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Abstract
  Nonrandomized studies typically cannot account forBackground:

confounding from unmeasured factors. 
 

  A method is presented that exploits the recently-identifiedMethod:
phenomenon of  “confounding amplification” to produce, in principle, a
quantitative estimate of total residual confounding resulting from both
measured and unmeasured factors.  Two nested propensity score models are
constructed that differ only in the deliberate introduction of an additional
variable(s) that substantially predicts treatment exposure.  Residual
confounding is then estimated by dividing the change in treatment effect
estimate between models by the degree of confounding amplification estimated
to occur, adjusting for any association between the additional variable(s) and
outcome.
 

  Several hypothetical examples are provided to illustrate how theResults:
method produces a quantitative estimate of residual confounding if the
method’s requirements and assumptions are met.  Previously published data is
used to illustrate that, whether or not the method routinely provides precise
quantitative estimates of residual confounding, the method appears to produce
a valuable qualitative estimate of the likely direction and general size of residual
confounding.
 

  Uncertainties exist, including identifying the best approaches for:Limitations:
1) predicting the amount of confounding amplification, 2) minimizing changes
between the nested models unrelated to confounding amplification, 3) adjusting
for the association of the introduced variable(s) with outcome, and 4) deriving
confidence intervals for the method’s estimates (although bootstrapping is one
plausible approach).
 

  To this author’s knowledge, it has not been previouslyConclusions:
suggested that the phenomenon of confounding amplification, if such
amplification is as predictable as suggested by a recent simulation, provides a
logical basis for estimating total residual confounding. The method's basic
approach is straightforward.  The method's routine usefulness, however, has
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logical basis for estimating total residual confounding. The method's basic
approach is straightforward.  The method's routine usefulness, however, has
not yet been established, nor has the method been fully validated. Rapid further
investigation of this novel method is clearly indicated, given the potential value
of its quantitative or qualitative output.
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Introduction
Confounding is a central challenge for virtually all nonrandomized 
studies. Recent research1–4 has revealed that propensity score meth-
ods or other highly-multivariate methods may actually significantly 
increase, or “amplify,” the residual confounding remaining after 
their application. Understandably, this recently-recognized property 
of propensity score methods and other highly-multivariate methods 
have been generally viewed as a limitation or complication to their 
use. More recently, however, a study has indicated that the degree 
of confounding amplification (also termed “bias amplification”4) 
occurring between propensity score models appears to be quanti-
tatively predictable (at least in simulation)5. This quantitative pre-
dictability of confounding amplification may also be suggested by 
more theoretical presentations of confounding amplification4.

Not yet recognized, to my knowledge, is the extremely valuable cor-
ollary that results: the predictability of confounding amplification 
should, in principle, permit extrapolation back to an unamplified 
value of the total residual confounding originally present. (Through-
out this manuscript “confounding” refers to baseline confounding. 

Confounding occurring after treatment initiation from differential 
discontinuation of the intervention in the treatment group of interest 
versus the comparison group is not addressed in this manuscript. 
A possible approach to estimating confounding occurring after 
treatment initiation, based on the same principles described here, 
is briefly discussed in Appendix 2.3b). In this manuscript and 
the associated appendices, I describe the general framework and 
detailed specifics of a new method designed to use amplified con-
founding to estimate total residual confounding (including from 
unmeasured factors), and thus provide an unconfounded treatment 
effect estimate.

The basic logic of this method is straightforward, but its perform-
ance in practice has yet to be confirmed. Testing of this method on 
both simulated and real-world data is clearly needed. This manu-
script does illustrate, however, that even when this method is not 
able to provide a precise quantitative estimate of residual confound-
ing, it may provide a very useful qualitative estimate of the likely 
direction and general size of residual confounding. This manuscript 
provides detailed information to the research community intended 
to facilitate the rapid evaluation of the performance of this method 
when applied to simulated and real-world data.

Method
This four-step method deliberately amplifies confounding to per-
mit estimation of unmeasured confounding. This estimate is then 
subtracted, along with the measured confounding of the variable 
or variables producing the amplification, from the original treat-
ment effect estimate. This approach of deliberately amplifying con-
founding initially may seem counterintuitive. The text below seeks 
to explain the steps of the method (and their rationale) and fol-
lows in parallel to their mathematical description in the Appendix 
Table. Ultimately, a single equation incorporating all components 
of the method is derived. Some readers may also find the largely 
nonmathematical metaphors provided in Appendix 1 helpful.

Step 1 – Create nested propensity score models and 
generate treatment effect estimates
The “Amplified Confounding-based Confounding Estimation 
(ACCE) Method” depends on the use of two propensity score mod-
els, one (“Model 1”) nested in the other (“Model 2”) so that Model 2 
contains all the Model 1 covariates plus an additional variable or 
variables. The variable(s) introduced to produce Model 2 from 
Model 1 is termed the “Introduced Variable(s).” Importantly, the 
Introduced Variable(s) should be sufficiently associated with treat-
ment exposure to produce discernible confounding amplification. 
That is, the Introduced Variable(s) should further predict treatment 
exposure sufficiently to substantively increase differences between 
the treatment groups in the prevalence of those confounding factors 
that are not present in either model.

Step 2 – Estimate both the proportional amplification of 
confounding and the quantitative change in the treatment 
effect estimate between Model 1 and Model 2
In principle, the original confounding existing prior to amplifica-
tion can be estimated by extrapolation backwards if both the pro-
portional amount of confounding amplification and the quantitative 

            Amendments from Version 1

The following are the principal changes made in response to the 
reviewer’s helpful comments. While this manuscript has been 
accepted by both reviewers, I gave great weight to the comments 
from both reviewers mentioning that they had some difficulties, 
at least initially, in completely understanding the method as 
described. The manuscript and Appendices have therefore been 
substantially revised and expanded, as follows:

The description of the method and hypothetical examples 
have been expanded, adding cross-references to the exact 
steps in the Appendix Table.

My language and presentation have been made more precise, 
detailed, and consistent.

Perhaps most importantly, the entire method has been 
expressed mathematically in a single Summary Equation.

New Appendices were added to 1) expand the metaphors for 
the method offered (Appendix 1); 2) discuss other possible 
challenges to the proposed correction for the association 
between the Introduced Variable(s) and outcome (Appendix 4); 
explain the Summary Equation in detail and map various 
uncertainties to terms in the Equation (Appendix 5); initiate the 
consideration of how multiple Introduced Variables might be 
used (Appendix 6); and offer practical tips for how the method 
might be implemented and the key trade-offs that need to be 
considered (Appendix 7).

Finally, the manuscript’s Discussion better describes what 
subsequent research steps are most immediately needed, 
and points out such research should be a high priority given 
the possibility that the ACCE Method may permit unmeasured 
confounding to be estimated in a system that 1) can use 
variables with an association with outcome, 2) can use multiple 
variables, and 3) may help address residual/unmeasured 
confounding arising during treatment, as well as at baseline. 
The overall method needs validation in general, however, in 
addition to exploration of whether the method can perform one 
or more of these three valuable functions. 

Please see response to referees for more detail
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change in the treatment effect estimate occurring between two pro-
pensity score models can be estimated accurately. To give a very 
simple example, consider a model (Model 2), which adds a single 
Introduced Variable compared to the original model (Model 1). This 
Introduced Variable sufficiently explains treatment exposure that its 
inclusion is expected to exhibit 50% confounding amplification 
compared to Model 1. Assume the observed treatment effect risk 
ratio (RR) changed in this circumstance from 1.10 in Model 1 (a 
beta coefficient of 0.09531) to approximately 1.15 (a beta coeffi-
cient of 0.142965, which is strictly equivalent to an RR of 1.15369). 
If the Introduced Variable(s) had no association itself with expo-
sure, then the increase in beta coefficient would result entirely from 
the 50% amplification of confounding (ignoring random variation). 
Since a 50% increase in the confounding increased the beta coef-
ficient 0.047655, this would imply that the original confounding 
was 0.047655 / 0.5 = 0.09531. This is enough to account for the 
entire association with outcome originally attributed to treatment. 
That is, the observed increase of the effect estimate upon confound-
ing amplification is sufficient to suggest that the entire originally-
observed “treatment effect” estimate was in fact due to confounding 
(Endnote A).

Attention is needed during the method’s implementation, how-
ever, to ensure: 1) that either the Introduced Variable(s) truly does 
have no association with outcome, or to correct for this Introduced 
Variable-outcome association if it is present (Steps 3 and 4 of the 
method); and 2) that changes between the two models distinct 
from confounding amplification are minimized to the extent fea-
sible (Appendix 2). In addition, the method requires an ability to 
estimate the proportional amount of confounding amplification 
occurring between two propensity score models.

Two very different approaches to estimating proportional confound-
ing amplification suggest themselves. One approach would be to 
estimate amplification from existing or future simulation research 
based on particular metrics of exposure prediction. An example 
of this approach is research published using the linear measure of 
exposure prediction, R25. This work demonstrated that, for propen-
sity score stratification or matching approaches, a linear relationship 
exists between unexplained variance in exposure (i.e., 1 - R2) and 
the proportional amount of confounding amplification occurring 
across the range of R2  = 0.04 to 0.56. This simulation study5, using 
a propensity score based on a linear probability model, also made 
the important demonstration that different unmeasured confounders 
appear to be amplified to a highly similar degree. A key assumption 
of the ACCE Method is that residual confounding attributable to 
different confounders is uniformly or relatively uniformly ampli-
fied in Model 2 compared to Model 1.

There is still a possibility, however, that the mathematical predict-
ability of the proportional amplification based on 1 - R2 that was 
observed in simulation may be merely a consequence of the par-
ticular conditions of that simulation. Other work, however, also 
suggests the possibility of estimating the proportional amount of 
confounding amplification through the 1 - R2 relationship4.

Further research is needed to thoroughly confirm that a predictable 
relationship does indeed exist between predication of exposure as 
measured by R2 and resulting confounding amplification. Research 
is also needed to determine if a similarly predictable relation-
ship exists for other metrics of exposure prediction (such as those 
proposed for logistic regression6,7). Finally, research is needed to 
establish whether the apparent nonlinearities between the predic-
tion of exposure and confounding amplification at more extreme 
ranges of prediction, suggested by some manuscripts5 but not 
others4, actually do exist.

A second approach to estimating the proportional amplification of 
confounding between two models would be to adopt an “internal 
marker” strategy. This strategy consists of deliberately withholding 
a measured covariate from both models to allow the increase in 
its imbalance between treatment groups in Model 2 to serve as an 
approximate indicator of the proportional confounding amplifica-
tion that has occurred. It is possible, however, that the “internal 
marker” strategy might consistently yield at least a slight degree 
of underestimate of the amount of confounding amplification 
(Appendix 3.1).

If the “Introduced Variable” is known to be a true instrumental 
variable, then Steps 1 and 2 are the only steps required. Whether 
this approach would be any advantage over a conventional instru-
mental variable regression, however, is uncertain. The next two 
steps describe the additional calculations necessary to adjust for 
an association between the Introduced Variable and outcome if 
the Introduced Variable is not known to be an instrumental vari-
able. These steps add a minor amount of computational complexity 
to the method, as well as increase the uncertainty concerning the 
strict quantitative accuracy of the method’s estimates (as discussed 
below). Importantly, however, these steps also may greatly broaden 
the method’s applicability, since many more variables with substan-
tial association with exposure (i.e., candidate Introduced Variables) 
are likely to exist that have some association with outcome than 
do not.

Step 3 – Adjust for the association between the Introduced 
Variable and outcome
In most cases, the addition of a variable(s) to Model 2 will alter the 
amount of residual confounding present in Model 2 compared to 
Model 1, independent of its effect producing confounding ampli-
fication (i.e., it is rare for a variable to have absolutely no associa-
tion with outcome). The consequence of this is that what is being 
amplified in Model 2 is not the actual quantity being sought (the 
total residual confounding in Model 1) but only a fraction of this 
quantity. Specifically, the quantity being amplified is the fraction of 
the Model 1 residual confounding separate from that attributable to 
the Introduced Variable.

Because the Introduced Variable(s) is included in the Model 2 pro-
pensity score, the Introduced Variable does not amplify. Not only 
does the confounding from this variable not amplify, but any contri-
bution to confounding attributable to the Introduced Variable would 
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be generally expected to decrease in Model 2 compared to Model 1. 
This decrease results from the fact that the Introduced Variable will 
almost certainly become more balanced now that it is included in 
the propensity score. As a result, when we want to estimate the 
quantitative change in the treatment effect estimates attributable to 
amplified confounding, we must first subtract the contribution of 
the decreased confounding attributable to the change in the balance 
of the Introduced Variable(s). Arriving at an estimate of the change 
in treatment effect estimates between Model 2 and Model 1 that 
is solely attributable to the amplification of confounding between 
Model 1 and Model 2 is crucial, because this quantity will allow us 
to extrapolate backwards to an estimate of the residual confounding 
attributable to all unmeasured confounders except the Introduced 
Variable(s). Because the Introduced Variable does not amplify, its 
contribution to residual confounding cannot be estimated through 
this extrapolation. Instead, its effect must be removed separately. 
Second, we must also remove the contribution of the Introduced 
Variable(s) from the original, Model 1 treatment effect estimate to 
obtain the desired unconfounded treatment effect estimate.

To illustrate the need for the first adjustment (adjusting the change 
in treatment effect estimate to account for the change attributable 
to improved balance in the Introduced Variable), consider the fol-
lowing case: the amplification of residual confounders that are 
unmeasured or nonincluded in both Models (which we will term 
the “amplifiable fraction” of total residual confounding) increases 
the treatment effect estimate by beta = 0.09531, and insertion of 
the Introduced Variable into Model 2 changes its confounding by 
beta = -0.09531. In this case, the observed change in the treatment 
effect estimate between Model 2 and Model 1 would be zero. How-
ever, it would not be correct to conclude that no quantitative change 
in the Model 2 treatment effect estimate attributable to confounding 
amplification had occurred. Instead, a sizeable quantitative change 
due to confounding amplification occurred, but it had simply been 
concealed by an equal change in the other direction due to reduced 
confounding from the Introduced Variable. Only by subtracting the 
change in confounding expected to result from increased balance 
in the Introduced Variable does the quantitative impact of the con-
founding amplification become apparent.

The need for the second adjustment exists because the Introduced 
Variable did not amplify, and thus its contribution to Model 1 con-
founding will not be included in the back-extrapolation that is 
performed to estimate the original amount of confounding due to 
the “amplifiable fraction” (the fraction of confounding that can be 
amplified). The Introduced Variable(s)’s contribution to Model 1 
confounding must be directly estimated and removed separately. 
These two adjustments involving the Introduced Variable(s) usually 
will be similar in magnitude, but not identical, as explained later.

To make both of these adjustments I propose obtaining a coefficient(s) 
for the Introduced Variable(s) from regression models of the out-
come that include all other propensity score covariates (Endnote 
B and Appendix Table Step 3a). This Introduced Variable-outcome 
regression coefficient can then be inserted into the Bross equation8 
is used to estimate the confounding attributable to the Introduced 

Variable(s) in both Model 1 and Model 2. (The Bross equation8, 
which recently has been used by Schneeweiss and colleagues in their 
high-dimensional propensity score algorithm9, quantifies the amount 
of confounding attributable to a confounder. The Bross equation 
provides this estimate by combining the strength of the association 
between the covariate and outcome with the imbalance in the cov-
ariate between the treatment groups. Its use is demonstrated in the 
Appendix Table Step 3b1 and Appendix Table Step 3b2).

This regression-based correction appears, in theory, to be an imperfect 
solution, but how much these imperfections routinely interfere with 
the method’s performance is uncertain. The potential imperfections 
arise from two sources. First, it is plausible that the regression-based 
coefficient may not fully reflect the sum effect upon confounding 
that results when the Introduced Variable is inserted into Model 2. 
If the Introduced Variable is correlated with any unmeasured con-
founders, then inserting of the Introduced Variable(s) in Model 2 
would also be expected to also reduce the imbalance in these other 
unmeasured confounders (at least relative to their Model 2 imbal-
ance if no correlation existed). Of note, this correlation would also 
be expected to affect the Introduced Variable(s) regression coeffi-
cient: it is well appreciated that in regression models two corre-
lated variables can influence the regression coefficient obtained for 
each of the variables. Unfortunately, it is not well understood, to 
my knowledge, whether the effect of correlation in regression alters 
the regression coefficient in a manner that, when this coefficient is 
used in the Bross equation, the estimated change in confounding 
approximates the actual change in confounding resulting from the 
change in the Introduced Variable(s) and its correlates.

Second, the regression equations used to derive the Introduced 
Variable(s)-outcome regression coefficient optimally would have 
the same number of variables within them as the propensity score. 
Thus, some degree of confounding amplification may also exist 
in the Introduced Variable(s)-outcome coefficients, although this 
amplification is likely less than observed for the treatment effect 
estimate, and possibly less problematic (Appendix 4).

Using the Bross equation, the estimate of the confounding attrib-
utable to the Introduced Variable in Model 1 is then subtracted 
from estimate of such confounding in Model 2. This produces an 
estimate of the change in the treatment effect estimate between 
Model 1 and Model 2 that is attributable to increased balance in 
the Introduced Variable(s) (and potentially, to some degree, its cor-
relates) (Appendix Table Step 3b3). This estimate then is subtracted 
from the overall change in the treatment effect estimate observed 
between Model 2 and Model 1 (Appendix Table Step 3c). The result 
is an important quantity: the quantitative change in the treatment 
effect estimate attributable to the proportional confounding ampli-
fication that occurred between Model 1 and Model 2 (Appendix 
Table Step 3d).

Step 4 – Calculate the unconfounded treatment effect 
estimate
The final step involves two substeps. First, divide the final result 
from Step 3d (the change in the treatment effect estimate from 
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Model 1 to Model 2, adjusted to remove the change produced by 
increased balance in the Introduced Variable(s) and potentially its 
correlates) by the proportional amount of confounding amplification 
occurring between Model 1 and Model 2 (Appendix Table Step 4a). 
This proportional confounding amplification can be calculated by 
the ratio of the proportional confounding amplification of both 
models relative to a state with no confounding amplification. For 
example if Model’s R2 = was 0.50, then, based on the 1 - R2 rela-
tionship, this model it would be expected to contain 2-fold con-
founding amplification (1 / (1 - 0.5) = 1 / 0.5 = 2). But since we 
are comparing Model 2’s treatment effect estimate to Model 1’s  
treatment effect estimate, rather than to a hypothetical, unob-
served model with absolutely no confounding amplification, we 
instead need to take into account the difference in confounding 
amplification that occurs between the models. In a sense, the com-
parison of amplification between Model 2 and Model 1 respecifies 
the Model 2 confounding amplification by quantifying it relative 
to the “starting point” of the confounding amplification observed 
in Model 1.

For example, if Model 1 had an R2 of 0.25 (leading to a confound-
ing amplification of 1 / (1 - 0.25) = 1 / 0.75 = 1.33, then the propor-
tional amplification of confounding occurring between the 2-fold 
confounding amplification in Model 2 and the 1.33-fold confound-
ing amplification in Model 1 would be 2 / 1.33 = 1.5. If the dif-
ference between treatment effect estimates reflected confounding 
amplification of 1.5, this means that the difference in the treatment 
effect estimate represents 1.5 × the original confounding (or a 50% 
increase in confounding). Therefore the adjusted treatment effect 
estimate difference observed between the two models would then 
need to be multiplied by a factor of 2 (i.e., 1 / 0.5) to extrapolate 
back to an estimate of the original confounding in Model 1. This 
factor of 2 can be obtained mathematically by subtracting 1 from 
the proportional confounding amplification predicted between the 
models (1 / (1.5 - 1) = 1 / 0.5 = 2). (Determining the ratio of the 
confounding amplification occurring in each of the two models 
provides the proportional change in confounding amplification 
between Model 1 and Model 2; subtracting “1” from this ratio 
accounts for the fact that if no amplification between the models 
occurs, the ratio will equal “1”, but the confounding amplification 
will be “0”).

