods that
were developed in genetics to directly translate to imaging. The addi-
tional features of neuroimaging data (e.g., vary across time, multiple
modalities) must be explored and could be capitalized to find other
approaches to capture cumulative risk (e.g., sum of regions showing
sustained neurodevelopmental delay). Notably, multivariate methods
have been widely used to jointly model small effects in imaging with
pattern classification. Nevertheless, these approaches present many
challenges previously discussed (e.g., low external generalizability)
(Brucar et al., 2023). Multivariate methods also have a high barrier to
implementation (e.g., high computational skills required), which may
give rise to methods misapplication. The involvement of methodological
experts and the curation of resources and tutorials for methods’ appli-
cation are paramount. Openly available machine learning algorithms
are also becoming increasingly prevalent, allowing to draw upon exist-
ing models and repositories. Importantly, unlike genetics, where
family-based designs informed on the upper bounds of variance
explained by unmeasured genetic data, neuroimaging solely relies on
estimates of the variance explained from existing imaging data. Thus,
while the variance explained may appear to be small to date (Ren et al.,
2023), it remains unclear whether this reflects a low utility of imaging
data in psychiatric problems, or the limits of the commonly used data. As
in genetics, where technological and study design, and other advances
moved the field forward, methodological change may help neuro-
imaging research explain more variance. These advances could involve
boosting sample size, utilizing novel or less commonly-used phenotypes
(e.g., grey-to-white matter ratio, gyrification), more advanced diffusion
modelling (Pasternak et al., 2018), MR spectroscopy (Egerton et al.,
2018), and other methods, including yet unknown ones. Most impor-
tantly, embracing small and distributed effect sizes in neuroimaging has
key implications for study design, as sample sizes will need to be
increased, replicability embedded, and expectations on clinical utility
and effect sizes recalibrated.

2.3. Addressing replicability challenges

2.3.1. The challenge of replicability from low statistical power and
publication bias

Replicability was the biggest challenge for psychiatric genetics during

L. Dall’Aglio et al. Developmental Cognitive Neuroscience 70 (2024) 101443 

4 



the candidate gene era, and twenty years later has become a major
strength of the field. Around 600 associations between genetic variants
and disorders were reported in the candidate gene literature
(Hirschhorn et al., 2002). Yet, most findings were from a single publi-
cation. When multiple studies were conducted on the same gene, asso-
ciations were generally inconsistent: Of 166 candidate genes tested on
multiple occasions, 6 were repeatedly identified across studies
(Hirschhorn et al., 2002). Inconsistencies may reflect population vari-
ability. Studies on the topic however showed that low statistical power
and publication bias were the large drivers of such discrepancies in the
literature (Beauchamp et al., 2011; Colhoun et al., 2003). Candidate
gene studies did not have sufficiently large samples to detect the small
genetic effects (median sample size N = 345 (Duncan and Keller, 2011))
(Psychiatric GWAS Consortium Coordinating Committee, 2009). Such
an issue was compounded by publication bias (Duncan and Keller,
2011). Larger effect sizes, and thus a greater likelihood of finding sta-
tistically significant relationships, were more common in smaller than
larger samples (Duncan and Keller, 2011). This pattern should generally
be reversed. With no publication bias, associations should have larger
effect sizes and be more statistically significant in larger samples
(assuming the hypothesis is true) (Duncan and Keller, 2011). This
exemplified how publication bias rendered challenging the refutation of
most candidate genes, with the role of several candidate genes being
reconsidered many years after the original study (Beauchamp et al.,
2011).