This calculation derives by extrapolation an estimate of the total 
residual confounding originally in Model 1, except for the confound-
ing attributable to the yet-to-be-inserted Introduced Variable(s),  
and can be represented by the following mathematical term:

In this overall term, “TEE” refers to the treatment effect esti-
mate of the particular model (subscript “M2” denoting Model 
2 and “M1” denoting Model 1), thus the term (TEE

M2
 - TEE

M1
) 

represents the observed difference in treatment effects between 
the two models. The term “Conf

IntVΔ(M2-M1)
” represents the change 

in confounding attributable to the change in balance in the Intro-
duced Variable in Model 2 compared to Model 1. This term is 
calculated by use of the multivariate Introduced Variable-out-
come regression coefficient and the Bross equation. The terms 
(1 / (1 - R2

M2
)) and (1 / (1 - R2

M1
)) represent the proportional con-

founding amplification expected in Model 2 and Model 1. The ratio 
of this proportional confounding amplification provides the propor-
tional amplification occurring between the two models. Subtracting 
1 from this ratio permits the extrapolation, from the adjusted change 
in treatment effect estimates, of the total residual confounding from 
the amplifiable fraction of Model 1. An algebraic derivation of this 
term is provided in Endnote F.

One further term is needed to estimate the total residual confound-
ing in Model 1. To reiterate, the confounding from the Introduced 
Variable is not subject to amplification in Model 2, since it is now 
included in the propensity score, unlike the rest of the residual 
confounding in Model 1. Thus, the Introduced Variable(s)’s con-
tribution to Model 1 residual confounding must be accounted for 
separately, through use of the Introduced Variable-outcome regres-
sion coefficient and the Bross equation (Appendix Table Step 3b1). 
Entering the imbalances in the Introduced Variable between the 
treatment groups that are present in Model 1 (that is, relative to a 
perfect 50%/50% balance) into the Bross equation provides an esti-
mate of the contribution of the Introduced Variable to the Model 1 
residual confounding (Endnote G).

Adding the two components of Model 1 residual confounding (i.e., 
the estimate of residual confounding from the amplifiable fraction 
plus the confounding attributable to the original, Model 1 imbal-
ance in the yet-to-be-inserted Introduced Variable(s)) produces the 
method’s estimate of total residual confounding present in Model 1 
(Appendix Table Step 4b1). This total is then subtracted from the 
Model 1 treatment effect estimate to produce an estimate of the 
unconfounded treatment effect (Appendix Table Step 4b2).

The entire approach to estimating residual confounding using the 
ACCE Method can be summarized by the following equation:

This equation subtracts from the original, Model 1 treatment effect 
estimate (TEE

M1
) the back-extrapolation term estimating the Model 1 

residual confounding from the amplifiable confounding fraction 

( )

( )

(M2 – M1)M M1 IntV

2
M2

2
M1

(TEE TEE ) Conf

1

1
1

1

1

R

R

∆
− −

  
  
 − 
 − 
  
  −  

2
( )
( )

(M2 – M1)

M1

M M1 IntV
1 IntV

2
M2

2
M1

(TEE TEE ) Conf
Conf

1

1
1

1

1

M
Unconfounded

TEE
TEE

R

R

∆
− −

− − =
  
  −   −  
  
 −   

2

Page 6 of 51

F1000Research 2015, 3:187 Last updated: 29 APR 2015



(discussed above), as well as the term Conf
IntVM1

, which represents 
the separate contribution of the Introduced Variable(s) to Model 1 
residual confounding. Subtracting these terms from the Model 1 
treatment effect estimate produces, in general principle, an estimate 
of the unconfounded treatment effect (Appendix Table Step 4 and 
Endnote F).

The accuracy of this unconfounded treatment effect estimate, how-
ever, is not yet established. The largest uncertainties in this estimate 
likely come from several factors, including the basic uncertainty 
whether the proportional confounding amplification occurring 
between two models is consistently predictable. Two manuscripts 
suggest such prediction may be possible4,5, but certainly a more 
extensive confirmation of this relationship, for R2 and possibly for 
other metrics of exposure prediction, would be beneficial. In addi-
tion, neither of these manuscripts examined real-world data. Thus, 
questions remain, such as whether real-world data might contain 
“constraints” to confounding amplification (Appendix 3.3). Also 
pertinent are the two uncertainties discussed in Step 3 concerning 
the adequacy of the Introduced Variable(s) regression coefficient(s) 
for performing the necessary adjustments to the Model 2 - Model 1 
treatment effect estimate term and to the Model 1 total residual 
confounding. These uncertainties relate to whether the Introduced 
Variable-outcome regression coefficient adequately reflect changes 
that would occur in Model 2 in unmeasured confounders correlated 
with the Introduced Variable(s), as well as whether this Introduced 
Variable(s)-outcome regression coefficient(s) would also suffer 
some confounding amplification. Investigation is also needed into 
the practical question of whether other differences between the 
models can be sufficiently minimized to prevent them from produc-
ing changes in the Model 2 treatment effect estimate separate from 
confounding amplification (Appendix 2). These uncertainties, plus 
others, are highlighted in Appendix Figure 1b in Appendix 5 and 
listed as research needs in the Discussion.

Nevertheless, the method’s potential to perform an adjustment for 
the association between the Introduced Variable(s) and outcome 
suggests that this method might provide quantitatively or qualita-
tively useful unconfounded treatment effect estimates when instru-
mental variable analysis is not possible. Associations between 
the Introduced Variable and outcome may merely complicate, but 
not preclude, use of the method. In other words, Introduced Vari-
ables may not have to meet the “exclusion restriction” tradition-
ally applied to instrumental variables (i.e., having no correlation 
with outcome other than exclusively through an association with 
treatment). However, for optimal performance it may still prove 
advantageous for the Introduced Variable to meet, or nearly meet, 
the condition of having no correlation with other confounders, at 
least with respect to unmeasured confounders.

Conceptualizing the ACCE Method as consisting of two 
basic components
Since these steps and substeps may seem somewhat complex ini-
tially, it may help to conceptualize the ACCE Method as simply 
involving two overarching components: 1) attempting to quantify 

the two contributions to residual confounding in Model 1; and 
2) subtracting these estimates of unmeasured confounding from the 
Model 1 treatment effect estimate.

Component 1 involves several operations: creating models to delib-
erately amplify confounding, measuring their treatment effect 
estimates, and dividing the change in the treatment effect esti-
mate (adjusted to remove the effect of the change in confounding 
attributable to the Introduced Variable(s)) by the predicted change in 
confounding amplification. This entire process estimates one contri-
bution to Model 1 residual confounding: the Model 1 confounding 
that was amplified through insertion of the Introduced Variable(s) 
in the Model 2 propensity score. The separate contribution of the 
Introduced Variable(s) to Model 1 confounding needs to be esti-
mated. This estimate is achieved by entering the imbalance of the 
Introduced Variable, and its Introduced Variable-outcome regres-
sion coefficient, into the Bross equation. (Using slightly different 
values, the Bross equation also generates the adjustment mentioned 
above to the change in the treatment effect estimate).

The second component is much simpler, involving only the sum-
ming the two parts of original residual confounding estimate and 
subtracting this sum from the Model 1 treatment effect estimate.

Illustrative examples
Four hypothetical examples
Four hypothetical examples are presented to help illustrate the 
ACCE Method. (As mentioned previously, largely nonmathematical 
metaphors to help illustrate the method are provided in Appendix 1).

The first hypothetical example simply fleshes out in more detail 
the particularly simple case already discussed. A propensity score 
model with an R2 of 0.25 for the prediction of treatment exposure 
yields a treatment effect estimate of approximately RR = 1.10 when 
it is used to compare the treated group to a comparison group by 
matching or stratification. A second propensity score model is gen-
erated by adding a single additional covariate that boosts the over-
all R2 of the expanded propensity score model to 0.5. This change 
in R2 leads to a decrease in the unexplained variance of exposure 
(1 - R2), and, as discussed in Step 4 on the preceding page, a pre-
dicted 50% amplification of confounding between the models. This 
second propensity score model yields a treatment effect estimate 
of approximately RR = 1.15 (Endnote C). If the Introduced Vari-
able added to the set of Model 1 covariates to produce Model 2 
has no genuine association with outcome (and no association with 
unmeasured covariates that have an association with outcome), then 
there is no need to adjust for this association in Steps 3 and 4 of the 
method. In this case, a simple conclusion results: if the treatment 
effect estimate increased by 50% when confounding amplification 
is expected to increase by 50%, this suggests that the entire, appar-
ent treatment effect estimate that was observed in Model 1 is due 
to confounding.

In this simple scenario (i.e., involving no Introduced Variable- 
outcome association), the only way for a genuine treatment effect 
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to exist, if the genuine treatment effect and unmeasured confound-
ing are in the same direction, is if the Model 2 treatment effect 
estimate increased by an amount less than the proportional con-
founding amplification occurring from Model 1 to Model 2. This is 
because it is only the confounding that amplifies, not the treatment 
effect, as the propensity score model’s R2 increases. In a sense, the 
treatment effect provides a “kernel” of constant effect amidst the 
change (amplification) of confounding. In this case, the more the 
original (Model 1) treatment effect estimate reflects genuine treat-
ment effect, the more refractory the treatment effect estimate should 
be to amplification in Model 2.

Alternatively, if a genuine treatment effect existed in the opposite 
direction of confounding, then the change in the Model 2 treat-
ment effect estimate would have to be greater than the amount 
predicted by strictly applying the expected proportional confound-
ing amplification to the Model 1 treatment effect. This is because 
more confounding would be necessary than simply that needed to 
account for the difference between the treatment effect estimate and 
a null association: additional confounding would be required to also 
account for the “distance’ between the genuine treatment effect (in 
the opposite direction) and the null value. As a result, this additional 
confounding beyond that required to explain simply the entire treat-
ment effect estimate (compared to the null) would lead to a change 
greater than predicted if the treatment effect estimate represented 
only the effect of confounding. In both these cases, the presence of 
a genuine treatment effect means that a change would be observed 
that was different (either greater or lesser) from that expected from 
the simple multiplication of the Model 1 treatment effect estimate 
by the amount of increased confounding amplification.

The second Hypothetical Example makes this clearer. Assume 
an identical scenario to the first example above, with only one 
difference: the Model 2 treatment effect estimate remains com-
pletely unchanged at RR 1.10. In this case the same 50% increase 
in confounding amplification between the two models produced 
a complete lack of a difference in the treatment effect estimates, 
implying essentially no residual confounding exists in Model 1. 
Furthermore, if residual confounding is in the same direction as the 
genuine treatment effect, the only way (absent an effect of random 
variability) that the Model 1 estimate can reflect a genuine treat-
ment effect is if the Model 2 RR ends up between 1.10 and 1.14. A 
Model 2 estimate of RR = 1.15 would imply essentially no genu-
ine treatment effect (Hypothetical Example 1), while an RR > 1.15 
would imply that the treatment effect and residual confounding are 
in opposite directions (and that some degree of a genuine, protec-
tive treatment effect exists) (Endnote D).

Hypothetical Example 3 examines a simplified version of the 
example provided in the Appendix Table. (The more complex ver-
sion is discussed as Hypothetical Example 4). The simplification is 
to assume no association between the Introduced Variable and out-
come. Assume Model 1 has a treatment effect estimate of RR = 1.265 
(beta coefficient = 0.235072) and an R2, in terms of prediction of 
exposure, of 0.25. Assume Model 2 has a treatment effect estimate 
of RR = 1.2985 (a beta coefficient = 0.2612) and an R2 of 0.5. 

(This again would produce 50% confounding amplification). If 
the Introduced Variable has no association with outcome, we can 
immediately determine, by mere inspection, that confounding is rela-
tively modest and the effect estimate of 1.265 primarily represents 
genuine treatment effect. The reason is that little change occurs in 
the treatment effect estimate. Certainly the increase in the treatment 
effect estimate does not come close to the value of RR = 1.422 that 
would be expected if the entire original RR = 1.265 was due to con-
founding (beta coefficient 0.235072 × 1.5 = 0.352608, which expo-
nentiated equals 1.422). In fact, the difference in beta coefficients 
between Model 1 and Model 2 is just +0.0261. This means that, if 
50% confounding amplification increases beta by 0.0261, then total 
confounding in Model 1 = 0.0261 / (1 - 0.75) / (1 - 0.5) = 0.0522, 
and thus the genuine treatment effect is beta = 0.2351 - 0.0522, 
or 0.1829, or RR = 1.20. This demonstrates that if no Introduced 
Variable-outcome association is present, then a treatment effect 
estimate that is generally refractory to the addition of the Intro-
duced Variable(s) suggests that most of the effect estimate is genu-
ine treatment effect.

The three examples above help demonstrate the important need to 
be able to accurately detect small differences in the treatment effect 
estimate between Model 2 and Model 1. In addition, the differences 
that are detected need to be due to confounding amplification, rather 
than due to other differences (Appendix 2) or random variation. The 
next example illustrates the importance of accurately detecting and 
correcting for any Introduced Variable-outcome relationship.

Hypothetical Example number 4 illustrates the somewhat more 
complex, but still relatively straightforward, calculations required 
when the Introduced Variable does have an association with out-
come. The full calculations have been described in the Meth-
ods section, with further detail provided in the Appendix Table. 
Let us return to Hypothetical Example 3 but assume that the Intro-
duced Variable has an association with outcome of beta = 0.04879 
[RR = 1.05]. We also need to know how the degree of imbalance in 
this variable initially between the treatment groups in Model 1 (in 
this example, there is an 80% [treatment group] to 20% [compari-
son group] imbalance), and how much more closely into balance it 
becomes in Model 2 (in this example, a 52% to 48% difference). 
Immediately, we can appreciate that the quantity of unmeasured 
confounding in the treatment effect estimate is considerably larger 
than in Hypothetical Example 3, for one simple reason: ordi-
narily, if we markedly reduce the imbalance in a variable that is 
more prevalent in the treatment group (as in this case) and which 
biases in the same direction as the treatment effect estimate, we 
would expect to see a decrease in the treatment effect estimate, 
not an increase. (The treatment effect beta coefficient increases by 
+0.0261). The fact that an increase is observed must mean that con-
siderable additional confounding exists, separate from the effects 
of the Introduced Variable. This additional confounding must be 
large enough so that its relatively modest amplification (50%) is 
more than sufficient to overcome the effect of the increased bal-
ance in the Introduced Variable. Using the Bross equation allows 
us to quantify the expected effect of the increased balance of the 
Introduced Variable. This change in balance would be estimated to 
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decrease the treatment effect estimate by beta = 0.0273. So, to deter-
mine the actual quantitative amount of amplified confounding, we 
subtract this decrease in treatment effect estimate from the change 
in the treatment effect estimate that was observed. Thus the change 
in the treatment effect estimate due to confounding amplification is 
beta = 0.0534 (i.e., 0.0261 minus -0.0273). Dividing this quantity 
by the predicted amplification of 50%, as determined by the calcu-
lation ((1 / (1 - 0.5)) / (1 / (1 - 0.25))) - 1 = 0.5, gives an estimate of 
total Model 1 residual confounding attributable to the amplifiable 
fraction (i.e., the total residual confounding except that contributed 
by the Introduced Variable and its correlates) of beta = 0.0534 / 0.5, 
or 0.1068.

We now must subtract this value, plus the confounding attribut-
able to the Introduced Variable, from the Model 1 treatment effect 
estimate. At this point, the Bross equation uses the difference 
between an 80%/20% imbalance and the 50%/50% balance that 
would be observed if there was no confounding in Model 1 due 
to the Introduced Variable. This produces a slightly larger number 
(beta = 0.0293) than in the previous application of the Bross equa-
tion (beta = 0.0273), which estimated confounding resulting from 
the difference between the initial 80%/20% imbalance and the 
52%/48% balance observed after propensity score balancing. Add-
ing this beta = 0.0293 quantity to our estimate of the confounding 
attributable to the amplifiable fraction means that we estimate that 
Model 1 contained residual confounding of beta = 0.1068 + 0.0293, 
or 0.1361. Since the treatment effect estimate is RR = 1.265 
(beta = 0.2351), this means the genuine treatment effect estimate is 
beta = 0.2351 - 0.1361, or beta = 0.09903 [i.e., RR = 1.10]). That 
is, the findings imply that more than half of the original, sizeable 
“treatment effect estimate” (beta = 0.2351; RR = 1.265) was attrib-
utable to residual confounding. (Please see the Appendix Table for 
complete calculations).

Put in the form of the Summary Equation, the following calculation 
of the unconfounded treatment effect estimate would result:

0.2351 - ((0.0261 - -0.273) / (((1 / (1 - 0.5)) / (1 / (1 - 0.25))) - 1)) - 0.293 
= 0.09903

Thus, despite the fact that the treatment effect estimates for Model 1 
and Model 2 are both confounded by an unknown amount of 
unmeasured confounding, it is possible, in principle, to derive an 
estimate of an unconfounded treatment effect. This estimate is pos-
sible because knowledge of the quantitative change between these 
two treatment estimates and the estimated proportional confound-
ing amplification underlying this change allows, in a few steps, the 
derivation of an estimate of the unconfounded treatment effect.

Results
Partial application using published data
The example provided here from published data builds from a rare 
opportunity in the literature in which sufficient information has 
already been provided to partially apply the method. Thanks to 
their detailed reporting, Patrick et al.,10 fortuitously present results 
that provide an opportunity to apply some aspects of the ACCE 
Methodology on real-world data. Obviously, their study was not 

constructed to illustrate the ACCE Method; therefore it is being 
used post hoc to explore the potential of the method. The full quan-
titative version of the ACCE Method cannot be applied for several 
reasons (discussed below). As a result, the data provided include 
several additional uncertainties beyond those that would accom-
pany a deliberate implementation of the ACCE Method. However, 
by permitting the performance of even a partial version of the ACCE 
Method to be assessed, this study illustrates the value this method 
may have in serving as a probe to provide at least a qualitative sense 
of whether substantial residual confounding is likely, along with its 
likely direction.

Patrick et al.,10 analyzed the associations between statins and both 
all-cause mortality and hip fracture using a number of propensity 
scores. For both of the outcomes, two of the propensity scores 
formed an important nested pair. One propensity score was nested 
within a slightly larger propensity score that only differed in a sin-
gle added covariate (glaucoma diagnosis). Glaucoma diagnosis was 
considered to be a potential instrumental variable in these analyses. 
First, glaucoma diagnosis was strongly associated with treatment 
exposure (since the comparison group for both analyses consisted 
of individuals who used medications to treat glaucoma). Patients 
with a glaucoma diagnosis had an odds ratio for statin exposure of 
0.07. That is, patients with glaucoma diagnosis had approximately 
14:1 odds of being in the comparison group (the group receiving 
medications for glaucoma) than the statin treatment group. Second, 
it is plausible (although not certain) that glaucoma diagnosis lacks a 
substantial association with the outcomes of all-cause mortality and 
hip fracture, and thus may be functioning as an instrumental vari-
able or near-instrumental variable. (Although not termed an “instru-
mental variable” originally10, such a term was used for glaucoma 
diagnosis in these analyses in a subsequent manuscript describing 
these findings11).

Several information gaps limit this example, however, making it not 
possible to derive quantitative estimates of unmeasured confounding. 
Patrick et al.10 did not report R2 since they used logistic propensity 
scores, but rather provided c statistics. The relationship of the c sta-
tistic to confounding amplification has not been examined, in con-
trast to the relationship between R2 and confounding amplification. 
In addition, it is not possible to adjust for any association between 
the Introduced Variable (glaucoma diagnosis) with outcome, since 
the needed coefficient from a full multivariate regression contain-
ing all the propensity score covariates are not provided. The manu-
script does note that the minimally-adjusted hazard ratio (HR) for 
glaucoma diagnosis (adjusted for age, age2, and sex) is >1.175 or 
<1 / 1.175 for both outcomes. (The actual age and-sex-adjusted HR 
observed is HR ≈ 0.85 for both outcomes [Dr. Amanda Patrick, Per-
sonal Communication]). While the age- and sex-adjusted HR has 
some value, what is truly needed is the glaucoma diagnosis HR, 
adjusted for all the other propensity score covariates. (This would 
total 143 covariates for the mortality analysis and 120 covariates 
for the hip fracture analysis10). This fully-adjusted HR would pro-
vide information about whether the glaucoma diagnosis HR would 
approximate a null value if all the other covariates were included. It 
is also not possible to determine if close similarity exists between 
the models in the balance achieved in the measured covariates and 
the intervention delivered (e.g., dose or duration) (Appendix 2). 
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Finally, the measure of treatment effect, the hazard ratio, may pos-
sibly complicate efforts to derive a quantitative estimate of con-
founding due to the noncollapsibility of the hazard ratio.

Interpretation of the published results using a partial 
version of the ACCE Method
Despite such limitations, application of even this partial version of 
the ACCE Method appears to provide useful qualitative estimates of 
the residual confounding present in these analyses. Table 1A shows 
that in the all-cause mortality analyses the addition of the Intro-
duced Variable (glaucoma diagnosis) moves the treatment effect 
estimate away from the null by a modest amount. This implies 

that the total residual confounding (including residual confound-
ing from unmeasured factors) likely biases, but only very modestly, 
towards observing a larger effect size for statins than is genuinely 
present. This observation is consistent with randomized data12. In 
contrast, Table 1B shows that addition of the same Introduced Vari-
able in the hip fracture analysis changes the observed treatment 
effect HR from 0.76 to 0.69. This is a much more sizeable change, 
implying a larger quantity of underlying residual confounding bias-
ing the estimate away from the null. If glaucoma diagnosis is in 
fact a near-instrumental variable, the results would suggest that the 
unconfounded treatment effect estimate is considerably closer (than 
HR = 0.76) to the null value suggested by randomized data13.

Table 1. Examples of qualitative application of the ACCE Method (drawn from Reference 10).

Table 1A. Statin - mortality analysis

Model 1 

Exposure (Treatment) of Interest: Receipt of Statin (vs. Glaucoma Medication) 
 
Outcome: All-Cause Mortality 
 
Included Covariates: 143 Variables with a +/- 20% association with All-Cause Mortality

c statistic 
Treatment Effect 

Estimate 
(Hazard Ratio)

Expected Result 
(from RCT meta-analyses)

Likely Confounding and Treatment Effect 
(based on comparison with RCT data)

0.82 HR = 0.84 HR = 0.85 or less 
(i.e., closer to null)

Away from null (treatment effect estimate overestimates statin 
protective effect), although confounding appears small to 
modest. 
 
Genuine treatment effect most likely closer to the null than 
HR = 0.84.

Model 2  
 

(identical to Model 1 except for Addition of a Single “Introduced Variable”: Glaucoma Diagnosis) 

Exposure (Treatment) of Interest: Receipt of Statin (vs. Glaucoma Medication) 
 
Outcome: All-Cause Mortality 
 
Introduced Variable “Probe”: Glaucoma Diagnosis, a variable with a strong association with exposure (approximately 14X more 
common in the comparison group [glaucoma medication users] than in the statin group) 
 
Expected Association of Introduced Variable with Outcome: Minimal 
 
Included Covariates: 143 Variables with a +/- 20% association with All-Cause Mortality, plus the “Introduced Variable”

c statistic 
Treatment Effect 

Estimate  
(Hazard Ratio)

Size & Direction of Change 
of Treatment Effect 

Estimate, 
compared to Model 1

Likely Confounding and Treatment Effect  
(based on ACCE Method)

0.90 HR = 0.82

Small 
(0.84 → 0.82) 

 
in direction away from null

Away from null (since amplifying confounding pushes 
treatment effect estimate in that direction), although 
confounding appears small to modest. 
 
Genuine treatment effect most likely closer to the null than 
HR = 0.84.
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Table 1. Examples of qualitative application of the ACCE Method (drawn from Reference 10). (continued)

Table 1B. Statin - hip fracture analysis

Model 1 

Exposure (Treatment) of Interest: Receipt of Statin (vs. Glaucoma Medication) 
 
Outcome: Hip Fracture 
 
Included Covariates: 120 Variables with a +/- 20% association with Hip Fracture

c statistic 
Treatment Effect 

Estimate  
(Hazard Ratio)

Expected Result  
(from RCT meta-analyses)

Likely Confounding and Treatment Effect  
(based on comparison with RCT data)

0.81 HR = 0.76 Approximately 
HR = 1.0

Away from null (treatment effect estimate overestimates statin 
protective effect), and confounding appears likely to be large. 
 
Genuine treatment effect most likely closer to the null than 
HR = 0.76, potentially substantially closer.

Model 2  
 

(identical to Model 1 except for Addition of a Single “Introduced Variable”: Glaucoma Diagnosis) 

Exposure (Treatment) of Interest: Receipt of Statin (vs. Glaucoma Medication) 
 
Outcome: Hip Fracture 
 
Introduced Variable “Probe”: Glaucoma Diagnosis, a variable with a strong association with exposure (approximately 14X more 
common in the comparison group [glaucoma medication users] than in the statin group) 
 
Expected Association of Introduced Variable with Outcome: Minimal 
 
Included Covariates: 120 Variables with a +/- 20% association with Hip Fracture, plus the “Introduced Variable”

c statistic 
Treatment Effect 

Estimate  
(Hazard Ratio)

Size & Direction of Change of 
Treatment Effect Estimate, 

compared to Model 1

Likely Confounding and Treatment Effect 
(based on ACCE Method)

0.89 HR = 0.69

Sizeable 
(0.76 → 0.69) 

 
in direction away from null

Away from null (since amplifying confounding pushes treatment 
effect estimate in that direction), and confounding might be 
large. 
 
Genuine treatment effect most likely closer to the null than 
HR = 0.76, potentially substantially closer.

Comparison Between the Two Analyses 

Use of the glaucoma diagnosis Introduced Variable “probe” suggests substantially more confounding in the hip fracture analysis 
than the all-cause mortality analysis. From a highly similar starting point (c = 0.81 or 0.82) and highly similar magnitude of c statistic 
change (0.08), the treatment effect estimate for the hip fracture analysis moved substantially further away from the null than for the 
all-cause mortality analysis. This matches what is suggested from RCT data.

Additional Considerations:  
 
1) For these two examples there are randomized trial meta-analyses (extrinsic information) to separately inform judgments about 
likely confounding. This helps boost confidence in the ACCE Method in that it provides the same qualitative conclusions about likely 
confounding that reference to the RCT meta-analysis provides. However, the ACCE Method is likely to have its greatest value in 
circumstances in which such meta-analyses are lacking, since it permits evidence from the analysis itself to inform judgments about 
confounding. 
 
2) Several elements are lacking that are necessary to derive a quantitative estimate of residual confounding. Missing data elements 
include knowledge of whether (and how) c statistics reliably index confounding amplification in a manner analogous to R2 values, 
and a regression coefficient for glaucoma diagnosis that includes all the covariates in the propensity score. What is known is that in 
age and sex-adjusted analyses, the association of glaucoma diagnosis with both outcomes (as measured by the hazard ratio) was 
extremely similar (HR = 0.85) (Dr. Amanda Patrick, personal communication). However, whether this similarity between the analyses 
in the Introduced Variable-outcome association persists in the full propensity score analyses is uncertain (since the two propensity 
score analyses contain at least some different covariates). Nor is it known if the glaucoma diagnosis-outcome associations in the fully 
multivariate regression are close to HR = 1.0 (which is possible, but far from certain).

Notes:  
 
Data taken from Reference 10. Specifically, data for each “Model 1” presented here was taken from Table 2 of Reference 10 (the 
Outcome +/- 20% model, or the 6th model listed for both the all-cause mortality and the hip fracture outcomes). Data for each “Model 2” 
presented here was taken from information provided in the text of Reference 10 (page 554). 
 
HR = hazard ratio
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Even if glaucoma diagnosis is not functioning as a near-instrumental 
variable, as long as the fully-multivariate regression coefficients for 
glaucoma diagnosis for each outcome are generally similar (and 
the age- and sex-adjusted hazard ratios for glaucoma diagnosis pre-
sented previously are highly similar), the similar change in c sta-
tistics observed would suggest the presence of considerably more 
residual confounding in the hip fracture analysis than the all-cause 
mortality analysis (Endnote E). This is a conclusion independently 
suggested by the randomized trial meta-analyses12,13 cited by the 
authors. Notably, the ACCE Method, even when applied in a very 
partial and qualitative form, suggests the same conclusion. In this 
fashion, the ACCE Method may prove useful for estimating at least 
the likely general size and direction of residual confounding in the 
many circumstances where substantial randomized trial data does 
not exist. This capacity of the method to provide even a qualita-
tive estimate of residual confounding may constitute an important 
analytic advance.

Discussion
This paper presents a relatively straightforward method exploit-
ing the phenomenon of confounding amplification to potentially 
obtain quantitative estimates of total residual confounding and 
unconfounded treatment effects. To my knowledge, it has not been 
previously recognized that the phenomenon of confounding ampli-
fication, if predictable (as suggested by both recent simulation5 and 
theoretical work4), provides a potential mechanism to estimate total 
residual confounding. The fundamental approach of deliberately 
introducing amplified confounding into an analysis to evaluate, 
qualitatively or quantitatively, the total residual confounding origi-
nally present appears to possess both clear logic and considerable 
promise.

Even if subsequent research determines that ACCE Method esti-
mates are too imprecise to serve as useful quantitative estimates, 
this general approach may have considerable value as a semi- 
quantitative or qualitative “probe” for detecting the general size and 
direction of residual confounding. While important facets of the 
method are not yet fully resolved concerning its quantitative accu-
racy and optimum implementation (see below), further research is 
clearly indicated given the potential value of a new approach to 
removing confounding from nonrandomized treatment effect esti-
mates. It is hoped that the description of the method provided here 
is sufficient to permit the larger research community to immedi-
ately begin participating in the validation and refinement of this 
novel approach.

Considerations for validation and further research
This method will have its greatest value to the extent it succeeds in 
providing a useful quantification of residual confounding. Estab-
lishing such performance by the method will involve more detailed 
and precise examination of both simulated and real-world data, and 
almost certainly will involve the contributions of multiple research 
teams. Useful avenues for validation research include (in anticipated 
priority order):

1)	 Determining the predictability of the relationship between 
the proportional amount of confounding amplification 
and measures of exposure prediction or change in internal 
markers. The predictability of the proportional amount con-
founding amplification is the linchpin of this proposed method. 
While this predictability is suggested by two publications4,5, 
ways can be envisioned in which this predictability might break 
down in real-world datasets (Appendix 3.1, Appendix 3.2 and 
Appendix 3.3).

2)	 Establishing that multivariate regressions can be used to 
accurately estimate the contribution of the Introduced 
Variable and its correlate(s) to both the original confound-
ing and change in confounding between models. This is dis-
cussed extensively in Appendix 3.2 and Appendix 4.

3)	 Determining whether sufficiently precise results can be 
routinely obtained from the ACCE Method despite random 
variability in the treatment effect estimates. Some recent 
studies do suggest that quite subtle changes in relative risk or 
hazard ratio resulting from the application of slightly different 
propensity score models can be detected9,10.

4)	 Developing methodology to develop confidence limits 
around the ACCE Method’s final treatment effect estimate. 
An obvious need for such methods exists. The procedure of 
bootstrapping would be one candidate approach.

5)	 Identifying approaches to, or circumstances that would, 
ensure other differences between the two models (e.g., in the 
balance achieved for included confounders, in the patient 
sample, and in the intervention received) are minimized. 
Whether these differences (discussed in Appendix 2) would 
create substantial error is uncertain.

An important need also exists to determine whether a set of Intro-
duced Variables can be used, as appears possible (Appendix 6), if 
a single Introduced Variable does not produce sufficient confound-
ing amplification. Indeed, part of the imperative for research on the 
ACCE Method stems from the possibility that the method may have 
unusually broad flexibility by: 1) permitting estimation using varia-
bles with a substantial association with exposure but also having an 
independent associations with outcome; 2) permitting a set of vari-
ables to be used to predict exposure for the purposes of the method; 
and 3) possibly also functioning to permit estimates of unmeasured 
confounding after treatment initiation (Appendix 2.3b).

Simulation studies will almost certainly be the most immediate 
approach to addressing these research needs and evaluating the 
performance of this method in general. (These studies have the 
advantage that given that the genuine treatment-outcome asso-
ciation and the amount of unmeasured confounding is able to be 
precisely specified by the investigator). Such simulations might 
build upon the recent simulation study reporting predictable 
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confounding amplification within the lower range of R25, and others 
that have considered the impacts of unmeasured confounding14,15. 
Simulations might start with a simple 4- or 5-variable scenario: the 
treatment, a measured confounder, the Introduced Variable, and 
one or two unmeasured confounders. The simulations might start 
by testing the accuracy of the treatment effect estimates achieved 
when the Introduced Variable does or does not have an association 
without outcome, and expand to examine whether, and how much, 
the performance of the method suffers when varying strengths 
of correlation exist between the Introduced Variable and one or 
more unmeasured confounders.

Real-world studies will also be needed to help resolve whether 
the ACCE Method, when applied to complex and often highly-
correlated real-world data, succeeds in making results from 
nonrandomized studies better parallel results from randomized 
trials16,17 (Appendix 3.2 and Appendix 7).

Potential application of the method to comparative 
effectiveness and surveillance research
Even if this method ultimately does not demonstrate strong quan-
titative precision, the potential qualitative estimates of this method 
may prove to have some benefit for nonrandomized comparative 
effectiveness research in general, especially for studies in which 
substantial residual or unmeasured confounding is expected. For 
example, many studies of mental health and/or behavioral interven-
tions might be expected to have substantial unmeasured confound-
ing. Important elements of the conversation between patient and 
provider that inform judgments of the severity of the patient’s con-
dition and help influence treatment decisions may often go unre-
corded in administrative data or even in the patient’s chart, and thus 
be unmeasured.

Another notable use would be to enhance medication surveillance 
efforts. By providing even an approximate sense of whether sub-
stantial unmeasured confounding is likely to be present, the ACCE 
Method could help more accurately indicate which prominent 
“signals” (either in effectiveness or safety) observed during the 
screening of large datasets appear to be less confounded (and thus 
should be a priority for additional investigation).

Conclusions
This paper has outlined a relatively straightforward yet novel 
method to potentially obtain a quantitative estimate of total residual 
confounding. This total residual confounding estimate then allows, 
in principle, for an estimate of the unconfounded treatment effect to 
be calculated. This paper has described the two overarching com-
ponents of the method and described the specific individual steps 
and substeps necessary for its implementation. This paper has also 
offered a preliminary examination of the performance of a sim-
ple, partial version of this method on published data, and outlined 
research needs for refinement and validation of this method. Given 

the importance of identifying methods that may help remove con-
founding from nonrandomized treatment effect estimates, further 
investigation of this method by multiple research groups is clearly 
warranted. Even if the ACCE Method is eventually shown to have 
limitations or evolves from the form proposed here, the method’s 
general approach of deliberately amplifying confounding to permit 
estimation of the residual confounding originally present may have 
enduring analytic value. The ACCE Method and its underlying 
logic therefore have the potential to constitute a substantial advance 
for nonrandomized intervention research, and follow-up research 
should be rapidly conducted.

ENDNOTES
A.	 In actual application, these calculations need to account for any 

association between the Introduced Variable(s) and outcome 
if present. This adjustment is not included in this very simple 
example, but is likely needed in most implementations of the 
method (and is discussed in Steps 3 and 4).

B.	 These regressions could be performed either within treatment 
arms or across both treatment arms while including an indicator 
for treatment arm, as well as a covariate(s) for treatment arm-
Introduced Variable interaction(s). My expectation is that 
regressions within each treatment arm may be more useful, 
given the correlation between the Introduced Variable and 
treatment,  although this approach raises the question about 
how to best combine the two within-treatment arm coefficients 
(e.g., an average, weighted by the number of patients in each 
treatment arm).

C.	 This example and the subsequent examples use a linear 
propensity score model and a linear (risk ratio) outcome model. 
This is because: 1) the existing simulation demonstrating 
proportional confounding amplification is for a linear propensity 
score model, and 2) it is conceivable (but not certain) that the 
noncollapsibility of logistic outcome models might interfere 
with the accuracy of the subtraction of the Model 1 treatment 
effect estimate from the Model 2 treatment effect estimate.

D.	 The only way to produce such a large quantitative change 
in the treatment effect estimate (i.e., RR > 1.15) with 50% 
confounding amplification and starting from an RR of 1.10 
would be for the unmeasured confounding to be so substantial 
as to exceed the entire Model 1 treatment effect estimate. 
Subtracting this estimated amount of confounding from the 
Model 1 treatment effect estimate would therefore produce 
an estimate of the genuine treatment effect that was below the 
null (ignoring, once again, random variability and making the 
important assumption of no association between the Introduced 
Variable and outcome).

E.	 In fact, the change in c statistic is highly similar (all-cause 
mortality: Model 1 c = 0.82, Model 2 c = 0.90; hip fracture: 
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Model 1 c = 0.81, Model 2 c = 0.89). Thus, even though it 
is not clear whether the c statistic in general can serve as 
even an approximate index of confounding amplification, 
the c statistics in this case are so similar as to suggest similar 
proportional confounding amplification is likely. The much 
greater change in the treatment effect estimate observed for 
the hip fracture analysis implies this analysis contains greater 
residual confounding biasing in the direction of a protective 
effect, if the assumption made, that the fully-adjusted glaucoma 
diagnosis HR is similar in the two analyses, is valid.

F.	 At the most fundamental level, the ACCE Method can be con-
ceptualized as determining the unconfounded treatment effect 
estimate by subtracting from the Model 1 Treatment Effect 
Estimate both a) the estimate of confounding in Model 1 for 
the “amplifiable fraction” of Model 1 confounding (that is, the 
confounding from all the confounders except the Introduced 
Variable(s) and, to some degree, its correlates), and b) subtract-
ing the confounding due to the Introduced Variable, and, to some 
degree, its correlates. The terms described in “a)” and “b)” are 
intended to be complements of each other, in that together they 
are intended to encompass between them all the (baseline) con-
founding present in Model 1. Thus, what remains when they 
are removed is the unconfounded treatment effect estimate for 
Model 1. (The most rigorous, but much more labor-intensive, 
estimate of Model 1 residual confounding would also include 
the confounding contributed by the residual imbalance of each 
of the propensity score covariates and, potentially, correlates 
of these covariates, as well as the change in the balance of 
these propensity score covariates occurring between Model 1 
and Model 2. For simplicity, those terms are not considered 
here, but are discussed in Appendix 2.1, Appendix 3.2a, and 
Appendix Figure 1c).

	 The quantities that we can estimate by relatively conventional 
analysis of the data (i.e., in a sense, the “known quantities”) 
are the Model 1 treatment effect estimate and the estimated 
confounding attributable to the Introduced Variable(s) and its 
correlates (by using multivariate regression coefficients and 
the Bross equation). Therefore, the only term for which we are 
lacking an estimate is the confounding due to the “amplifi-
able fraction” of Model 1 confounding. Furthermore, we can 
obtain important information that bears upon the confounding 
attributable to the “amplifiable fraction” of Model 1 confound-
ing. This information consists of the Model 2 treatment effect 
estimate, and the proportional amount of confounding amplifi-
cation expected, which recent simulation and theoretical work 
suggests can be predicted for linear propensity score models 
from the model R2 (for predicting exposure). More precisely, 
the proportional confounding amplification is estimated from 
(1 / (1 - R2)). 

	 The most fundamental contribution of the ACCE Method is 
to call to attention to the fact that, with this readily available 

information, the final term needed (the Model 1 confounding 
attributable to the “amplifiable fraction”) should be able to be 
estimated. While the accuracy of this estimate has yet to be 
determined, the ability to come up with even an approximate 
estimate of the aggregate effect of all remaining residual con-
founding is noteworthy. In the manuscript and Appendices, the 
confounding in Model 1 attributable to the “amplifiable frac-
tion” is represented by the following term:

( )

( )

(M2 – M1)M M1 IntV

2
M2

2
M1

(TEE TEE ) Conf

1

1
1

1

1
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R

∆
− −
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  
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2

	 where TEE
M2

 equals the Model 2 Treatment Effect Esti-
mate, TEE

M1
 equals the Model 1 Treatment Effect Estimate, 

Conf
IntVΔ(M2-M1)

 equals the confounding associated with the 
change in the balance between the treatment groups of the 
Introduced Variable(s) and its correlates in Model 2 compared 
to Model 1, and R2

M1
 and R2

M2
 equal the R2 values for propensity 

score Model 1 and Model 2, respectively.