Similarly, concerns regarding the replicability of psychiatric neuro-
imaging have emerged (Poldrack et al., 2017; Button et al., 2013;
Fletcher and Grafton, 2013). As previously discussed, numerous in-
consistencies across findings have been observed. There has been low
regional convergence for many psychiatric disorders (e.g., ADHD
(Samea et al., 2019), Bipolar disorder (Harrison et al., 2020), ASD
(Hiremath et al., 2021)), and low consistency between imaging studies
with small vs. large sample sizes (e.g., for anxiety Harrewijn et al., 2021;
Xie et al., 2021; Besteher et al., 2020). Analogously to psychiatric ge-
netics, beyond population variability and other factors (e.g., differences
in samples), low power and publication bias may substantially underlie
inconsistencies. Evaluations into whether psychiatric neuroimaging
studies are sufficiently large, and thus adequately powered to yield
robust results, are taking place. Experts disagree (Brucar et al., 2023;
Marek et al., 2022b; Makowski et al., 2023). Reports of low power in
neuroimaging (~8% on average) have been shared around a decade ago
(Button et al., 2013). Small samples of a couple of hundreds of partici-
pants are still common (Table 1), suggesting that such statistical power
concerns may still be applicable. However, more recent studies offer
much larger samples, in the thousands for both population-based (e.g.,
Generation R (Kooijman et al., 2016)) and clinical samples (e.g.,
ENIGMA (Thompson et al., 2022)). These have been shown to be both
sufficiently and insufficiently powered for psychopathology measures
with brain structure and connectivity (Marek et al., 2022; Makowski
et al., 2023). Yet, evaluating statistical power is difficult if publication
bias occurs, and if the “true”magnitude of effect sizes remains unknown.
Nonetheless, patterns of greater statistical significance and larger (likely
overestimated) effects with smaller samples have been shown in psy-
chiatric neuroimaging (Marek et al., 2022; Feng et al., 2022). These
reflect some of the concerning trends observed previously in psychiatric
genetics, and which were indicative of publication bias (Klapwijk et al.,
2021). Reports of an excess of positive results have been made for
studies relating brain volume and functional differences to neuro-
cognitive outcomes. The literature comprised twice the number of sta-
tistically significant findings than what would be expected based on the
effect sizes (David et al., 2013; Ioannidis, 2011).

2.3.2. Navigating potential ways forward
These challenges highlight the need for making efforts to replicate

the rule rather than the exception, and for creating a context where
publication bias is reduced. One approach is to emphasize the need for

statistical power, which typically comes with large sample sizes. In
psychiatric genetics, samples sizes were scaled up to hundreds of thou-
sands of individuals to attain greater statistical power. These large
numbers could be obtained only through the collaboration of many sites
(Sullivan, 2010), with consortia like the Psychiatric Genetics Con-
sortium (PGC) (Sullivan, 2010), collaborative efforts from
consumer-based industries (e.g., 23andMe (Zettler et al., 2014)), and
electronic health records (e.g., PsychEMERGE (Zheutlin et al., 2019)).
Further supporting this, journal publishing policies and, importantly,
researchers themselves made well-powered replication studies or
meta-analyses formal or informal requirements (Hewitt, 2012). Notably,
only strict and precise definitions of replication (e.g., same SNP, direc-
tion of effect, statistical test) offered suitable assessments, while broader
ones may have propagated false positives in the literature (Sullivan,
2007). This and the increased power gained from pooling data across
samples made meta-analyses standard in the field of psychiatric ge-
netics. Importantly, beyond capitalizing on data availability, psychiatric
genetics has moved forward by reusing the results of such large,
time-intensive collaborative efforts. Post-GWAS analyses have been
extensive, as summary statistics are publicly shared and methods have
been developed for their reuse to investigate other research questions (e.
g., Mendelian randomization (Emdin et al., 2017)). These efforts to
promote replicability required social changes in the scientific commu-
nity. A team science approach has been pivotal. Individual or group
contributions were de-emphasized at an institutional and funding level.
New metrics for attributing credit were considered and collaborative
funding options grew, thus offering support for data sharing and
resource generation across many sites (Lehner et al., 2015).