	 To derive this term mathematically, we can proceed with the 
following reasoning. Consider the simplest, “ideal” case in 
which no changes occur between Model 1 and Model 2 except 
confounding amplification. For example, that would mean 
that there are no differences between Model 1 and Model 2 
in the balance in measured confounders or in the ”dose” of 
intervention received (although it is important to recognize, as 
discussed in Appendix 2, that means exist to address differ-
ences in either of these characteristics). Then the difference in 
the Model 2 treatment effect and the Model 1 treatment effect, 
once the differences attributable to the change in balance of the 
Introduced Variable are taken into account (i.e., Conf

IntVΔ(M2-M1)
) 

should reflect amplification of the Model 1 confounding that 
was not attributable to the Introduced Variable(s) and, to some 
degree, its unmeasured or nonincluded correlates. For this case, 
let us assume an Introduced Variable or Variables that is not 
correlated with other unmeasured or nonincluded confounders. 
To represent the difference in treatment effect estimates inde-
pendent of the contribution from the change in balance of the 
Introduced Variable as it is added to generate Model 2, we can 
use the term:

(TEE
M2

 - TEE
M1

) - Conf
IntVΔ(M2-M1) 

	 where TEE
M2

, TEE
M1

, and Conf
IntVΔ(M2-M1) 

are as defined above. 

	 For simplicity for the next few steps, let us substitute a sin-
gle term for this quantity, “AdjΔ

TEE
”, with “Adj” referring to 
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“Adjusted”, that is, this change in Treatment Effect Estimates 
between Model 2 and Model 1 has been adjusted to reflect the 
contribution from the change in balance of the Introduced Vari-
able. The “AdjΔ

TEE
” terminology matches that used in Steps 3d 

and 4a in Appendix Table 1. That is:

	 (TEE
M2

 - TEE
M1

) - Conf
IntVΔ(M2-M1) 

= AdjΔTEE
 

	 Since we are examining conditions where this AdjΔ
TEE

 reflects 
only the amplification of the amplifiable fraction of Model 1 
confounding, this term can be set equal to this amplification. 
This amplification can be represented algebraically, using the 
1 / (1 - R2)

 
relationships, in a simple form, as follows, starting 

with the Model 1 Treatment Effect Estimate:

	 Model 1 Treatment Effect Estimate = x + y + k 

	 where x equals confounding from the amplifiable fraction in 
Model 1, y equals the confounding due to the Introduced Varia-
ble and, to some degree, any nonincluded correlated confound-
ers, and k equals the constant that is of crucial interest (the 
unconfounded treatment effect estimate). With this notation, 
Model 2’s Treatment Effect Estimate can be represented as:

	

2
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 represents the proportional 

amount of additional confounding in Model 2 compared to 

Model 1. Confounding amplification in Model 2 cannot be esti-

mated simply by ( (1 -

1

R
2
M2))  because that would represent the con-

founding amplification relative to a model with an R2 of 0.0. 
Instead, the proportional amount of confounding amplification 

in Model 2 relative to Model 1 needs to be determined, and for 

this reason the ( (1 -

1
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2
M2))  term is divided by ( (1 -

1
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2
M1)) , creating the 
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.

	 Given these terms for the Model 1 and Model 2 Treatment 
Effect Estimates, then AdjΔ

TEE,
 the Model 2 – Model 1 change 

in the Treatment Effect Estimate, adjusted to reflect only 
amplification of confounding (that is, not the change attributa-
ble to insertion of the Introduced Variable(s) “probe” needed to 
generate confounding), can be expressed as:

2
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TEE

2
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1
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	 Focusing on the right side of the equation, the y and k terms 
cancel out and can be removed: + y + k - ( + y + k) = 0. This 
makes intuitive sense. Regarding y, the component of y that is 
unchanging (i.e., in common between Model 1 and Model 2) 
cancels out and is not part of the difference between TEE

M2
 

and TEE
M1

. Regarding k, the genuine underlying treatment 
effect estimate has not changed between Model 1 and Model 2, 
assuming that we can keep elements such as balance in the 
propensity score covariates and/or dose received the same or, 
for practical purposes, extremely similar between the models. 
If the genuine treatment effect is not varying between mod-
els, then it is not making a contribution to the change in the 
treatment effect estimates between Model 2 and Model 1. 
(Alternatively, in the case of the balance of measured con-
founders included as covariates in the propensity score, the 
effect of changes in balance of those confounders could be 
estimated by the Bross equation [Appendix 2.1 and Appendix 
Figure 1c]).

	 This gives the equation:
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	 Next, we can factor out x to produce the following term. 
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	 Solving for x yields:
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	 Substituting back in the ((TEE
M2

 - TEE
M1

) - Conf
IntVΔ(M2-M1)

) 
term for AdjΔ

TEE
 yields the equation for the original confound-

ing (in Model 1) attributable to the amplifiable fraction of con-
founding, x:
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–

	 Of note, the left hand side of the equation consists entirely of 
terms that can be readily estimated from data. This gives us 
the final quantity needed to estimate an unconfounded treat-
ment effect estimate. Therefore, if we subtract this term plus 
an estimate of the Model 1 Confounding due to the Introduced 
Variable (s) and, to some degree, its correlates, from the Model 
1 Treatment Effect Estimate, we should obtain an estimate of 
an unconfounded treatment effect:
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2

	 Quantities are as defined previously, with the additions of 
Conf

IntVM1
, which represents the confounding association with 

the Introduced Variable and, to some degree, its correlates, 
given the initial imbalance of the Introduced Variable observed 
in Model 1, and Unconfounded TEE, which represents the 
unconfounded treatment effect estimate that thereby results. As 
a point of clarity, no subscript is given to the Unconfounded 
TEE term to designate it as being the Unconfounded TEE for 
Model 1, even though the equation develops its Unconfounded 
TEE by subtracting the two components of Model 1 confound-
ing from the observed Model 1 treatment effect estimate. No 
subscript is used because a key assumption is that the underly-
ing treatment effect estimate for both models is the same.

	 As pointed out in the manuscript, Appendix 3.2, and Appen-
dix 4, the ability of the Introduced Variable(s) coefficient(s) to 
capture the contribution of confounding from the unmeasured 
or nonincluded confounders that are correlated with the Intro-
duced Variable is a major source of uncertainty for the method. 
While it may (or may not) be determined that often this is not 
a major practical concern, or that Introduced Variables can 
be identified that largely lack any significant correlation with 

unmeasured confounding (Appendix 4), further research is 
clearly needed. It should be somewhat straightforward to use 
simulated datasets to make at least an initial inquiry into the 
impact of unmeasured confounding correlated with the Intro-
duced Variable on the unconfounded treatment effect estimate 
that this method produces. Another question concerns whether 
real-world constraints exist that may limit confounding ampli-
fication. A more complete list of potential uncertainties is pro-
vided in Appendix 5, Appendix Figure 1b.
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Appendices
Seven appendices are provided to more thoroughly outline key con-
siderations involved in the implementing the method. These Appen-
dices are intended to provide detailed information that some readers 
may find very useful, but that may not be of interest to some other 
readers. These Appendices can be read in their entirety, selectively, 
or not at all.

Appendix 1 starts with simple metaphors designed to make the 
basic concept of why increasing a bias (confounding) can be use-
ful for understanding the bias, and transitions into a more complex 
metaphor to illustrate the logical basis of the key elements of the 
method. These elements include: 1) the step involving the division 
of the change of treatment effect estimates by expected confound-
ing amplification to back-extrapolate the original contribution of 
the “amplifiable fraction” of residual confounding; and 2) the need 
to subtract confounding due to the Introduced Variable (or change 
in the Introduced Variable) from both the change in treatment effect 
estimates and the original Model 1 treatment effect estimate.

Appendices 2, Appendix 3, and Appendix 4 address important 
questions concerning the need to attend to details of the compari-
son between Model 1 and Model 2 in order to obtain as accurate 
an estimate of total residual confounding as possible. Appendix 5 
present the Summary Equation of the ACCE Method three times, 
once labeling the constituent parts, once noting how the various 
terms of the equation relate to the key uncertainties discussed in the 
manuscript and in Appendices 2 – Appendix 4, and once provid-
ing a particularly rigorous version adding adjustments discussed in 
Appendix 2 and Appendix 3. Appendix 6 starts to consider how 
multiple Introduced Variables (i.e., introducing a set of variables, 
rather than a single variable) might be used. Appendix 7 offers a 
discussion of the some of the qualities that can be currently antici-
pated as important to consider in choosing Introduced Variables and 
implementing the method.

Some may view this level of detail concerning important aspects 
of the method as premature, since the method has not been thor-
oughly validated yet. I hope instead that this detailed description 
of the issues that I have been able to anticipate will both facili-
tate the proper validation and accelerate the sophisticated use of 
the method going forward. The details discussed below may not be 
highly important if the method is ultimately determined to only pro-
vide general, highly-approximate qualitative estimates of residual 
confounding. If, however, this method indeed appears to provide, 
at least in some circumstances, beneficial quantitative estimates of 
residual confounding, then the details discussed below and even 
further details yet to be identified may prove important to consider.

Appendix 1. Simple metaphors to represent the 
overall strategy and logic of the method
The conceptual underpinnings of the proposed method described 
in the manuscript can be communicated through a variety of meta-
phors, starting with the very simple and progressing to the more 

complex. Appendix 1.1a and Appendix 1.1b provides some simple 
examples that might be seen as a starting point for a largely non-
quantitative appreciation of the method’s approach. Appendix 1.2 
provides a fuller and somewhat more complex, but still minimally 
mathematical, metaphor that is intended to communicate the logical 
basis behind each of the major steps of the method. Appendix 1.3 
builds on that metaphor to explore some of the current uncertainties 
about the method.

1.1a. A simple example based on growth of “harmful” bacteria
To start at the simplest level, one point of confusion about the 
method might involve the question of why an investigator would 
deliberately introduce additional confounding bias into their ana-
lytic models. Why amplify confounding? One extremely simple 
metaphor is provided by the practice of culturing blood to identify 
pathogens. Bacteria that are obtained from a patient blood sample 
are then grown for a period of time in media, thus “amplifying 
them”. As the bacteria grow in number they become easier to study. 
Thus, we amplify something we don’t want (the bacteria) to learn 
more about them and enable us to better eliminate them. The same 
is true, in a general sense, of confounding in the ACCE Method.

This metaphor can be taken further without adding too much com-
plexity. Suppose one wanted a sense of which and/or how many 
bacteria were present in a sample that contained both harmful 
bacteria and beneficial white blood cells. By placing the sample 
into nutrients where only the bacteria would grow and increase in 
number, rather than the white blood cells, it should be possibly to 
get a sense of whether, and how many harmful bacteria are present. 
In this example, the harmful bacteria would represent the harmful 
confounding. We want to get a sense of how numerous these bacte-
ria are within the sample. The white blood cells would represent the 
treatment effect estimate. When Model 2 is constructed, the intent 
is to amplify the “harmful” bias from confounding while keeping 
the “helpful” treatment effect estimate as constant as possible.

Finally, to go even further with this metaphor, if we knew the ulti-
mate number of bacteria present, the typical dividing time for the 
bacteria growing in this set of nutrients (that is, the time it takes 
them on average to double their number), and we knew how long 
we grew the sample in the nutrients, we should be able to extrapo-
late backwards to the number of bacteria originally present. In this 
refinement, knowledge of how rapidly the bacteria divide in that 
particular set of nutrients would represent the knowledge of the pro-
portional amount of confounding amplification expected to occur 
between Model 1 and Model 2.

1.1b. A simple metaphor based on microphones (sound 
amplification systems)
To perhaps allow some additional numerical “sense” of the work-
ings of the method, consider the case of turning up the volume on 
a television, radio, or cell phone. If one knew that turning up the 
volume a certain amount doubled the volume (if, for instance, the 
volume settings were genuinely proportional, so that turning up the 
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volume from “20” to “40” doubled the sound produced), and one 
knows the actual volume obtained after this doubling occurred, it 
should be both possible and simple to extrapolate back to determine 
what the original volume was. That is, it would not be necessary 
to know the original volume if you knew these other two quan-
tities (the final volume, and the proportion by which the volume 
changed). In nonrandomized studies, one never knows exactly the 
“volume”, or amount, of total confounding, so an additional wrinkle 
that the ACCE Method uses is to measure the change in the over-
all effect estimate that occurs between two models. (Furthermore, 
this change is measured when circumstances have been deliberately 
constructed so that the models differ to the minimum extent feasi-
ble, other than the differences resulting from the amplification of 
confounding).

To make our example even more comparable, consider the scenario 
in which one knew that a particular type of microphone would dou-
ble (i.e., “amplify”) the static, or white noise, in whatever sound is 
being broadcast. If one knew the original total, or overall, volume 
(on a linear scale) was “90 units”, and when we changed to that 
type of microphone the total volume increased to 93 units, then we 
would know that the static made up 3 units of the original sound 
(since doubling it added 3 units). This would mean that the volume 
devoid of any static would be 87 units. (I deliberately do not use the 
highly-recognized units of “decibels”, rather referring to an imagi-
nary linear unit, since decibels use a logarithmic scale, which would 
make the example less easily appreciated). “Static” in this example 
can be seen as analogous to residual baseline confounding, and the 
sound volume without the static as analogous to the unconfounded 
treatment effect estimate.

1.2. A more complex, but more comprehensive, metaphor 
based on the recording of sound
The ACCE Method, as pointed out in the text, has a basic simplicity 
that can be represented in four steps or as few as two overarching 
components. As also pointed out in the text, however, these compo-
nents (especially the first component) have a number of elements 
that still may be difficult for some readers to follow. To create a 
metaphor to more fully illustrate the important aspects of the pro-
posed method, I provide a somewhat more complex example below. 
Hopefully, the payoff for this added complexity will be an intui-
tively understood, relatively nonmathematical picture of all of the 
important elements of the method.

Rather than basing an example on the amplification of sound, let 
us instead base it on the recording of sound. Assume now we are in 
the pre-digital recording era, when much recording of music occurs 
on cassette tapes. A taping companying has introduced a new tape 
recorder with a “noise reduction” feature. This noise reduction fea-
ture deliberately dampens down, or reduces, the white noise “hiss” 
that results from the operation of the internal machinery of the tape 
player. Prior taping equipment would introduce 11 units of this hiss 
into every 100 units of total sound they recorded. The new tape 
system only introduce 1 unit of this hiss for every 100 units of total 
sound recorded. The company’s engineers are very excited, and 

they make simple prediction. When we play an instrument at the 
exact same “volume” into the new equipment, we will get a record-
ing with 90 units of sound, rather than 100 units. Not only will this 
lower volume be acceptable, but actually it will be highly desirable, 
because the recording will sound so much clearer and better. In fact, 
they expect people will rush to buy the new system.

Unfortunately, when the engineers test the first prototype of this 
new taping machine, they are thoroughly discouraged to notice 
that the instrument now registers as producing 105 units of sound, 
rather than 100 units, and the “hiss” is more audible than it had 
ever been with the old recording equipment. They are initially per-
plexed how this could happen when they were certain that the new 
system would reduce hiss from the working of the internal machin-
ery by 10-fold. However, when they investigate their new system, 
they discover a new source of hiss from some degree of nonspecific 
deposition of the recording medium (e.g., iron filings) onto the tape 
surface due to electromagnetic fields generated during the taping 
process. This electromagnetic field causes some of the recording 
material to arrange itself incorrectly, creating this new source of 
“electromagnetic hiss”.

Their investigations subsequently show that somehow their new 
design, by seeking to minimize the noise introduced by the mechan-
ical working of the tape player, unintentionally doubled the amount 
of hiss resulting from this 2nd source of hiss. This discovery is so new 
that no one is even sure how much of this source of hiss is present 
in tapes. But the engineers are confident from their experiments 
that however much of this hiss exists, the new taping machine will 
exactly double this amount of hiss compared to the old taping sys-
tem. (Let’s assume that in order to get the new machine to run the 
tape through especially quietly, the engineers had designed it with 
4 recording heads, instead of 2, and it is known that each head will 
unavoidably introduce an undefined but highly consistent amount 
of electromagnetic hiss to the tape). The engineers realize that if 
they know the total volume of sound recorded by the 2 devices, 
they are now in a position to quantify the amount of the newly- 
discovered hiss originally present based solely on the information 
they have on hand. Here is how they would proceed.

The overall sound with the new recording system was unexpectedly 
amplified from 100 units to 105 units. They had expected the sound 
to go down to 90 units, because in their overly simple initial model 
they expected the only source of hiss was the 11 units of mechanical 
hiss introduced by the old system. Thus, they expected the original 
sound they were hearing was made up of 89 units of genuine instru-
ment sound and 11 units of hiss. They had totally overlooked the 
second source of hiss -- because they had not known about it – and 
therefore had not factored it into their equations. They therefore 
expected the new system, with its only 1 unit of mechanical hiss, 
would have transmitted 89 units of genuine instrument sound and 
1 unit of hiss, for a total of 90 units of sound. Armed with the knowl-
edge that the new system, because it used 4 recording heads instead 
of 2, would be expected to double the 2nd source of hiss (electro-
magnetic hiss), the engineers realized that the fact that the volume 
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of the sound increased in the new system, rather than decreased, 
meant that quite a substantial amount of this electromagnetic hiss 
had to be present. A doubling of this electromagnetic hiss was more 
than enough to overcome the 10 unit reduction in the sound from 
the reduced mechanical hiss that they had expected. They deter-
mined that since they observed a 5 unit increase in volume rather 
than the expected 10 unit decrease, this meant that the doubling 
the electromagnetic hiss must have added 15 units of hiss to the 
sound: the 5 units increase in total sound they observed added to the 
10 units of sound from mechanical hiss that their system had 
removed. (This equals a total of 15 units of sound). This calcula-
tion in turn would imply that there were 15 units of electromagnetic 
hiss in the original taping system that they had never noticed before 
(and certainly had never been able to quantify). For a doubling of 
this new source of hiss to increase the volume 15 units, it must have 
been originally present at an amount of 15 units.

In this example the genuine instrument sound the engineers are 
seeking to optimize represents the unconfounded treatment effect 
estimate. The mechanical hiss represents the Introduced Variable 
and its known effect on confounding (i.e., known “noise”). Its pres-
ence was not controlled in Recording System 1 (hence the contri-
bution of 11 units of mechanical hiss sound), but its presence was 
highly controlled (and reduced) in Recording System 2 (only con-
tributing 1 unit of sound). In a sense the engineer’s development of 
a noise reduction system largely removing the impact of mechani-
cal hiss, can be seen as analogous to reducing the imbalance in the 
Introduced Variable by inserting it into the Model 2 regression. The 
ability of the engineers to predict the magnitude of decrease that 
occurs is analogous deriving a regression coefficient for the Intro-
duced Variable(s) and predicting the change in the Model 1 treat-
ment effect estimate through use of the Bross equation.

The electromagnetic hiss represents unmeasured confounders (i.e., 
unrecognized, unmeasured “noise”). The two systems represent 
Model 1 (the old system) and Model 2 (the new system). The new 
systems’ four recording heads relative to the two recording heads 
of the old system, and the predictable change in electromagnetic 
hiss that this change brings, represents possessing knowledge of 
the proportional amount of unmeasured confounding amplifica-
tion expected to occur between the two models. Thus, being able 
to count that four heads are present instead of two is an analogue to 
the function of determining 1 - R2 for the two exposure prediction 
models (or by using an “internal marker”).

What this example shows nicely is that if one wants to derive the 
true, genuine instrument volume of 74 units, one needs to take into 
account the amplification (i.e., doubling) of electromagnetic hiss in 
Recording System 2, but also to subtract the change in mechanical 
hiss from both the observed change in total sound from Record-
ing System 1 and Recording System 2, and from the original total 
sound value for Recording System 1. (The genuine instrument vol-
ume would be equal to 100 units of sound minus the 11 units of 
mechanical hiss minus the 15 units of electromagnetic hiss detected 
by back-extrapolation from the increased hiss detected when this 
bias was doubled. That is, 100 - 11 - 15 = 74 units of sound).