Great breakthroughs are possible by promoting replicability in psy-
chiatric neuroimaging. Increasing sample size is key to gaining power.
However, this is more challenging in imaging than is in genetics, as the
costs of the former remain relatively high. Fostering replications, col-
laborations, meta-, mega-, and federated analyses is another way for-
ward. Studies in the field currently tend to rely on single samples
(Table 1). This likely reflects difficulties with data access, computational
challenges, and heterogeneity across studies (e.g., in ages, scanners, and
protocols), which may render data pooling complex. Leveraging inde-
pendent replication samples within one study could be pursued. In such
cases, it is important to ensure that the replication test is as similar to the
original test as possible, to prevent facing the same issues as in genetics.
Several open datasets that could serve as replication studies or for joint
analysis are available to address common research questions (e.g.,
ABCD, HCP). Moreover, untapped sites worldwide could join existing
consortia or establish new ones. These could openly share data or
summary statistics for mega-, meta-, or federated analysis across studies.
Specifically, federated analysis offers the advantages of data pooling
while also bypassing the challenges of data sharing, as it allows for data
to remain at its original location (Rootes-Murdy et al., 2022). This is for
example done with Coinstac (COINSTAC, 2023). Moreover, at least 15
open-source neuroimaging studies, each with over 700 individuals, are
already available (Horien et al., 2021). OpenNeuro MRI also gathered
data on more than 23,000 individuals from 600 samples (OpenNeuro,
2023). It is important to note, however, that the combination of such
information could be challenging as data across studies were not
necessarily collected with the same investigative purposes. A paradigm
shift in routinely using multiple data resources to increase statistical
power is, nonetheless, necessary in psychiatric neuroimaging. Further-
more, the potential for utilization of clinical data remains largely un-
explored and could hold important value if more protocolized. When
other data cannot be leveraged due to time or computational con-
straints, publicly available resources could be consulted, such as Neu-
rosynth (Neurosynth, 2024; Yarkoni et al., 2011). It meta-analyzes foci
from neuroimaging studies regardless of modality, with functional
connectivity maps as reference. Such maps could be compared to study
results to further contextualize the potential replicability of findings.
Automated meta-analysis of publicly available summary statistics in
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existing software could also be implemented for other neuroimaging
measures. Journal publication requirements may facilitate the routine
use of meta/mega-analysis and replication as in genetics. Yet, as man-
uscripts are now promptly shared in open repositories (e.g., medRxiv
(medRxiv.org, 2023)), the paradigm shift is perhaps more relevant at a
researchers’ level, through personal standards on exploring replicability
of findings, and peer review requests. Moreover, funding agencies like
the National Institute of Health and the European Commission could
further invest in existing collaborative initiatives, as well as in the
development and maintenance of infrastructures and software necessary
for such collaborations. To further exploit available resources, and to
accommodate the need for greater statistical power when data sharing is
difficult, psychiatric neuroimagers must routinize the sharing of sum-
mary statistics and brain maps in open repositories like NeuroVault
(Gorgolewski et al., 2015), reuse results (e.g., through meta-analysis),
and develop novel methods to capitalize on such reuse. Overall, it re-
mains crucial to maximize sample size in psychiatric neuroimaging if
average (i.e., between person) effects are of interest. This can be ach-
ieved through different strategies (e.g., meta-analysis, federated ana-
lyses, pooling of summary statistics, increase exposure variability).
Importantly, in certain research endeavors, small studies also provide
key insights. One scenario includes research where imaging assessments
are used to evaluate symptom course from treatment (e.g., functional
connectivity changes before, during, and after transcranial magnetic
stimulation (Gell et al., 2024)). Due to their flexible research designs,
they are optimally positioned to examine intraindividual (i.e.,
within-person) effects (Gell et al., 2024). They are also particularly ad-
vantageous to tailor to individual needs and hard-to-recruit patient
populations (Gell et al., 2024). However, these studies, that rely on
change across time, must focus on brain characteristics that are dynamic
and show meaningful change over time. This requires a careful selection
of timing and measurement intervals. Moreover, dense repeated imag-
ing sampling is needed to reliably estimate individual brain topography
(Gell et al., 2024). Such type of sampling remains scarce; few examples
are currently present in psychiatric neuroimaging (Gell et al., 2024;
Lynch et al., 2020).

2.4. Accounting for structures in the population

2.4.1. The challenge of structures in the population
Two key issues in psychiatric genetics that have been responsible for

spurious or conflated associations are population stratification and
cryptic relatedness (Sullivan, 2010; Hirschhorn et al., 2002). These refer
to differences in genetic structures (allele frequencies) and correlations
among genetic variants (linkage disequilibrium (LD)), across pop-
ulations of distinct genetic ancestral groups (e.g., European, Asian ge-
netic ancestries) (Sullivan, 2010). By affecting both genetic patterns and
psychiatric problems, such allele frequency differences across genetic
ancestries can confound associations of interest. While candidate gene
studies sometimes attempted to address this by accounting for partici-
pant characteristics (e.g., ethnicity), the full influence of population
stratification and cryptic relatedness on results could not be indexed
with these course demographic variables, leading to poor control of bias,
which resulted in inaccurate inferences (Sullivan, 2010; Hirschhorn
et al., 2002). In an attempt to reduce spurious associations reflecting
population structure, genetic studies homogenized their samples by
focusing on one ancestry at a time. This, however, has had pervasive
consequences as it often resulted in the exclusion of individuals who
were not of European genetic ancestry. By 2008, 96% of genetic studies
had been conducted in individuals of European descent (Need and
Goldstein, 2009); by 2017, 88% (Mills and Rahal, 2019). This prevented
the evaluation of the generalizability of findings to multiple populations
and perpetuated existing health inequities (Bustamante et al., 2011).

Generalizability of findings to all populations is paramount to
achieving health equity (Sterling et al., 2022). In psychiatric neuro-
imaging, studies have been historically conducted in racially and

ethnically homogeneous samples, predominantly representing in-
dividuals self-identifying as White people (Sterling et al., 2022). This
limited the generalizability of findings. Diverse samples, in terms of
genetic ancestry, race, and ethnicity, are increasingly ascertained. Race
and ethnicity are social determinants of health (Sterling et al., 2022),
with potential relevance to psychiatric neuroimaging research. For
example, there is evidence that experiencing systemic and interpersonal
racism is associated with variation in the brain, and can place at a higher
risk for psychiatric problems (Grasser and Jovanovic, 2022; Kalin, 2021;
Okeke et al., 2023). Nonetheless, the field relies on the implicit
assumption that population differences do not affect (confound or
modify) associations between the brain and psychiatric symptoms, as
data from different populations are typically pooled or jointly analyzed.
If, however, this assumption is not met, both the validity and general-
izability of findings would be affected, when not addressed. Such topic
thus warrants more investigation.

2.4.2. Navigating potential ways forward
In psychiatric genetics, as information on ancestry could be inferred

from genomic sequencing data, studies started to control for population
structure with several approaches. Often, this is performed by adjusting
for several principal components for the associations, attributable to
ancestry (Beauchamp et al., 2011). Moreover, genomic relationship
matrices have been used to account for cryptic relatedness (VanRaden,
2008). These represent the covariance of SNP information across in-
dividuals, thus capturing how certain individuals may more closely
resemble others due to their population of origin. Genomic relationship
matrices have been used as random effects to adjust for population
stratification, as implemented in most GWAS tools (e.g., BOLT-LMM
(Loh et al., 2018)). The approach of homogenizing samples in genetic
ancestry has also been adopted, but it limits generalizability and health
equity. Instead, methods to analyze data from ancestrally diverse pop-
ulations have been increasingly generated in genetics. Notable examples
are outlined in the literature (Peterson et al., 2019), and include the
modeling of population-specific LD patterns, stratified or cross-ancestral
meta-analyses, and methods to account for admixture, i.e., when the
genome reflects more than one ancestry (Clyde, 2021). Such approaches
have also been shown to increase statistical power, as was the case for
cross-ancestry GWAS (Ishigaki et al., 2022), which involves the exami-
nation of multiple ancestral groups accounting for different LD patterns
across populations.