This example helps illustrate key points. First, knowledge of the 
Introduced Variable effect (amount of mechanical hiss) is crucial, 
since without it, a very erroneous estimate of the quantitative effect 
of 2-fold amplification would result. If the reduction in mechanical 
hiss occurring in System 2 was somehow completely unaccounted 
for, then one would assume that a doubling of electromagnetic hiss 
that occurred led to merely a 5 unit increase in sound, and the value 
of the genuine instrument sound was 95 units (100 - 5) instead of 
74 units. So correcting for the effect of the new, changed system 
(Recording System 2) on mechanical hiss is extremely important 
to obtaining an accurate estimate of electromagnetic hiss, and, by 
extension, and accurate estimate of the genuine instrument sound. 
Second, it is crucial to have a good estimate of the proportional 
amount of amplification of electromagnetic hiss. For example, if the 
two new heads were made of a different material than the other two, 
and this material had unknown effects on electromagnetic hiss, then 
the calculations given here could not be carried out.

There is a slight “difference in intent” between this metaphor and 
the actions being taken in the ACCE Method. The engineers only 
knew about one source of noise (the mechanical hiss), and sought to 
reduce this through their noise reduction system (our analogue for 
the Introduced Variable). Thus, they accidently, rather than inten-
tionally, amplified the second source of noise, of which they were 
previously unaware. In biomedical or other intervention research, 
we know a second source of noise typically exists (unmeasured 
confounding), and we know the conditions that will amplify that 
second source of noise (through confounding amplification). Thus, 
in the ACCE Method we are using our two systems (models) to 
intentionally produce amplification (specifically, to the degree pos-
sible, a known amount of amplification). In biomedical or other 
intervention research, the fact that we are likely reducing the impact 
of the first source of “noise” (mechanical hiss) is almost incidental, 
in that we are influencing the first source of noise only as the means 
to achieving a predictable change in the second set of noise. The 
effects of our Introduced Variable(s) on the first set of noise needs 
consideration solely so that an adjustment can be made for its effect, 
so as not to misestimate the change brought about through amplifi-
cation of the second source of “noise” (and also so we do not mises-
timate of the total original noise present in our final calculations).

Despite this metaphor’s inherent greater complexity than the bacte-
ria and sound amplification metaphors described earlier, this sound 
recording metaphor has at least two notable advantages. First, it 
fairly completely (and hopefully intuitively) represents each of the 
most important steps and concepts in the full ACCE Method. Sec-
ond, if desired, it can be easily expanded to illustrate some current 
sources of uncertainty in the method (as illustrated below).

1.3. Expanding the recording metaphor to represent 
uncertainties in the operation of the method
To take the metaphor further, it is possible to use it to also illus-
trate some of the key sources of potential uncertainty in the ACCE 
Method estimate mentioned in the text (and elaborated on further in 
the Appendices that follow). If the increase in sound is unable to be 
accurately recorded beyond a certain volume, this might be seen as 

Page 19 of 51

F1000Research 2015, 3:187 Last updated: 29 APR 2015



representing nonlinearities in the 1 - R2 prediction of confounding 
amplification. If the inaccuracy at higher values further increased 
the volume of sound greater than expected, this could be analogous 
to what is observed in the Brooks and Ohsfeldt simulations above 
R2 = 0.565. If the inaccuracy resulted in lesser increases in the vol-
ume of sound than expected, this could represent real-world “con-
straints” to amplification, if they exist. If the engineers were able to 
identify some component of the sound (say, a certain wavelength 
of sound) whose change could be estimated accurately even in the 
presence of these nonlinearities (perhaps since its overall volume, 
representing only a small fraction of the total sound, was low) this 
might be seen as analogous to the “internal marker” strategy of esti-
mating confounding amplification.

Also, consider if the old recording system and the new recording 
system also had other components which could contribute “noise”. 
For instance, what if the new recording system used jacks (plug-in 
connectors) on the end of its wires that were twice as large in diam-
eter as the jacks used in the old system, and the larger jacks also 
reduced noise to an unrecognized extent? This would represent a 
source of altered noise separate from mechanical hiss or electro-
magnetic hiss. This can be seen as analogous to changes between 
the models that are not due to either confounding amplification or 
the effect of the Introduced Variable(s) which lead to treatment 
effect estimate differences. Obviously, such a “third source” of 
differences in sound volume would make accurate determination 
of the original sound present more complex. The easiest solution 
would probably be simply to design the two recording systems to 
use the same wires and jacks, so that this source of change in the 
noise recorded is unchanging. This is the basis of our recommen-
dation to attempt to minimize other differences between the mod-
els, and/or to at least check to determine the extensiveness of these 
differences.

1.4. Summary
The sound recording metaphor shows that there may be reasons to 
suspect that confounding amplification in nonrandomized studies 
may bear useful similarities to the amplification of bias in other 
systems. Most importantly, our ability to quantify the original “gen-
uine instrument sound” through the steps taken in this metaphor 
supports the possibility that the same basic approach (as laid out 
in the ACCE Method) should enable us to obtain an estimate of a 
genuine treatment effect.

The degree to which nonrandomized datasets actually permit 
straightforward quantification of unconfounded treatment effects 
through a procedure very similar to what was done in this very sim-
ple metaphor is not yet clear. Can we accurately estimate the pro-
portional amplification we generate between two propensity score 
models as closely as knowing that four recording heads will double 
noise compared to two? Can we create our two models to mini-
mize the chance that we distort our estimate of the unconfounded 
treatment effect by involving other changes that affect treatment 
effect estimates (similar to ensuring that the jacks at the ends of 
the wires were not changed between the Recording Systems)? The 

precise extent to which these or other aims can be achieved in the 
ACCE Method is uncertain, but research is clearly needed given the 
potential of the method to improve inferences from nonrandomized 
studies.

Appendix 2: Other elements of the analysis that may 
produce changes in the treatment effect estimate 
between Model 1 and Model 2
This method ultimately views the change in the treatment effect 
estimate between Model 1 and Model 2 (minus adjustment for 
the contribution of the Introduced Variable(s) and their correlates) 
as arising from confounding amplification. As a result, an obvi-
ous and crucial need exists to keep all other differences between 
Model 1 and Model 2 to a minimum, to the extent feasible. Changes 
to the Model 2 treatment effect estimate, compared to Model 1, 
may potentially occur in several areas in addition to confounding 
amplification. As discussed below, these areas of potential differ-
ences between the two models include changes in the control of 
the confounding from “included” covariates (i.e., changes in the 
balance of covariates that are included in both propensity scores), 
the comparability of the patient sample, and the comparability of 
specific aspects of the intervention received by patients.

2.1 Differences in the balance observed for included 
covariates
Although these changes may be expected to be minor, at least in 
some settings, they deserve thorough consideration as part of an 
effort to anticipate sources of potential imprecision in the estimates 
resulting from the ACCE Method. Some degree of change between 
Model 1 and Model 2 is expected in the balance of each of the 
propensity score covariates present in common between Model 1 
and Model 2 (the “included covariates”). (NOTE: The “Introduced 
Variable” is also an “included” covariate in a limited sense, in that 
it is included in one of the two propensity scores. For clarity in 
terminology and because the Introduced Variable represent a genu-
inely special circumstance [please see Appendix 3.2b], the term 
“included variable” or “included covariate” is reserved for the vari-
ables included in both models. The term “Introduced Variable[s]” is 
used for the variable[s] added to Model 2. The term “nonincluded 
covariate” will refer to covariates not included in either propensity 
score. Nonincluded covariates may either be unmeasured covari-
ates, which inherently cannot be included, or measured covariates 
not selected for inclusion into the propensity score).

These changes are produced as a byproduct of the need to include 
an additional variable or variables in Model 2 to generate confound-
ing amplification. For instance, including an additional variable 
in the propensity score used for matching would be expected to 
weaken at least slightly the tightness of the match on the other cov-
ariates. In some cases, the differences in covariate balance between 
models could be quite minimal. However, this balance needs to 
be explicitly compared between Model 1 and Model 2. This com-
parison is important since in other cases it may prove difficult to 
attain a degree of balance in the included covariates that is highly 
equivalent between Model 1 and Model 2 if sufficient confounding 
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amplification is to be achieved. The impact of confounding ampli-
fication is to tend to create a greater number of individuals at the 
extremes of the propensity score distribution who are less compa-
rable (and thereby, less similar in balance in the covariates included 
in the model)5. 

One approach worth consideration would be to examine whether 
it is feasible to adjust the stringency of the stratification or match-
ing in Model 2 so that the balance in the included covariates in 
Model 1 and Model 2 are more equivalent. An alternative, and par-
ticularly rigorous, approach would be to use the Bross equation8 
to attempt to estimate the change in confounding attributable to 
the observed changes in the balance of each included covariates 
(even though this may represent a large number of covariates). 
(Going to the effort of applying the Bross equation to each of the 
included propensity score covariates potentially has an additional 
advantage, as discussed in Appendix 3.2a, in permitting the con-
tribution to confounding from the residual imbalances in included 
covariates that are present in Model 1 to be estimated and removed 
from the Model 1 treatment effect estimate at the final stages of the 
process (please see Appendix Figure 1c).

2.2. Differences in patient sample
The overall patient cohort for the study from which the samples for 
Models 1 and 2 are derived will obviously not change. Some degree 
of change, minimal or otherwise, can be anticipated to occur, how-
ever, in the samples of individuals selected from that overall cohort 
by each model (Model 1 and Model 2). These differences can arise 
from differences in the patients that fall under the “Common Support 
Area” of the propensity scores, and, if matching is employed, dif-
ferences in the percent of patients matched. The “Common Support 
Area” refers to the range of propensity score values which include 
members of both treatment groups; it is often recommended that 
individuals outside the Commons Support Area be “trimmed” (i.e., 
removed) from the analysis18. These differences in patient sample, 
however, will only influence the method’s estimates to the extent 
that they are extensive enough to produce substantively different 
compositions of patients between the Models and effect modifica-
tion exists (whereby the treatments studied have different effects in 
different patients). In addition, possible strategies exist to minimize 
some of these potential differences, as discussed below.

2.2a. Differences in patient sample from differences in Common 
Support Area/propensity score trimming
Because confounding amplification tends to make at least patients on 
the extremes of the propensity score distribution less comparable5, 
it might prove difficult in practice to maintain a highly similar 
Common Support Area between Model 1 and Model 2. Fortunately, 
the number and identity of individuals differing between Model 1 
and Model 2 is measurable. In addition, different approaches might 
be compared (such as examining only the subset of patients that fall 
under both model’s Common Support Areas). These comparisons 
might establish whether the results are sensitive to small differences 
in the Model 1 and Model 2 patient samples arising from different 
Common Support Areas.

2.2b. Differences in patient sample from differences in percent 
matching
Regarding matching strategies, it may prove difficult for a similar 
proportion of matching to be preserved between the two models. 
(The Brooks and Ohsfeldt simulation5 showed that as unexplained 
variance of exposure decreased and amplification increased, the 
number of patients matched for a given caliper decreased). The 
alternative approach, propensity score stratification, may be deter-
mined to be the preferable choice for routine use in the ACCE 
Method, since by design stratification retains all individuals from 
the trimmed sample. (The ACCE Method emphasizes stratification 
and matching rather than weighting, because in the Brooks and 
Ohsfeldt simulation5 propensity score weighting produced con-
founding amplification that was less predictable, at least by R2).

As mentioned at the start of Section 2.2, these differences would 
only be expected to have relevance to the degree that effect modifi-
cation existed (i.e., to the degree that the differences in patient sam-
ple would be expected to result in a change in the genuine treatment 
effect estimate between the two models). Because of the apparent 
dependence on effect modification for differences in Common Sup-
port Area or percent matching to impact the method’s performance, 
a separate approach to take to this issue would be to test for whether 
effect modification is detectable related to measured covariates. 
(However, this would obviously not address possible effect modifi-
cation related to unmeasured covariates, although a consistent lack 
of observed effect modification might suggest a lower likelihood of 
effect modification than could be surmised before these observa-
tions). Clearly additional research (especially simulation research) 
is needed to assess the sensitivity of the method’s performance with 
and without the presence of treatment effect modification.

2.3. Differences in the specifics of the intervention received
While the general nature of the interventions received by the two 
treatment groups remains identical between Model 1 and Model 2, 
specific aspects of the intervention received can vary between the 
treatment groups in ways that are not immediately obvious. It is 
important to consider these possible differences because they may 
be another contributor to differences in the treatment effect esti-
mates between Model 1 and Model 2 unrelated to confounding 
amplification.

2.3a. Differences in dose
Unless the intervention is a single, one-time-only dosed treatment, 
such as a vaccine, either dose or other “quasi-dose” aspects of how 
the intervention is administered may vary at least slightly between 
the individuals receiving the intervention in Model 1 and those 
receiving the intervention in Model 2. Even for nonmedication- 
based interventions, such as a psychotherapy or educational inter-
vention, the timing of visits or the number of visits may vary 
slightly among the individuals included in the intervention arm in 
Model 1 versus Model 2. Therefore, when implementing the ACCE 
Method, it is important to examine whether the overall mean dos-
age, number, or timing of treatments is similar between Model 1 
and Model 2, and potentially within strata for stratified analyses. If 
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sufficient sample size exists in particularly large patient samples, an 
additional approach might be to restrict the analysis to patients only 
receiving one particular dosage of the treatment.

2.3b. Differences in discontinuation rates
Treatment effect estimates are likely to be sensitive to discon-
tinuation rates, whether an intent-to-treat or an as-initially-treated 
analysis (i.e., with follow-up censored upon termination or altera-
tion of the initial treatment) is conducted. Because of this, investiga-
tors should examine the rates of discontinuation observed in Model 
1 and Model 2 to determine their similarity. Ideally, a determination 
that the reasons for discontinuation within the patient sample for 
Model 1 compared to Model 2 were also similar would be the ideal, 
but such information is often not available19.

In many cases the difference in discontinuation rates for each 
treatment between the two models may be quite small, and the 
practical impact of this difference unclear. Differences in discon-
tinuation rates appear to be at least slightly more significant in this 
approach, however, than in a propensity score or regression analysis 
involving a single model, if effect modification is present. In this 
case, differences in discontinuation rates between the two models 
could produce some degree of difference in the underlying treat-
ment effect estimate between the models, even if no selection 
directly relevant to outcome was occurring.

Addressing specific differences (e.g., dose) in the intervention 
received by patients between the models, if they exist, may be at 
least slightly more challenging than minimizing differences involv-
ing confounding control from included covariates. One modest 
strategy might involve simply evaluating the differences in inter-
vention specifics when different strategies are explored to minimize 
differences in Common Support Area or in the control of confound-
ing from included covariates. Then the strategy that also minimizes 
differences in the intervention could be examined as the main anal-
ysis or as a sensitivity analysis.

As indicated in the main manuscript, this manuscript generally does 
not consider confounding arising after treatment initiation from dif-
ferences in patient characteristics of patients who remain receiving 
in the two treatment groups. However, three points should be made. 
First, the “unconfounded treatment effect estimate” that is intended 
to be provided by the ACCE Method refers to an estimate uncon-
founded from baseline differences, but not necessarily completely 
unconfounded (i.e., it could still be confounded by differences aris-
ing after treatment initiation). Second, confounding after treatment 
initiation can exist, but if it is similar between the two Models, then 
it need not pose a barrier to obtaining a treatment effect estimate 
largely unconfounded from baseline factors. While the method 
is particularly dependent on the difference between Model 1 and 
Model 2 treatment effect estimates being attributable as much as 
possible to confounding amplification, in this case, confounding 
post-initiation would not be expected to be a major source of dif-
ferences in the treatment effect estimates between the two mod-
els. In contrast, if substantially different amounts of confounding 
post-initiation exist in Model 1 and Model 2, this circumstance 

both produces a source of confounding not addressed by the ACCE 
Method and interferes with the ACCE Method’s ability to generate 
an accurate estimate of baseline confounding. At a minimum, rates 
of discontinuation should be checked to ensure they are similar 
between Model 1 and Model 2. Others have made the point, however, 
that similar discontinuation rates between treatment groups that are 
being compared can still conceal confounding after treatment initia-
tion if the reasons for discontinuation differ19. It remains to be seen, 
however, how often similar discontinuation rates between Model 1 
and Model 2, which are likely to share a considerable number of 
individuals in common, in fact conceals differing reasons for dis-
continuation between the two models. (That is, the concerns raised 
in general about the possibility of different reasons for discontinu-
ation existing despite similar discontinuation rates between treat-
ment groups may not be as pertinent to the specific circumstance 
here of similar discontinuation rates between Model 1 and Model 2, 
since these models may share a substantial number of individuals 
in common). As mentioned above, the presence of similar discon-
tinuation rates should be expressly confirmed. Further research is 
clearly needed.

Third, it is conceivable that the same approach used here – delib-
erately introducing confounding amplification to estimate the 
original confounding present – could be used, at least in theory, 
to also sequentially estimate residual confounding attributable to 
differential discontinuation during treatment. This is likely to be a 
substantially more difficult and complex endeavor than the use of 
the ACCE Method to estimate residual baseline confounding. For 
instance, the most commonly used approach for addressing meas-
ured confounding from differential discontinuation, generating a 
“pseudopopulation” by weighting, has been shown in simulation 
to produce confounding amplification that is considerably less pre-
dictable than matching or stratification5. Re-matching patients after 
initiation could be considered, but the results would be expected to 
become applicable to only a smaller and smaller subset of patients. 
One relatively simple approach might be to conduct rematching at 
only a single additional time point: study completion. One challenge 
to using the ACCE Method to estimate confounding after treatment 
initiation may be that presumably the Introduced Variable(s) used to 
amplify confounding after treatment initiation will need to explain 
differential exposure to continued treatment (i.e., factors that lead 
to the discontinuation of one treatment but not the other). It may 
prove difficult to find variables that explain a substantial amount of 
continued exposure to one treatment but not the other (e.g., specific 
adverse events particular to one treatment might only affect a small 
percentage of individuals discontinuing treatment). This problem 
may be more easily addressable, however, if a set of variables can 
be introduced simultaneously (Appendix 6).

Thus, while conceivably it could be ultimately determined that 
an assumption may need to be made for this method of “similar 
reasons for discontinuation between models”, it is too premature 
to make that conclusion. The possibility at least exists that this 
method, designed initially to address baseline confounding, may 
also allow residual/unmeasured confounding post-initiation to be 
addressed in those instances in which a suitable Introduced Variable 
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or Variables for amplifying confounding post-initiation can be iden-
tified. Clearly, much additional work is needed in order to assess 
the feasibility of applying this approach to address confounding 
occurring after treatment initiation.

2.4. Summary
The need to evaluate, and potentially address, the diverse fac-
tors that may contribute to a change in treatment effect estimates 
between Model 1 to Model 2 initially may seem daunting. However, 
it may be ultimately determined that in practice little difference 
between Models in these aspects is typically observed. In theory, 
there may even be circumstances in which sizeable differences in 
some of these aspects do not prevent the method from providing 
accurate estimates (e.g., a difference in timing of an intervention 
whose effects have been shown to not be very sensitive to the timing 
of its administration). In most cases, however, substantive differ-
ences of the types described between the models are a concern. If 
these differences cannot be minimized by the strategies suggested, 
or approaches to quantifying the likely effects of these differences 
cannot be identified, then caution in interpretation is clearly war-
ranted. Validation studies using simulated or real-world datasets 
would provide useful information concerning both the frequency 
with which these differences occur and their impact on the ACCE 
Method’s estimates.

Appendix 3: Important considerations involved in the 
estimation of proportional confounding amplification
Appendix 3.1. Approaches to estimating proportional 
confounding amplification
In the lower ranges of exposure prediction (at least as measured by 
explained variance in terms of R2), a simulation has shown that a 
predictable relationship exists between amount of remaining unex-
plained variance in the prediction of exposure and confounding 
amplification5. Differences in prevalence between treatment arms in 
covariates that are not included in the propensity score increase lin-
early with increases in R2. This increase in the imbalance of uncon-
trolled (i.e., nonincluded) factors is the phenomenon that underlies 
the amplification of residual confounding. However, in the upper 
portion of the range of R2 the relationship becomes increasingly 
nonlinear, with changes in R2 underestimating the increased imbal-
ance in nonincluded covariates5. If this nonlinearity in the upper 
range of R2 is replicated, but is reduced or not apparent for other 
metrics of prediction of exposure, then these metrics should be pre-
ferred. If this nonlinearity in the upper ranges of exposure predic-
tion continues to hold for other metrics, then three strategies suggest 
themselves. The first approach, the “low amplification strategy”, 
would be to deliberately limit Models 1 and 2 so that the predic-
tion of exposure these models achieve are in the lower end of the 
possible range, where the relationship is most linear. In some cases, 
propensity score models may already fall into this range. In other 
cases, this approach may involve reducing the variables included in 
the propensity scores. Such reduction might entail including only 
variables with a significant a priori expectation, based on evidence, 
of being confounders20. An additionally restrictive strategy would 
including those variables estimated (by using the Bross equation8) 
to be the most substantial confounders, or suspected a priori of 

being particularly certain or strong confounders (e.g., age, Charlson 
Comorbidity index, etc.). As discussed in Appendix 4, a particu-
lar high priority likely needs to be given to including variables for 
confounders that are correlated with the Introduced Variable(s), 
especially if they are strong confounders. Reductions in the number 
of included covariates could increase residual confounding rela-
tive to some other models that could be constructed, however, thus 
increasing reliance on the accuracy of the ACCE Method to address 
that increased confounding.