In psychiatric neuroimaging, studies are increasingly more heteroge-
neous, sampling individuals of different genetic ancestries, races and
ethnic backgrounds. Nonetheless, it has been shown that brain-
phenotype relationships tend to predominantly reflect certain de-
mographic characteristics (Greene et al., 2022). Further funding the
sampling of groups that have been historically underserved in psychi-
atric neuroimaging is thus crucial (e.g., self-identified Asian, Black,
Hispanic persons). One way to address this challenge could be by
oversampling underserved populations in existing studies. Notably, the
possible influence of sampling bias should also be considered, i.e., the
reduced chance of selection of underserved populations within the study
sampling frame. Another way forward includes dedicated studies
restricted to historically underrepresented populations in global
research (e.g., Chinese HCP (Ge et al., 2023), GUSTO (Soh et al. 2014)).
Conducting these dedicated studies has for instance revealed the need
for face anonymization templates tailored to Asian populations for data
protection during imaging data extraction (Gao et al., 2022). In terms of
validity, to estimate associations across several populations, various
options warrant consideration. Following in genetics’ footsteps, genetic
information on ancestry could be used with principal component and
genomic relationship matrices approaches to adjust for the potential
confounding influences of population structure. Yet, this approach may
not directly translate to imaging, as there is no evidence to date that
allelic structure differences across populations may influence brain
characteristics. Moreover, the brain is sensitive to environmental
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exposures, meaning that social factors related to genetic ancestry (e.g.,
systemic racism) could determine morphological and functional
changes, as previously found (Grasser and Jovanovic, 2022; Okeke et al.,
2023). How to validly estimate associations between imaging and psy-
chiatric phenotypes in diverse samples is being discussed in the field.
Some researchers argue that population-specific brain atlases (Xing
et al., 2013) are required to accommodate the need for accurate
pre-processing (and subsequent analyses) in populations that have not
been traditionally captured in imaging templates. Risk stratification and
interaction models by population characteristics have also been sug-
gested, to disaggregate information (Ricard et al., 2023). Others are
controlling for race, ethnicity, or genetic ancestry (Table 1). Yet some
other researchers have advocated not to adjust for race and ethnicity,
and to rather focus on indices of systemic and interpersonal discrimi-
nation and other structural and social determinants of health
(Cardenas-Iniguez et al., 2020). It remains uncertain whether any of
these variables would sufficiently capture the broad impact of system
disparities and inequities that have historical and current repercussions
in racial and ethnic minoritized groups (e.g., redlining, access to edu-
cation, etc…). Carefully-designed and ethically-responsible studies
should be conducted on the topic, to investigate how to validly estimate
brain-psychiatric associations across different populations.

2.5. Capitalizing on shared biological patterns across psychiatric disorders

2.5.1. The challenge of shared biological patterns across psychiatric
disorders

Psychiatric disorders and traits co-occur frequently, as exemplified
by anxiety and depression which are more often comorbid than not
(Beesdo-Baum and Knappe, 2012). Some researchers even postulate a
general dimension of common psychopathological vulnerability (Caspi
et al., 2014). This co-occurrence and the common underlying trait may
be due to greater functional problems that, in turn, increase the risk of
developing another problem (McElroy et al., 2018). Alternatively, they
may reflect shared genetic or environmental risk factors (Sprooten et al.,
2022). Against this background, an intriguing discovery from the
genome-wide era of psychiatric genetics is that genetic liability transcends
diagnostic boundaries (Smoller, 2019). The clinical nosology of psy-
chiatric disorders does not align with the underlying genetic patterns
(Smoller, 2019). That is, psychiatric disorders do not present specific
genetic risks, but rather many variants of liability are shared across
mental health problems (Smoller, 2019). Genetic correlations across
psychiatric disorders have been mapped, showing substantial overlaps,
as high as 70% of the shared genetic liability for schizophrenia and bi-
polar disorder (Bulik-Sullivan et al., 2015). Pleiotropy, i.e., the mani-
festation of multiple traits from the same gene, is thus omnipresent. This
poses a challenge when examining the underlying genomics of single
disorders.

Similarly, for psychiatric neuroimaging, shared variance in the
neurobiology of mental illness has been suggested. For instance,
ENIGMA studies have revealed that major depression, schizophrenia,
and bipolar disorder share neuroanatomical differences, albeit with
varying magnitude of effect sizes (Schmaal et al., 2020). Another
notable example is a study of 6 psychiatric phenotypes, which demon-
strated neuroimaging-based correlations of up to 0.63 between autism
and schizophrenia (Writing Committee for the
Attention-Deficit/Hyperactivity Disorder, 2021). Yet, most studies
examine one phenotype in isolation (Table 1) or, when examining
multiple phenotypes, focus on the differences between individuals with
a disorder vs. another (Mitelman, 2019). While this is not a methodo-
logical limitation that ought to be addressed like prior issues in the field
(e.g., replication), approaches to exploit neurobiological commonalities
across psychiatric disorders could benefit imaging.

2.5.2. Navigating potential ways forward
In psychiatric genetics, it is widely accepted that the association of

genetic variants with multiple traits is the norm rather than the excep-
tion. To account for the shared liability across mental health problems,
cross-disorder analyses are becoming increasingly common. These in-
crease the power of the analyses and help understand shared etiology.
Key efforts come from the PGC Cross-Disorder workgroup, which set out
to explore overlapping genetic risk for psychiatric problems (Psychiatric
GWAS Consortium Coordinating Committee, 2009). Several methods
have been developed to investigate shared genetic liability to unravel
cross-disorder associations and thus possible pleiotropy based on GWAS
summary statistics. MiXeR (Frei et al., 2019) and conjFDR (Smeland
et al., 2020) are two examples of methods that allow to ask multivariate
questions from univariate summary-statistics data, and that can inform
not only on genetic correlations but also on the specific causal variants
shared across traits. Genomic structural equation modeling achieves a
similar goal by also accounting for the structure of associations between
the outcomes, e.g., a hierarchical structure as commonly seen in psy-
chiatric traits (Grotzinger et al., 2019). Finally, multi-trait GWAS
(Turley et al., 2018) and conditional GWAS (Byrne et al., 2021) use data
from multiple GWASs to remove shared effects and consequently boost
the statistical power to find variants unique to a given trait. Illustrating
the utility of such methods, combining phenotypes has been shown to
increase the number of associated loci for depressive symptoms,
neuroticism, and subjective well-being (Turley et al., 2018). These
methods show how summary statistics from prior GWASs are used to
investigate the shared and unique genetic architectures, without the
need for all-encompassing study designs.

Some analogous options could be considered for psychiatric neuro-
imaging. First, to investigate similarities and differences across psychi-
atric disorders, summary statistics, and brain maps from univariate
analyses could also be used to ask multivariate questions. While still
relatively uncommon, this has been previously done with summary
statistics from the ENIGMA study for structural abnormalities in major
depression, bipolar disorder, and schizophrenia, revealing moderate-to-
high correlations in adults (r = 0.4–0.8) (Opel et al., 2020). This can be
easily achieved within a given study with data on multiple phenotypes.
Notably, in genetics, specific approaches accounting for the LD-structure
of the genome have been developed for calculating genetic correlations.
In imaging, instead, we still rely on classical correlational methods
which may inflate effect sizes. Developing an analogous neural corre-
lation method should be considered. Moving beyond statistical corre-
lations, identifying the specific locations and patterns of shared
neurobiology is key. This could be done, for example, by overlapping
maps from brain-wide analyses of different disorders within a study. It
could also be performed across studies, by leveraging openly shared
brain maps (e.g., from NeuroVault (Gorgolewski et al., 2015)). This,
however, may present several challenges in neuroimaging. In fact, data
are substantially influenced by site effects, scanner, acquisition, and
other parameters which may be study-specific (Alfaro-Almagro et al.,
2021), including confounding patterns (Bayer et al., 2022). Moreover,
maps must be moved to a common space, which could be facilitated by
tools like neuromaps (Markello et al., 2022). As cross-disorder ap-
proaches enhance the statistical power of genetic analyses, it could be
insightful to investigate the impact on statistical power in psychiatric
neuroimaging studies when data from multiple disorders are combined.
Further, similarly to genetics, structural equation modeling and condi-
tional approaches can be and have been used to identify shared vs.
specific neurobiological features (e.g., Cardenas-Iniguez et al., 2020).
Additionally, neuroimaging has leveraged multivariate approaches to
examine multiple disorders concurrently. For instance, it has been found
that aggression and rule-breaking symptoms share functional connec-
tivity patterns in the ABCD Study (Xu et al., 2024). Importantly,
cross-disorder investigations would be especially valuable in childhood
and adolescence when homotypic continuity, i.e., presenting the same
psychiatric phenotype over time, is more limited (Blok et al., 2021).
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3. The developmental challenges of psychiatric neuroimaging

Neuroimaging presents an array of challenges above those encoun-
tered by genetic research, some of which are due to its more prominent
developmental aspects. Variable gene expression and age-dependent
genetic effects are well described and currently explored (Thapar and
Riglin, 2020), but developmental research in neuropsychiatry has a long
history. Unlike genetic variation, the time-varying nature of neuro-
imaging data requires additional considerations, and the collection of
repeated imaging measurements. This has been long recognized in the
field as many longitudinal studies are currently available (Kooijman
et al., 2016; Garavan et al., 2018; Satterthwaite et al., 2014). How to
best harness these data remains however unclear. As shown in Table 1,
longitudinal designs are not default. When adopted, these often involve
adjustments for baseline levels of the outcome, but the use of repeated
exposures and outcomes remains rare. Several “how-to” guides to lon-
gitudinal modelling in neuroimaging have been recently made available,
offering a wealth of information for tackling developmental questions
(McCormick et al., 2023; King et al., 2018). Further, parallels with other
fields encountering similar developmental challenges (e.g., epidemi-
ology, transcriptomics, epigenomics) can offer guidance.