However, at least two other strategies suggest themselves that may 
prove feasible. One alternative would be to develop a formula 
that captures any nonlinearity in the chosen metric of exposure 
prediction. This could permit the amount of expected amplifica-
tion to be relatively accurately predicted over larger portions of 
the range. The second alternative strategy would be to develop an 
“internal marker” covariate that would reflect how much increased 
imbalance in the nonincluded confounders is occurring. The inter-
nal marker would be a measured covariate deliberately left out of 
the propensity scores. The increase in its imbalance in Model 2 
could be measured and serve as an indicator of confounding 
amplification.

Intuitively, an internal marker strategy has some attractive quali-
ties, since it might sidestep any uncertainties about the relation-
ship between confounding amplification and metrics of prediction 
of exposure. Furthermore, use of internal markers might prove the 
easiest way currently to apply this approach when logistic models 
are used to estimate exposure (as is commonly done for propensity 
scores).

There is already some evidence to support the “internal marker” 
approach. In the Brooks and Ohsfeldt simulation study5 it was 
shown that covariates not included in the propensity score (and 
that are uncorrelated with the included covariates) all amplify to a 
remarkably similar extent, at least in that simulation. Thus, in prin-
ciple, it appears feasible to use an “internal marker or markers” 
(produced by withholding measured covariates from the Model 1 
and Model 2 propensity scores) to track and estimate the general 
amount of confounding amplification. A key practical consideration 
in real-world datasets, however, is the need for these internal mark-
ers to have a minimal correlation with any of the covariates included 
in the propensity scores. Any such correlations might “constrain” 
the ability of the internal marker to reflect the degree of confound-
ing amplification that is influencing the nonincluded confounders. 
(These correlations, at least if positive correlations, would largely 
not be expected to interfere with confounding amplification for 
nonincluded covariates that are not being used as internal markers, 
for reasons discussed in Appendix 3.2). Since, in the strictest sense, 
some degree of correlation is virtually unavoidable, then the inter-
nal marker strategy may intrinsically underestimate true confound-
ing amplification, although in some cases only minimally.

Fortunately, this correlation is readily measurable. Therefore, it 
should be possible to deliberately select the nonincluded measured 
covariate with the least correlation with both the included covariates 
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and the Introduced Variable(s) to serve as an internal marker. Alter-
natively, simulation research may suggest quantitative approaches 
to correct for this correlation. If the internal marker strategy is used, 
this may constitute another practical reason to limit the covari-
ates included in Model 1. In addition, should all candidate internal 
markers have some significant degree of correlation with covariates 
included in the propensity score, then any internal marker would be 
expected to underestimate the proportional increase in confound-
ing amplification. Given the mathematics of the method, dividing a 
particular change in treatment effect estimates by an underestimate 
of proportional confounding amplification will overestimate con-
founding and lead to a conservative estimate of treatment effect.

In summary, multiple aspects of confounding amplification estima-
tion are worthy of investigation. These include the presence and 
predictability of nonlinear relationships between the prediction of 
exposure metric and confounding amplification, and the potential 
strategies to address these nonlinearities.

Appendix 3.2. An initial exploration of the impact of 
correlation on confounding amplification
Once the proportional confounding amplification has been estimated 
in general (through R2 or other prediction of exposure metrics, or 
an internal marker), additional aspects of confounding amplifica-
tion deserve consideration. These aspects center on the question of 
whether the predicted confounding amplification will in fact occur 
for all confounders.

The data that exists to date from the Brooks and Ohsfeldt simulation5 
indicates that confounding amplification is uniform between sim-
ulated covariates that were not included in the propensity score. 
However, this similarity may be a byproduct of their simulation. 
In theory, aspects of real-world data might create heterogeneities 
in amplification between covariates. The effect upon confound-
ing amplification of correlations between covariates, expected 
to be a common feature of real-world data, is considered below. 
This conceptual exploration of the impact of correlations, which 
also draws upon the Brooks and Ohsfeldt simulation5, tentatively 
concludes that many correlations do not appear to substantially 
interfere with the ACCE Method. Correlations can be categorized 
into five types, based on whether the correlated covariates are 
included or not included in the propensity score model: correla-
tions between two nonincluded covariates, between a nonincluded 
and an included covariate, between nonincluded covariates and the 
Introduced Variable(s), between included covariates and the Intro-
duced Variable(s), and between two included covariates. For the 
latter two categories, substantial amplification involving either of 
the correlated variables is not expected, at least in the same sense 
as the term applies to nonincluded covariates. (However, as pointed 
out in Appendix 2.1, the balance in included covariates can change 
at least somewhat between the two models and needs to be evalu-
ated). Positive correlations between two nonincluded covariates 
also appear to often be nonproblematic. Both correlated variables 
would constitute part of the residual confounding being amplified, 
and thus be expected to be amplified to a similar extent, based on 
the Brooks and Ohsfeldt simulation5.

A problem may exist, however, if some of the nonincluded vari-
ables are negatively correlated with some of the other nonincluded 
variables, since this might pose “constraints” to each amplifying 
to the extent predicted (Appendix 3.3). Also potentially problem-
atic, are correlations between nonincluded covariates and included 
covariates, and between nonincluded covariates and the Introduced 
Variable, although in the case of the former the impact is typically 
expected to be minor, and in the case of the latter, potential rem-
edies may exist although these need to be evaluated. To explore the 
distinct issues raised by each of these classes of methods, we deal 
with each of these types of correlations as “special cases” below so 
as to explore the distinct issues raised by each.

Appendix 3.2a. The special case of correlations between 
included and nonincluded covariates
Correlations between included covariates and nonincluded cov-
ariates, however, could initially seem to pose the possibility of 
creating constraints to amplification for certain covariates. The 
measured covariates are included in the propensity score, cannot 
amplify substantially, and thereby might seem to constrain amplifi-
cation, to a degree, of the correlated nonincluded variable. In fact, 
it is true that in this case the correlated nonincluded variable would 
be expected to have an overall change in imbalance in Model 2 
that is less than the estimated confounding amplification. However, 
the implications of the Brooks and Ohsfeldt simulation5 suggests 
that the change in a correlated variable can be alternatively mod-
eled as a fraction that is largely unchanging (to the degree that 
it is correlated with included covariates that do not appreciably 
change), and a fraction (alternatively, a “residual”) that amplifies 
as much as any uncorrelated nonincluded covariate (Reference 5, 
Appendices). (These elements will be termed the “included frac-
tion” and “nonincluded fraction” of the nonincluded covariate, 
respectively).

It is important to recognize that part of the goal for the nested mod-
els in the ACCE Method is to minimize change in the balance of 
included covariates, to the extent feasible (Appendix 2.1). If the 
nested models do successfully exhibit little change in the bal-
ance of included covariates, then the Brooks and Ohsfeldt simula-
tion5 would suggest that the amount of imbalance observed in the 
“included fraction” of correlated unmeasured or nonincluded vari-
ables also would not change substantively between models. (The 
term “unmeasured or nonincluded” confounders or covariates will 
refer throughout these appendices to either unmeasured factors, 
which inherently cannot be included, or measured covariates that 
could potentially be included but are not included in a particular 
propensity score model). This lack of change in the included fraction 
would leave the amplification of the nonincluded fraction (which 
Brooks and Ohsfeldt have observed amplifies as completely as for 
the uncorrelated, nonincluded covariates)5 as the only contribution 
to the change in treatment effect estimate attributable to this cov-
ariate. Thus, in principle, the method would still provide accurate 
final effect estimates of the confounding attributable to the amplifi-
able fraction of Model 1 confounding. However, a separate issue 
is raised by these included-nonincluded covariate correlations. A 
problematic “reservoir” of residual confounding would be built up 
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that is neither part of the amplifiable fraction nor part of contribution 
to Model 1 confounding from the Introduced Variable(s) and its 
correlates. This “reservoir” is problematic, in theory, because even 
if an additional step to the method involving applying the Bross 
equation to each included covariate is added on, as described in the 
next paragraph, the bias from these correlates might prove to be 
only partially addressable.

As mentioned immediately above, consideration of the impact 
of included-nonincluded covariate correlations brings to the fore 
the fact that, even in the absence of any included covariate non-
included covariate correlations, a small fraction of confounding 
would typically be expected to exist after application of the method 
attributable to the residual imbalance of the included covariates 
(since perfect balance in all included covariates is implausible). 
This residual confounding could be addressed in at least 3 ways. 
First, such confounding may be able to be minimized by achiev-
ing as close a balance as feasible between treatment groups for 
any variable included in the propensity score models. (This is yet 
another reason, in addition to those discussed in Appendices 3.1, 
to possibly favor smaller propensity score models, although again, 
this “adds pressure” on the method to deliver an accurate estimate 
of the now-larger residual confounding). Second, regression coef-
ficients for each of the covariates in the model could be derived 
from multivariate models (including all of the other covariates) for 
each of the covariates in the model. The Bross equation could then 
be used to estimate the contribution of the remaining imbalance 
in each of these variables to residual confounding in Model 1 (in 
addition to accounting for any small change in balance in these cov-
ariates observed in Model 2 compared to Model 1, as discussed in 
Appendix 2.1). For investigators particularly interested in obtain-
ing the most rigorous unconfounded treatment effect estimate 
available through this method, such an approach may be prefer-
able to performing no adjustment, even if these efforts change the 
unconfounded treatment effect estimate only modestly or mini-
mally (Please see Appendix Figure 1c). Third, all of the included 
propensity score covariates could also be inserted into the Step 1 
treatment-outcome regression equation estimating the Model 1 
and Model 2 treatment effects (i.e., in addition to including these 
covariates in the propensity score). This should largely address 
residual confounding arising from the remaining imbalance in these 
included covariates (again, this might pose some upper limit on the 
number of covariates that could be included in propensity score). 
However, it should be noted that the degree to which either the 
Bross equation approach or the insertion of the correlated included 
covariate into the treatment-outcome regression fully corrects for 
the impact of residual confounding from correlated nonincluded 
confounders is uncertain. Confounding amplification relating to 
the estimation of regression coefficients for the included covari-
ates could also conceivably be a problem. Therefore, it is uncer-
tain whether attempting to minimize covariate imbalances between 
the treatment groups or address those differences through one of 
the two regression-based approaches should be clearly preferred. 
On the other hand, it must be pointed out that we are consider-
ing the impact of a fraction of what already is a fraction of the 

confounding from the nonincluded covariate. That is, we are 
considering the residual “reservoir” of confounding from the 
included fraction of the nonincluded covariate that is not addressed 
through the Bross equation or insertion in the main regression. This 
residual is itself just a fraction of the “included fraction”, which 
already is a fraction of the overall confounding from the nonin-
cluded covariate. It therefore may prove that, in a practical sense, 
this concern is typically not a major problem. It could be argued, 
however, that the sum of a larger number of these minor residuals 
might have some noticeable impact on the treatment effect estimate. 
And that the uncertainty around the impact of this element of con-
founding is concerning because, strictly speaking, its size cannot 
be easily estimated. This may constitute one aspect by which the 
method may provide an estimate of residual confounding that is at 
least slightly incomplete; that is, this method may underestimate 
residual total confounding to some degree in typical practice. Fur-
ther research regarding this issue would be clearly beneficial.

Appendix 3.2b. The special case of correlations between 
nonincluded or unmeasured covariates and the Introduced 
Variable(s)
Correlations between nonincluded covariates and the Introduced 
Variable are a particularly distinct circumstance. In this case, the 
Introduced Variable is an included variable in only one Model 
(Model 2). As a consequence, its balance is being deliberately 
changed from Model 1 to Model 2 to produce the needed confound-
ing amplification. The “included fraction” of any nonincluded cov-
ariate that relates to its correlation with the Introduced Variable(s) is 
therefore being more closely balanced in Model 2 than in Model 1. 
This is because in Model 1 the nonincluded covariate’s correlate, 
the yet-to-be-inserted Introduced Variable, is not controlled at all, 
except for any control related to correlations between the Intro-
duced Variable and included covariates, which stay largely constant 
between Model 1 and Model 2. (To clarify, the set of variables in 
both models that are the included covariates stay constant, but the 
exact balance of these variables may vary slightly or somewhat 
between the models). However, it is partly for this circumstance 
that the Step 3 and 4 procedure was designed involving deriving 
regression coefficients and applying the Bross equation8. The intent 
of Steps 3 and 4 is that the change in confounding of the Introduced 
Variable is estimated, along with, to some degree, the change in 
confounding resulting from the change in imbalance in the frac-
tion of the correlated nonincluded variable(s). Whether the effect 
of correlation upon regression coefficients, however, is sufficiently 
similar to the effects of correlation on the balancing of covariates 
using a propensity score to permit a generally effective adjustment 
is uncertain.

This is an area of the ACCE Method in which further research would 
be particularly beneficial. The comparability of the quantitative 
effects of correlation on regression coefficients versus on covari-
ate balance in propensity score analyses could be examined further 
through simulation, and perhaps theoretically through frameworks 
based on the general location model21 or other methods. Such simu-
lations would helpfully allow the strength of the correlation between 
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correlated variables and the amount of confounding amplification 
existing between the two models to be varied. Real-world studies 
could contribute by investigating how frequently the ACCE Method 
provides what appears to be improved treatment effect estimates 
(i.e., closer to the result that is expected based on randomized 
trials)16,17 than typical propensity score or regression methods.

Finally, any imprecision in the ability of the adjustment in Steps 3 
and 4 to adequately reflect the change between the models in con-
founding attributable to the nonincluded covariates correlated with 
the Introduced Variable would depend on the number and strength 
of such correlations. While this is impossible to quantify the cor-
relations present for truly unmeasured covariates in real world data, 
it may turn out, based on the comparisons to randomized data dis-
cussed above, that in practice these correlations often do not appear 
to be numerous or strong enough to substantially affect the method’s 
estimates. Even if the regression coefficient/Bross equation-based 
adjustment was ultimately shown to only poorly capture the effects 
of correlation, it is possible this may not interfere markedly with 
the overall accuracy of the method if most of the residual confound-
ing is not correlated with the Introduced Variable. As discussed in 
Appendix 4.1, it may be possible to test for this correlation, even 
though the correlation involves unmeasured confounders, by a par-
ticular re-application of the ACCE Method.

Even in the “worst case” scenario in which the adjustments in Step 
3 and 4 of the method do not perform well and comparisons with 
randomized data suggested that this limitation typically impairs the 
method’s estimates substantially, three special circumstances exist 
in which the ACCE Method’s performance would not be generally 
expected to be adversely impacted by this limitation. These special 
circumstances would include using as Introduced Variables either 
1) true instrumental variables (although it is uncertain whether any 
significant advantages would exist for the ACCE Method compared 
to conventional, 2-stage instrumental variable analysis); 2) near-
instrumental variables, or 3) a related, but less restrictive, category 
of variable: variables with an independent association with outcome 
but little correlation with other confounders. As long as the Bross 
equation8 adequately captured the effects upon confounding of 
increased control of this outcome-associated but uncorrelated-with-
other-confounders type of Introduced Variable upon confounding, 
then imprecisions in how the regression-coefficient based adjust-
ment in Steps 3 and 4 captured the effect of correlated covariates 
would be relatively immaterial (since little correlation would be 
present). The frequency of such variables, however, is unclear. In 
addition, as pointed out above, it is impossible to determine conclu-
sively whether a variable is correlated with unmeasured confound-
ers in real-world data. As we describe in Appendix 4.1, however, 
one approach may exist to attempt to test for a lack of correlation 
between the Introduced Variable and unmeasured or nonincluded 
confounders of the treatment effect estimate. Another, likely less 
powerful, approach towards applying this variant would be con-
firming its lack of significant association with any the measured 

covariates available (although a lack of correlation with measured 
covariates certainly could not be taken as conclusive evidence of a 
lack of correlation with unmeasured covariates).

In addition, even if the ACCE Method was ultimately determined 
to typically provide only substantially imprecise estimates of total 
residual confounding, several beneficial applications suggest them-
selves. The first is simply determining the direction of the remain-
ing residual confounding in an association after efforts to control 
for confounding, which sometimes can differ from the direction 
of initial confounding. Second, even imprecise estimates from the 
method may be able to provide indication of whether residual con-
founding appears to be a small, moderate, or large contributor to 
the observed treatment effect estimate. Along similar lines, asso-
ciations between treatments and multiple outcomes could be able 
to be investigated, with the method providing useful information 
concerning which associations between a particular treatment and 
a variety of outcomes appear to be the least confounded, even if a 
precise estimate of this confounding cannot be obtained. For these 
reasons (as pointed out in the text) this method may be a particu-
lar benefit to database surveillance research that seeks to identify 
promising associations for further detailed investigation. Lastly, by 
at least partially concentrating uncertainty concerning residual con-
founding to a particular focus upon the Introduced Variable(s) and 
its potential correlates, the method may permit, in some instances, 
a beneficial focusing of future investigations. This may be helpful, 
for instance, if additional information about the Introduced Vari-
able’s anticipated correlates can be easily gathered (e.g., through 
chart review), thus moving this correlate, to some degree, from 
“unmeasured” to “measured.”

While many possibilities can be anticipated theoretically, a clearer 
answer concerning the significance of issues around potential corre-
lations involving unmeasured or nonincluded covariates will likely 
await both simulation studies and empirical testing of the method 
on real-world data in which the presumed genuine treatment effect 
is known. For example, a fraction of the 234 “negative controls”17 
identified by The Observational Medical Outcomes Partnership for 
which there is particular confidence about the lack of association 
might provide a very useful “substrate” to test the method’s ability 
to remove residual unmeasured confounding and provide uncon-
founded treatment effect estimates.

Appendix 3.3. The possibility of additional “constraints” 
upon confounding amplification
Another important issue to consider is the possibility that, in real-
world datasets, inherent limits or “constraints” may exist to how 
much a covariate can conceivably amplify regardless of changes 
in exposure prediction. Two such possible constraints have been 
already mentioned in Appendix 3.2: the “constraints” possi-
bly imposed by a negative correlation between two nonincluded 
confounders, and by nonincluded covariate-included covariate 
correlations.
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Initially, the possibility of a different set of constraints might 
also seem plausible, based on limits to how much an imbalance 
in a particular covariate could inherently change. Such a concern 
might seem plausible, for instance, if the sample matched on the 
propensity score already included almost all individuals possess-
ing this characteristic. However, further consideration suggests 
that such seeming “practical constraints” may not interfere greatly 
with the method in practice. While such a constraint presumably 
would limit how much the prevalence of that specific covariate in 
a treatment group could increase, it would not limit how much the 
prevalence of that covariate could decrease in the opposite treat-
ment group. Since the imbalance between treatment groups relates 
to the relative difference in prevalence between the groups, such an 
imbalance could occur as easily through a loss of representation of 
the covariate in one group as from a gain in representation in the 
other. One obvious, although potentially modest worry, however, 
would be whether such a decrease in the prevalence of a covariate 
would come at the cost of creating a substantial difference in the 
Common Support Area or percent matching between the propen-
sity score models. (If so, this would represent one of the poten-
tial differences in the patient sample between models discussed in 
Appendix 2.2).