Both genetics and imaging likely present timing effects, i.e., specific
developmental periods at which the effect of genetics or neurobiology
on psychiatric disorders is stronger (e.g., puberty as a sensitive period
(Vijayakumar et al., 2018)). For instance, it has been shown that the
genetic heritability of ADHD can vary over time, which might reflect
changes in gene expression (Chang et al., 2013). To explore timing,
certain methods have been applied in epigenetics such as the structured
life course modelling method (Lussier et al., 2023; Smith et al., 2022),
the strategic pooling of meta-analyses across ages (Neumann et al.,
2020), and meta-regression of publicly-available meta-analyses to
evaluate how epigenetic patterns at different ages would relate to a
given psychiatric outcome (Neumann et al., 2024). Moreover, marginal
structural and structural nested models could be borrowed from causal
epidemiology to investigate timing effects (Hernan and Robins, 2020;
Schwartz and Glymour, 2023). Although data collection efforts allow
imaging scientists to test the timing of effects on psychiatric problem
development using such approaches, they are not often utilized. Another
developmental challenge is the time of effects, i.e., how long it takes for
certain neuroimaging differences to be manifested in psychiatric prob-
lems development. Several developmental theories have been postu-
lated on this (e.g., maturational framework (Johnson, 2001)), but they
remain rarely tested in this context and do not provide clear time esti-
mates. As relevant effect duration remains unknown and is likely
dependent on imaging modality, the interval at which repeated mea-
surements are leveraged might obfuscate time effects, if too short or
long. The testing of multiple options of developmental times is a way
forward (e.g., both two- and four-year intervals for ABCD). Yet, it might
be that it is not the length of time of a particular neuroimaging differ-
ence (e.g., lower prefrontal cortical thickness in childhood) that is
involved in the disorder onset, but rather for how long neuro-
development deviates from the expected growth patterns over time (e.g.,
a persistent delay in cortical thickness development). In such cases,
user-friendly tools like Predicting Clinical Neuroscience and Centile
Brain can facilitate the mapping of deviations in neurodevelopmental
patterns compared to normative growth curves, offering a way to
explore potential time effects (CentileBrain, 2024; Predictive Clinical
Neuroscience Portal, 2024). Overall, the psychiatric neuroimaging field
offers unprecedented opportunities to further explore developmental
patterns, which, while challenging, could hold great promise to advance
our understanding of the neurobiological aetiology of psychiatric
disorders.

4. Conclusions

In conclusion, the past decade of psychiatric neuroimaging studies
has been reminiscent of some developments that occurred in the history
of genetic research. We can draw insights from the evolution of psy-
chiatric genetics by (i) revisiting oversimplified biological hypotheses
with hypothesis-free approaches, (ii) embracing distributed small effect
sizes, (iii) ensuring replicability by making collaborations, meta-
analysis, and the sharing of summary-level statistics a rule rather than
the exception, (iv) considering population structure for valid and
generalizable inferences, and (v) exploiting shared neurobiological
patterns with cross-disorder approaches. With knowledge from the past
of psychiatric genetics, and the novel tools available in psychiatric
neuroimaging (e.g., large samples, multivariate methods), the field is
better equipped than ever to understand the etiology, course, prediction,
and treatment of psychiatric disorders. To move forward and increas-
ingly approximate the neuroimaging characteristics of psychiatric
problems, such lessons and tools need to be routinely applied, and novel
methods developed where needed. The field has made great strides, with
numerous essential steps having already been taken. This opens the
opportunity for more to be made; quickly and responsibly, with a focus
on ensuring that the integration of these insights into one’s workflow is
seamless and incentivized. We must draw insights from psychiatric ge-
netics now for psychiatric neuroimaging to flourish.
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