Among the most substantial concerns regarding possible “con-
straints” is the issue that was noted in passing in Appendix 3.2: 
negative correlations between two nonincluded or unmeasured cov-
ariates. Covariates are not free to change in isolation. For instance, 
let us assume that, for a medication study, Model 2 confounding 
amplification is supposed to double the imbalance in two unmeas-
ured confounders: recent adverse effects from surgery and health 
care access. Assume as well that those individuals at greatest risk 
for experiencing adverse events from surgery in the study period 
are, on average, also those individuals with superior health care 
access. Now assume that in the treatment group there is a greater 
prevalence of adverse events from surgery but, for unclear reasons, 
a lower degree of health care access than in the comparison group. 
For confounding to double for both covariates, a greater differ-
ence in the number of individuals with adverse events from surgery 
needs to be present (with more of these individuals in the treatment 
group), along with a greater difference in the number of individuals 
with health care access (with fewer of these individuals in the treat-
ment group). Thus, it appears difficult, solely through adjusting the 
prevalence of individuals with adverse events and superior health 
care access to achieve a worsening of both of these imbalances. 
Conceivably, this means that the difference between the treatment 
group in the specific fraction of individuals with just adverse events, 
or just superior health care access, might be particularly amplified, 
but this remains purely speculation until simulation can address this 
issue.

It is also difficult to predict the routine plausibility of this scenario 
(in which many of the individuals in a treatment group who exhibit 
one confounding characteristic also possess a second confounding 
characteristic, yet a negative correlation between these variables 
exists overall). Once again, since the degree of imbalance in the truly 
“unmeasured” confounders can clearly be specified only in simu-
lation (although mock “unmeasured confounders” can be created 

in real-world studies by deliberately not including some measured 
covariates), the first step to assessing the implications of these sce-
narios would almost certainly be through simulation research.

In the meantime, I have sought to capture these potential uncer-
tainties in the manuscript through the use of the general term “the 
predictability of confounding amplification”. Uncertainties about 
the predictability of confounding amplification could fall into at 
least four general categories. One potential category would be if the 
change in prediction of exposure (or change in an internal marker) 
failed to correlate well with the overall confounding amplification 
observed (i.e., imprecision in the estimation of proportional con-
founding amplification). A second potential category would be if 
different unmeasured confounders simply inherently amplify to dif-
ferent extents for a given change in the prediction of exposure (i.e., 
there is an inherently wide variability in how much individual con-
founders amplify, even if they completely lack correlations). The 
third potential category relates to the possibility that unmeasured 
confounders may amplify essentially as predicted until a certain 
point of exposure prediction when “constraints” appear to mani-
fest themselves and progressively impede amplification. The final 
category would relate to the impact of correlations on the method’s 
estimates.

It should be pointed out that if real-world “constraints” to amplifi-
cation exists, they would be generally expected to produce oppo-
site effects with increasing prediction of exposure to what was 
observed in the Brooks and Ohsfeldt simulation5. That is, real-
world constraints in the amount that a confounder could amplify 
would become progressively evident at higher ranges of exposure 
prediction, when confounding amplification is expected to be 
greater. As a result, presumably result in less change in the Model 2 
estimate would be observed than predicted by a 1 - R2 amplifica-
tion of confounding, rather than the greater than expected change 
observed by Brooks and Ohsfeldt above an R2 of 0.565. As an obvi-
ous corollary, if constraints to amplification exist then their effects 
are likely to be less evident at lower levels of amplification, for 
which less change in the balance of unmeasured covariates is 
expected in Appendix 3.1 and Appendix 3.2. Thus, this considera-
tion may have similar implications to others previously mentioned 
in support of working in the lower ranges of exposure prediction. 
Nevertheless, the adoption of such a radical strategy would need 
to be supported by considerable research supporting this method’s 
quantitative accuracy, especially since it may prove more difficult 
to the lower range of exposure estimates to accurately discern dif-
ferences between treatment estimates.

Appendix 3.4. Other considerations, such as the impact of 
the form (exponential versus linear) of the treatment effect 
estimate
Other important considerations in the application of the ACCE 
Method can be envisioned. To provide one example, since the 
method involves the straightforward subtraction of one treatment 
effect estimate from another, it is possible that the noncollapsibility 
of odds ratios and hazard ratios will be problematic. That is, non-
collapsibility may provide another source of difference between the 
Model 1 and Model 2 treatment effect estimates (i.e., a difference 
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not related to confounding amplification). (As mentioned previously, 
a key requirement of this method is that the difference between the 
Model 1 and Model 2 treatment effect estimates represent, to the 
extent feasible, only the effects of amplified confounding). There-
fore, it may be determined that this method works better for lin-
ear outcome models (such as those involving either continuous 
outcomes, or probabilities of the outcome rather than the presence 
or absence of the outcome itself), or log-linear (e.g., log-binomial, 
Poisson) outcome models (which provide risk ratios) than logistic 
outcome models. This manuscript already focuses upon using lin-
ear, rather than logistic, propensity score models to allow for esti-
mation of the change in the prediction of exposure. This choice was 
made simply because the linear model is the model for which the 
work on the quantitative relationship between changes in predic-
tion of exposure and confounding amplification has been the most 
developed5. Obviously, there are well-known shortcomings of using 
probabilities for dichotomous healthcare endpoints such as treat-
ment, mortality, or disease onset. Nevertheless, some other innova-
tions in nonrandomized treatment research have been introduced 
in the form of their application to linear regression models22. The 
best modelling approaches to pursue for both treatment exposure 
and outcome to optimize the performance of the ACCE Method are 
not yet clear.

Appendix 4. Uncertainties in accounting for the 
contribution of the Introduced Variable upon 
confounding
Appendix 4.1. Advantages and disadvantages of 
amplification in the Introduced Variable-outcome 
regression coefficient
One potential challenge to the capability of the ACCE Method to 
provide quantitative estimates of unmeasured confounding involves 
the degree to which confounding amplification also biases the 
Introduced Variable-outcome regression coefficient. Theoretical 
work has raised the possibility that confounding amplification may 
result whenever a variable is conditioned upon4 (although, from 
a practical perspective, the problem may end up typically being 
most pronounced for propensity scores, given the large number of 
covariates often able to be included in these models). If true, this 
means that confounding amplification might also occur with the 
Introduced Variable-outcome regression, affecting the Introduced 
Variable-outcome regression coefficient. Such confounding ampli-
fication, to the extent it exists, would be a concern for two reasons: 
1) this Introduced Variable-outcome regression coefficient is used 
twice within the method; and 2) since the bias relates to unmeas-
ured factors, it is difficult to estimate its extent (however, please see 
discussion below of two closely-related strategies that may address 
this concern).

Amplification of confounding in the Introduced Variable’s regres-
sion coefficient would bias estimates of the Introduced Variable’s 
true impact on two terms from the ACCE Method Summary 

Equation provided in the manuscript, Appendix 5, and the Appendix 
Table. Bias would be present in the terms Conf

IntV∆(M2-M1)
 (the con-

tribution of the Introduced Variable(s) to the change in the treat-
ment effect estimates) and Conf

IntVM1
 (the contribution of the Intro-

duced Variable(s) to the original, Model 1 confounding). (NOTE: 
Although it appears feasible to insert more than one Introduced 
Variable simultaneously, as discussed in Appendix 6, and thus more 
than one Introduced Variable-outcome relationship will exist, I will 
use only the singular here to improve readability. When multiple 
Introduced Variables are inserted, the approaches discussed here 
would need to be considered for each Introduced Variable).

However, several important points regarding this possible bias to 
the Introduced Variable-outcome regression equation are worth 
considering. First, there are reasons to suspect that confounding 
amplification of the Introduced Variable-outcome association usu-
ally will not be as extensive as that for the treatment effect estimate, 
both due to lessened prediction of exposure and a lesser amount 
of confounding initially to be amplified. The overall focus of the 
ACCE Method, like other methods, is to address potential con-
founding related to the treatment, rather than confounding related 
to the Introduced Variable. Therefore, it is not clear that inclusion 
of the same covariates in a regression examining the Introduced 
Variable’s association with outcome will lead to the same propor-
tional confounding amplification. This is especially probable if an 
Introduced Variable(s) is available to be chosen that is relatively 
uncorrelated with the measured covariates being included in the 
model. Furthermore, the degree of predicted amplification (e.g., 
whether “small” or “large”) should be readily detectable by 
measuring the R2 for the prediction of the “Introduced Variable” 
exposure in the within treatment group regression equations.

In addition, the Introduced Variable may not have as many corre-
lations with unmeasured potential confounders of its relationship 
with outcome as the treatment itself does, thus leading to less con-
founding to be amplified. For instance, consider a cancer treatment 
in which three major unmeasured or incompletely measured factors 
influence treatment choice: 1) presence of metastases; 2) specific 
primary tumor symptoms reported; and 3) degree of access to health 
care. An Introduced Variable(s) might be associated with the pres-
ence of metastases but may not be as associated with specific symp-
toms of the primary tumor (e.g., bleeding, swelling, etc.), or degree 
of access to health care. Thus, while unmeasured confounders 
relating to each of these areas would be expected to be correlated 
with (and thus confound) the treatment-outcome relationship, only 
unmeasured confounders related to the first area would be expected 
to substantially confound the Introduced Variable-outcome relation-
ship. Therefore, in some cases, the Introduced Variable-outcome 
relationship may be less confounded than the treatment-outcome 
relationship, and thus less quantitatively sensitive to the same degree 
of proportional confounding amplification (i.e., show less change 
in estimate even at the same particular R2 value). (In actuality, as 
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discussed above, the R2 value for the Introduced Variable-outcome 
model is also likely to be less than that of the treatment-outcome 
model). Thus, both the proportional amount of confounding ampli-
fication (1 / (1 - R2)) and the underlying amount of unmeasured 
confounding is likely to be less in the Introduced Variable-Outcome 
relationship, especially in circumstances in which an Introduced 
Variable can be chosen that is relatively uncorrelated with meas-
ured, included covariates.

Importantly, there also are two approaches that suggest them-
selves for addressing uncertainty about what degree of Introduced 
Variable-outcome confounding amplification that may exist. The 
first approach hinges on the possibility that it may prove feasible 
to iteratively reduce the magnitude of this bias by also estimat-
ing quantitatively confounding amplification in the Introduced 
Variable(s)-outcome regression through essentially serially repeat-
ing the steps of the ACCE Method. This would involve determin-
ing the Introduced Variable-outcome relationship from a regression 
comparing two groups, one with the Introduced Variable, and one 
lacking the Introduced Variable, with likelihood of being in one of 
the two groups predicted by a propensity score involving all of the 
Model 1 propensity score covariates and treatment. (In essence, 
exposure to, or possession of, the Introduced Variable would be tak-
ing the place of exposure to treatment in the main analysis). Then 
a single or set of variables predictive of Introduced Variable expo-
sure could be inserted for generating confounding amplification 
in this “2nd order” application of the method. The same steps that 
were applied to produce an unconfounded treatment effect estimate 
could then be applied to determine an unconfounded Introduced 
Variable-outcome coefficient.

This would obviously not fully resolve the uncertainty, since con-
founding amplification of this “second order” Introduced Variable(s) 
might still contribute some uncertainty to the estimate of the uncon-
founded Introduced Variable(s)-outcome relationship, which would 
in turn result in some lesser amount of uncertainty in the uncon-
founded Treatment Effect Estimate. This approach, however, would 
serve to transfer much of the concern about confounding amplifica-
tion in the regression coefficient onto yet another variable or vari-
ables (those “second order” Introduced Variables) further removed 
from the estimate of greatest interest (the unconfounded treatment 
effect estimate). Presumably, in some cases this process could be 
repeated once again if desired, if a variable or set of variables suf-
ficiently associated with exposure to the second-order Introduced 
Variables existed.

Finally, while the potential for bias in the Introduced Variable(s)-
outcome relationship is unfortunate, there is one sense in which this 
potential for bias may actually prove to be an advantage. The only 
way for the Introduced Variable(s)-outcome regression coefficient 
to suffer confounding amplification is for nonincluded factors (typi-
cally, unmeasured factors) to exist that are correlated both with the 
Introduced Variable and outcome. Without a correlation between 
the Introduced Variable(s) and one or more unmeasured factors, 

the Introduced Variable-outcome association is not confounded 
by unmeasured factors. This offers the potential, in some cases, to 
address an important source of uncertainty in the ACCE Method, as 
discussed in the text and Appendix 3.2. This uncertainty concerns 
whether the effect of inserting the Introduced Variable is adequately 
captured by insertion of the Introduced Variable-outcome regres-
sion coefficient into the Bross equation if correlated unmeasured 
confounding exists.

Thus, if the Introduced Variable does not show confounding ampli-
fication (e.g., shows a stable coefficient in several models which 
have differing R2 values, and for which the “2nd order” Introduced 
Variable also has a stable coefficient), then this constitutes a line of 
evidence suggesting that unmeasured confounders correlated to the 
Introduced Variable are limited or do not exist. Thus, this finding 
helps diminish concern about this potential uncertainty. To the extent 
that this approach can be used to identify Introduced Variable(s) that 
do not appear to be correlated with other unmeasured confound-
ers through this approach, the Introduced Variable(s) can then be 
inserted into the propensity score with some confidence that uncer-
tainty from both the change in correlated unmeasured confounders, 
and from confounding amplification of the Introduced Variable- 
outcome regression coefficient, is likely to be relatively minor.

How commonly Introduced Variables can be identified that are 
uncorrelated with unmeasured confounders remains to be deter-
mined. If typically they are difficult to identify, however, the 
first method described above of sequentially repeating the ACCE 
Method calculations to estimate the unconfounded Introduced 
Variable-outcome coefficient could then be considered.

Appendix 4.2. Final observations, including an initial 
consideration of whether the method systematically 
underestimates or overestimates residual confounding
It may seem that the number of potential uncertainties about the 
method (such as those mentioned in Appendix 2, Appendix 3, 
and Appendix 4) are daunting, but it should be recognized this is 
likely partly attributable to the fact that the method has been just 
formulated. As data is gathered about the method’s performance 
in practice, on either simulated or real-world datasets, it likely will 
become apparent which concerns may have a discernible impact on 
the treatment effect estimates, and which concerns are much more 
minor. It is hoped that the detailed anticipation of potential sources 
of uncertainty provided here helps facilitate the rapid conduct of 
such research.

It is important to note that these uncertainties all relate to the meth-
ods used to estimate and correct for the different components of 
confounding, when it exists. Some may produce imprecision 
that is difficult to predict in advance, such as the extent to which 
similar patient samples and “dose” of intervention is maintained 
between the models, and the possibility that correlations may only 
be able to be addressed incompletely). Some uncertainties might 
tend to lead to overestimates of confounding, such as whether the 
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Appendix Figure 1a. Components of the ACCE Method Summary Equation.

Introduced Variable regression coefficient is subject to confounding 
amplification, as well as, if adjustment for the included covariates 
is performed (Appendix Figure 1c), the regression coefficients for 
the included covariates. Some uncertainties might lead to under-
estimates of confounding, such as the possibility of constraints to 
amplification. Of these possible sources of imprecision in the esti-
mate, those that lead to underestimates of confounding would be 
the most concerning, because they would result in an overestimate 
of the treatment effect. This is precisely the reason why simula-
tion and real-world research is clearly needed. Such research might 
indicate the general accuracy of the estimates which are generated 
by the method and if the method tends to primarily overestimate or 
underestimate residual confounding. If a systematic overestimation 
or underestimation is indicated consistently, then this finding would 
still allow the results from this method to be used as an upper or 
lower bound on residual confounding.

Given that many of the uncertainties surround the approaches that 
the method uses to quantify residual confounding when it exists, it 
may prove that this method has its greatest value when it demon-
strates a lack of confounding amplification, and it may be prudent 
to give those results the most weight for the time being. Part of 
the value of this method may be to provide a widely applicable 
method to making the determination of whether an estimate appears 
to be largely unconfounded. The wide applicability would result 

from the permitting use of an Introduced Variable with an associa-
tion with outcome to probe for this unconfoundedness (although if 
the Introduced Variable has a substantial association with outcome, 
this then necessitates at least one of the quantitative adjustments for 
which there may be imprecision), or the use of a set of variables 
as the Introduced Variable. I also anticipate that the method, even 
when it does not provide a strictly accurate unconfounded treat-
ment estimate, will provide an estimate that is beneficially closer to 
the unconfounded treatment estimate than conventional analysis, as 
well as indicate the general size and direction of residual confound-
ing. However, these suppositions need to be demonstrated through 
research.

Appendix 5
This appendix consists of three figures. The first figure (Appendix 
Figure 1a) annotates (i.e., labels) the components of the ACCE 
Method Summary Equation. The second figure (Appendix Figure 1b) 
indicates to which terms the various uncertainties discussed in the 
main manuscript and these appendices pertain. The third figure 
(Appendix Figure 1c) adds terms relating to the change in imbal-
ance in the included covariates between Model 1 and Model 2, and 
the residual imbalance in included covariates in Model 1.  These 
terms may be minor and thus adjustment for them through using the 
Bross equation not always needed. In theory, however, such adjust-
ments should provide more optimal estimates.
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Appendix Figure 1b. ACCE Method Summary Equation Annotated with Key Uncertainties.

Abbreviations for Appendix Figure 1a and Appendix Figure 1b:

TEE = Observed Treatment Effect Estimate, observed from outcome models when the particular propensity score model noted by the subscript is used to 
stratify or match the samples being compared.

Unconfounded TEE = The Estimate of the Treatment Effect Unconfounded by Baseline Confounding through operation of the ACCE Method.

M1 = Model 1.

M2 = Model 2.

IntV = Introduced Variable.

Conf
IntVΔ(M2-M1)

 = the change in confounding between Model 2 and Model 1 attributable to the change (i.e., expected decrease) in the imbalance of the Intro-

duced Variable between Model 1 and Model 2. This is calculated through knowledge of the imbalance of the variable in both models and use of the Bross 
equation. Specifically,

Conf
IntVM1

 = Confounding attributable to the Introduced Variable in Model 1

1 - R2 = 1 minus the R2 observed for the propensity score model, i.e., the R2 for the prediction of treatment exposure. The reciprocal of (1 - R2), i.e. 1 / (1 - R2) 
is the predictor of the amplification of confounding occurring during stratification or matching using that propensity score model. The subscript M1 and M2 
denote the R2 for the propensity score Model 1 and propensity score Model 2.
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Appendix Figure 1b Legend: Key Uncertainties in the ACCE 
Method mapped to terms in the Summary Equation

1.	 Will the effects of random variation routinely cause sufficient 
misestimation of this difference to impair the method’s useful-
ness? To the extent this problem exists, it would be expected to 
decrease as the size of the database increased. In addition, the 
significance of the problem may also be diminished by serial 
estimations of the Treatment Effect Estimates, such as through 
bootstrapping. This would not reduce random variation, per 
se, but would minimize the chance a single particularly inac-
curate estimate becomes the basis for all the conclusions about 
unmeasured confounding. As pointed out in the manuscript, 
some groups have reported results suggesting that very small 
differences in treatment effect estimates between similar mod-
els can be reliably detected9,10.

2.	 Given uncertainty #1, in general it would seem desirable to 
maximize the amount of difference between the two treatment 
estimates (i.e., maximizing confounding amplification between 
the two models) to maximize the chance of detecting a “signal” 
within the “noise” of random variation. However, this principle 
may be in opposition to Uncertainties #3, #5, and #10.

3.	 Are the two propensity score models as similar as feasible in 
other aspects? Specifically, is the balance for the measured 
covariates included in both models similar between both mod-
els? Is the Common Support Area and, if applicable, percent 
matched similar? Are aspects of the intervention, such as the 
average dose and frequency of different doses across the dose 
range for the treatment groups (and the rates of discontinua-
tion of the intervention and the comparator) similar between 
the two models? Of note, the second concern regarding the 
Common Support Area, percent matched, etc., only becomes 
relevant to the extent that the treatment examined exhibits 
effect modification between the two groups (i.e., that those 
differences in the groups’ composition affect the underlying 
genuine treatment effect).

4.	 Given that a core operation in the method involves subtract-
ing two treatment effect estimates, are linear or exponential 
models to be preferred? This question is relevant because of 
the possible impacts of issues such as noncollapsibility and 
linearity assumptions on the accuracy of the two treatment ef-
fect estimates as well as the subtraction of these two treatment 
effect estimates. It is important that, to the extent feasible, the 
difference in effect estimate only reflect differences in con-
founding amplification between the two models, not other dif-
ferences (including differences attributable to misestimation).

5.	 Does the Introduced Variable – outcome regression coeffi-
cient, when inserted into the Bross equation, adequately reflect 
the changes that are also occurring in correlated unmeasured 
confounders? That is, these correlated unmeasured covariates 
would generally be expected to have an overall amplification 
less than predicted by (1 / (1 - R2

M2
)) / (1 / (1 - R2

M1
) due to their 

partial correlation with the Introduced Variable. The Brooks 
and Ohsfeldt (2013) simulation5, however, suggests that this 
can be modeled as a certain fraction of the unmeasured con-
founder coming into approximately the same balance as the 
Introduced Variable (as predicted by the correlation coeffi-
cient) while the remaining fraction amplifies to the same extent 
as the rest of the unmeasured confounders. Would using an 

Introduced Variable-Outcome regression coefficient (that 
would be expected to be affected by the correlation between 
the Introduced Variable and the correlated unmeasured con-
founder) as the input for the Bross equation adequately esti-
mate the change in confounding occurring when the Introduced 
Variable(s) is inserted into Model 2 (i.e., Conf

IntVΔ(M2-M1)
)? In 

addition, we must rely on the subtracted term representing the 
Introduced Variable(s)’s contribution to Model 1 (i.e., Conf

IntVM1
) 

to also capture the confounding contributed by the nonampli-
fied fraction of the correlated unmeasured confounders.

6.	 The Introduced Variable – outcome regression coefficient 
potentially may suffer at least some degree of confounding 
amplification, although it is possible that in most cases this 
amplification is not as severe as that which occurs in the treat-
ment-outcome relationship. In addition, it may be possible to 
identify cases in which significant unmeasured confounding 
is unlikely, although how frequently this occurs is uncertain. 
Finally, it may be possible to reduce this potential bias by repe-
ating the estimation using yet another model and applying the  
ACCE Method to predict the magnitude of confounding amplifi-
cation in the Introduced Variable-outcome regression coefficient.

7.	 Is the Bross equation straightforward approach of using a re-
gression coefficient multiplied by the observed imbalance in a 
variable truly strictly accurate in accounting for that variable’s 
contribution to confounding?

8.	 Although there is some simulation and theoretical work sup-
porting the 1 - R2 confounding amplification relationship, 
more evidence supporting this relationship would be desir-
able. In addition, the simulation work, but not the theoreti-
cal work, demonstrates increasing nonlinearities in the 1 - R2 
value versus the actually observed confounding amplification, 
raising a question of how accurately the 1 - R2 relationship 
predicts amplification above R2 of 0.56. It should be noted, 
however, that if a predictable relationship between R2 or other 
predictors of exposure and confounding amplification is not 
possible, use of an “internal marker” strategy might still allow 
the method to be implemented.

9.	 A key assumption of the method is that different unmeasured 
confounders amplify uniformly or reasonably uniformly, but 
other than a single simulation it has not been demonstrated 
that this is the case. Specifically, the question is whether un-
measured confounders that are uncorrelated with the included 
covariates or Introduced Variable(s) amplify uniformly (and 
potentially, as discussed in #5, the fractional component of 
correlated unmeasured confounders that can be represented as 
not correlated with the Introduced Variable or included covari-
ates). One possibility, for instance, is that in real-world data 
“constraints” may exist pertaining to the actual amplification 
that can be achieved for different unmeasured confounders.

10.	 Are there advantages in keeping expected confounding ampli-
fication relatively low to minimize the possibility of exceed-
ing the R2 = 0.56 “threshold” (if this threshold in fact does 
exist), minimizing the likelihood of constraints, etc. If so, this 
would be expected to work at cross-purposes to the strategy 
to address point #2: maximizing the difference between the 
treatment effect estimates to facilitate the most accurate esti-
mates of residual confounding.
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Appendix 6. Considerations involved in adding a 
set of Introduced Variables to induce substantial 
confounding amplification
One aspect of the ACCE Method that deserves further investiga-
tion concerns whether the insertion of a set of Introduced Variables, 
rather than a single Introduced Variable, could be used to generate 
confounding amplification. Use of a set of variables would remove 
the need to identify a single variable with a strong association with 

exposure, potentially greatly enhancing the applicability of the 
method. Indeed, datasets which lack a single variable with a strong 
association with exposure to serve as the Introduced Variable could 
presumably be “engineered” in most cases to have that function 
played by a set of variables. That is, a very large number of data-
sets would be expected to contain enough measured variables to, in 
total, predict exposure to some substantial amount when inserted 
as a set. These variables could simply be withheld from Model 1 

Appendix Figure 1c. ACCE Method Summary Equation including additional elements relating to residual confounding attributable to 
the residual imbalance in the covariates included in both propensity scores (Appendix 2.1 and Appendix 3.2a).

Abbreviations for Appendix Figure 1c.

Same as for Appendix Figure 1a and Appendix Figure 1b (above), plus:

Conf
ResImbΔ(PS2-PS1)

 = Confounding associated with the change (if any) in the residual imbalance between treatment groups observed in propensity score 
covariates in Model 1 versus Model 2. This can be estimated through inserting multivariate regression coefficients for each covariate into the Bross equation, 
incorporating information about the change in balance of the propensity score covariates in Model 1 and Model 2. I use the more general term “associated 
with”, rather than “attributable to”, to reflect the fact that changes in the balance of these included covariates would be expected to also result in change in 
the balance of the “included fraction” of nonincluded confounders that are correlated with these covariates. How well the Bross equation adjusts for these 
changes is uncertain.

Conf
ResImbPS1

 = Confounding associated with the residual imbalance in propensity score covariates in Model 1, and, if present, the correlated fraction of non-
included confounders correlated with the included propensity score covariates. The effect of the residual imbalance in propensity score covariates in Model 1 
upon residual confounding may be able to be estimated through the use of the Bross equation. The ability for this estimate to include the impact upon residual 
confounding of any nonincluded correlates of these propensity score covariates, however, it is less certain.
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and inserted in Model 2. In some extreme cases, this might require 
withholding virtually all of the measured covariates from Model 1, 
so that they could serve as the Introduced Variable set inserted in 
Model 2. Many of these variables might have associations with out-
come, but that would be addressed through application of Steps 3 
and 4 of the ACCE Method for each inserted variable.

Such an approach of deliberately withholding a set of Introduced 
Variables, however, incurs the potential drawback of placing 
increased emphasis on the ability of the ACCE Method to accu-
rately quantify residual confounding, as discussed in Appendix 3.1, 
Appendix 3.2, and Appendix 3.3. However, the potential to derive 
some sort of estimate of unmeasured confounding in an extremely 
large number of studies might be a sufficient advantage to counter-
balance or outweigh this concern.

In theory, there appears to be no mathematical reason mathemati-
cally why multiple Introduced Variables cannot be used. For the sim-
plest example, consider two variables, each present at an 80%/20% 
prevalence in the two comparison arms (treatment and control), one 
that had an association with outcome of beta = +0.1, and the other 
an association of beta = -0.1. (Presumably each of these coefficients 
would be obtained from a regression including all the other pro-
pensity score covariates, including the other Introduced Variable). 
Upon insertion, if both covariates were also essentially equally bal-
anced in Model 2 (e.g., both become balanced at a 52%/48% preva-
lence), then seemingly they would serve as a composite Introduced 
Variable with no overall association with outcome, but which would 
amplify confounding more than either variable alone.

In the more complex case in which the associations of the Intro-
duced Variables did not cancel out, presumably Steps 3a–c (e.g., 
derivation of the regression coefficients and use of the Bross equa-
tion) would be performed for each of the Introduced Variables 
(as mentioned above). Then each of the changes in confounding 
attributed to the Introduced Variables would be subtracted from the 
overall change in the treatment effect estimate observed. Likewise, 
Step 4b1 would subtract the confounding attributable to each of the 
Introduced Variables from the Model 1 treatment effect estimate.

One concern, however, would be, as the number of Introduced 
Variables increases, the likelihood would increase that at least 
some Introduced Variables would be associated with unmeasured 
confounders. The test for whether that is the case proposed in  
Appendix 4, however, presumably still holds. The feasibility, 
advantages, and disadvantages of using a set of Introduced Varia-
bles still need to be tested out in simulation. Nevertheless, the use of 
a set of Introduced Variables would seemingly create, in theory, the 
potential to obtain a quantitative or at least a qualitative sense about 
residual confounding from a large number of intervention studies.

Appendix 7. Practical guide to implementing the 
method based on current knowledge and final 
thoughts
7.1. Tentative suggestions for implementing the ACCE 
Method based on current knowledge
Much simulation and real-world research needs to be performed to 
evaluate the degree to which the ACCE Method provides valuable 

estimates of unconfounded treatment effects, or at least estimates 
closer to the likely unconfounded treatment effect than the con-
ventional estimates obtained prior to application of the method. 
Such research may include potential “tuning” of the method to 
simulated or real-world datasets through determining the optimum 
choices for the method’s implementation, either in general or in 
specific circumstances (see below, and preceding Appendices). 
Research of this type must occur before strong recommendations 
can be advanced concerning preferred approaches to use in imple-
menting this method. Such research would also clarify the weight 
that should be given from estimates from this method compared to 
other methods for addressing unmeasured confounding. Hopefully, 
the method has been communicated in the manuscript and these 
Appendices clearly enough that researchers can start to implement 
the method in a variety of datasets to determine, and determine how 
to optimize, its performance.

Nevertheless, some researchers may understandably have a current 
interest in preliminarily exploring what this method suggests about 
the likely presence and size of unmeasured confounding in their 
analyses. A few key considerations suggest themselves:

First, there appear to be three key qualities for the Introduced 
Variable or Variables:

1)	 Strength of association with exposure – all other things 
being equal, stronger is better.

2)	 Likelihood of, or evidence for or against, correlation with 
other confounders (especially unmeasured confounders) – 
all other things being equal, fewer or no apparent 
correlations is desirable.

3)	 Association with outcome – all other things being equal, a 
lack of an apparent association with outcome is preferred, 
although far from required.

The ideal Introduced Variable would presumably possess both 
attributes #1 and #2 (a strong association with exposure and little to 
no apparent correlation with other unmeasured confounders). The 
association with outcome (#3) is expected to be less crucial, espe-
cially if a lack of correlation with other unmeasured confounders 
is suspected. In this circumstance, the effect upon confounding of 
adding this variable into the propensity score, regardless of its asso-
ciation with outcome, will hopefully be adequately captured by the 
regression coefficient/Bross equation-based adjustments outlined in 
the manuscript. However, as discussed in Appendix 4.2, at this point 
the method’s estimates probably should be seen as at least slightly 
more uncertain whenever a substantial quantitative adjustment to the 
Model 1 treatment effect estimate has to be performed. In other words, 
the method may allow for the most confident conclusions to be drawn 
when the method suggests little residual confounding exists.

Among the first two attributes listed, it is difficult to offer definitive 
advice about which to prioritize until the method’s performance in 
the context of substantial random variation is determined. If ran-
dom variation represents a major threat to the accuracy of the esti-
mates resulting from the method, then high priority will likely need 
to be given to adding an Introduced Variable or set of Introduced 
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Variables that is strongly associated with exposure. This presum-
ably would produce the greatest expected change in the treatment 
effect estimate, likely increasing the chance of detecting a relatively 
accurate change in the setting of substantial random variation. Sim-
ilarly, research is also needed to determine the extent to which the 
proposed adjustments to quantify the effect of inserting the Intro-
duced Variable into the second model also successfully captures the 
change that results in other, correlated, unmeasured confounders. 
Until that point, it would appear that choosing an Introduced Vari-
able with little or no apparent correlation with other unmeasured 
confounders, if one or more can be identified, would be advisable. 
How frequent such variables are routinely available is uncertain. It 
may prove possible, however, to screen for such variables through 
selection procedures based on detecting an apparent lack of change 
in the Introduced Variable(s)-outcome association when unmeas-
ured confounding amplification is expected (this procedure is 
broadly outlined in Appendix 4).

The lack of association with outcome appears to be a less important 
consideration than the preceding two. However, if it is difficult to 
demonstrate with satisfaction that an Introduced Variable appears 
uncorrelated with unmeasured confounders, than there may be an 
advantage to choosing an Introduced Variable with a minimal asso-
ciation with outcome. At a minimum, such a strategy would appear 
to have a reasonable chance of minimizing confounding amplifi-
cation of the Introduced Variable-outcome association, especially 
if there were no a priori reasons for believing the variable would 
have an association with outcome. A variable thought to have no 
association with outcome that has a regression coefficient close to 
the null likely has a better chance of having minimal correlation 
with unmeasured confounders than one with an observed associa-
tion with outcome, although it is always possible that the appar-
ent null association results from an Introduced Variable with a 
substantial association with outcome closely counterbalanced by 
correlated unmeasured or nonincluded confounders biasing in the 
opposite direction. Again, however, the test of the sensitivity of 
the Introduced Variable coefficient to the number of variables in 
the model proposed in Appendix 4.1 might permit the evaluation 
of that possibility (by determining if substantial correlations with 
unmeasured or nonincluded confounders are suggested.

Whether using Introduce Variables with a null or near-null associa-
tion with outcome is any advantage over conventional instrumental 
variable regression, however, is uncertain. It is conceivable that 
using the ACCE Method with such variables may provide additional 
statistical power over a conventional instrumental variable regres-
sion, and/or may not as prone to the biases that weak instruments 
can engender (especially if the use of a set of Introduced Variables 
produces stronger changes in the prediction of exposure). These are 
untested possibilities, however, and await both systematic investi-
gation of the method’s performance in general and development of 
methodology to generate confidence intervals via bootstrapping or 
other approaches.

In addition to the qualities of the Introduced Variable, at least one 
additional major strategic consideration will likely influence ACCE 
Method model-building decisions: the judgment of how extensive 
Model 1 should be (i.e., the number of covariates it contains). In 

general, there are obvious advantages of having the model be as 
extensive as possible (i.e., to adjust/balance for as much measured 
confounding as possible). Methods for minimizing measured con-
founding in such a fashion have been developed for decades, while 
the ACCE Method has just been proposed. A second clear-cut reason 
for attempting to control as much measurable confounding as possi-
ble is that such a strategy reduces the risks that the nonincluded cov-
ariates will represent “unmeasured confounding” that is correlated 
with the Introduced Variable(s). Since the method’s performance in 
the setting of such correlations is more uncertain, it makes sense to 
attempt to construct the models to avoid this condition as much as 
possible. Certainly, at a minimum, it would seem like any known 
confounders that clearly are correlated with the Introduced Variable 
should be included as propensity score covariates. A third reason to 
maximize the number of included covariates is that in general, the 
greater degree to which exposure is predicted, the larger the pre-
dicted amount of confounding amplification between Model 1 and 
Model 2. This larger proportional confounding amplification means 
that the quantitative estimate of confounding amplification, with its 
associated uncertainty, is multiplied by a lesser factor than if little 
difference in proportional confounding amplification is observed. 
(For an extreme example, if two models are compared, one with an 
R2 for exposure of 0.1 and one with an R2 of 0.2, this means the quan-
titative change in treatment effect estimates would be divided by 
(1 / (1 - 0.2) / 1 / (1 - 0.1)) - 1 = ((1 / 0.8) / (1 / 0.9)) - 1 = 1.125 - 1 = 0.125. 
Dividing the change in treatment effect estimates by 0.125 is the 
equivalent to multiplying this change by a factor of 8! In general, it 
seems more prudent to, if the opportunity exists, work in a higher 
range of exposure prediction where the treatment effect estimate 
difference is multiplied by a much lesser factor).

However, despite the attractiveness in general for making Model 1 as 
complete as possible, there are a couple considerations which may, 
in certain circumstances, support creating a Model 1 that is deliber-
ately less extensive than might be possible. The first consideration 
is the simple reality that the Introduced Variable association with 
outcome needs to be determined via regression. The number of var-
iables that can be inserted into a regression equation depends upon 
the number of outcomes, while the number of covariates that can 
be introduced into a propensity score is often far greater, since this 
quantity relates to the total number of individuals exposed. Thus, in 
settings with relatively few outcomes, the number of covariates that 
can be entered into a propensity score may easily exceed those that 
can be included in a regression without risking bias. Second, if it 
is determined that the apparent nonlinearity that starts to affect the 
confounding amplification relationship above an R2 of 0.56 in simu-
lation is genuine, and this nonlinearity cannot be modeled math-
ematically and/or reflected in the change in “internal markers,” then 
a strong reason might exist to keep the number of propensity score 
covariates in Model 1 smaller than otherwise might be possible. A 
need would exist to keep the Model 1 propensity score covariates at 
a number for which addition of the Introduced Variable or variables 
in Model 2 does not produce an R2 greater than 0.56. However, 
it is not clear whether this observed nonlinearity relates to some 
specific characteristics of this simulation. Third, the possibility of 
“constraints” upon confounding amplification is another possible 
reason for limiting the number of covariates representing measured 
confounders in the Model 1 propensity score. To the extent that 
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some level of “constraints” to confounding amplification occur 
within real-world data (which is currently unclear), the general 
expectation would be that these constraints would be less pronounced 
at lower R2 values of the two models (since less overall amplification 
would likely be resulting) than higher R2 values. Finally, it is worth 
considering the desire to keep Model 1 and Model 2 as comparable 
as possible except for the Introduced Variable. Differences between 
the models in balance of measured confounders, patient sample, or 
dose or duration of the intervention could produce different under-
lying “treatment effects” in the two models, although how large 
these differences would typically be is uncertain. In general one 
would expect that as the amplification becomes greater between the 
two models, the potential for a difference in these factors becomes 
greater. These differences can be measured, however, and it may 
prove that this consideration is relatively minor compared to, for 
example, the advantage of substantially amplifying confounding in 
the setting of substantial random variation.

As mentioned in Appendix 2.4 and Appendix 4.2, the number of 
considerations that potentially may need to be juggled when imple-
menting the ACCE Method may seem daunting. However, this may 
partially reflect, at least in part, the lack of testing of the method 
that has thus far occurred, since the method has been just proposed. 
I would anticipate that as the method is implemented in simulated 
and real-world datasets, the relative importance of some of these 
components relative to others will become much clearer.

7.2. Potential advantages of multiple applications of the 
method using different Introduced Variables/Introduced 
Variable sets
One possibility that may emerge, especially as a better sense is 
developed of the impact of random variation and the strength of 
association with treatment exposure typically needed for reliable 
estimates, is that this method may perform best with multiple appli-
cations of the method featuring different Introduced Variables or 
Introduced Variable sets. These multiple applications of the method 
would obviously be in addition to any bootstrapping to obtain con-
fidence intervals using the same Introduced Variable(s) (if this is 
the method settled upon for confidence interval generation). These 
multiple applications could either involve simply introducing differ-
ent Introduced Variables to the same Model 1 or, probably a supe-
rior but more labor-intensive approach, to different Model 1s. This 
more labor-intensive approach would address the possibility that 
the correlated included and unmeasured confounders would likely 
vary from Introduced Variable to Introduced Variable, and because 
it may be desirable to include the other candidate Introduced Vari-
ables in the Model 1 when these variables are not being used as 
Introduced Variables. In the ideal scenario, even though each of 
these comparisons would involve at least slightly different meas-
ured covariates and, thus, different amounts of residual/unmeasured 
confounding in Model 1, the ACCE Method would yield the same, 
or close to the same, ultimate value for the unconfounded treatment 
effect.

If a similar estimate of the unconfounded treatment effect is not 
obtained, then one approach would be to choose the estimate that is 
most “conservative” (i.e., yields the lowest unconfounded treatment 
effect estimate). Whether in practice this might end up being too 

conservative (depending on the potential impacts of random varia-
tion) remains to be determined.

While the approach of applying this method multiple times is 
clearly more labor-intensive, in the era of Big Data, ample com-
puter power, and automation, such an approach likely would be 
justified if it substantially improved the method’s estimate of 
unmeasured confounding. (The same consideration may apply to 
other potentially labor-intensive steps, such as estimating the resid-
ual confounding contributed by each of the included propensity 
score covariates [Appendix 2.1 and Appendix Figure 1c]).

7.3. Final thoughts on the ACCE Method and the need for 
additional research
What has been outlined here is a method that, in theory, can derive 
a treatment effect estimate from nonrandomized studies less biased 
from residual baseline confounding, even when some of the residual 
confounding is unmeasured. It is even possible that in some cases 
this approach may also permit derivation of a treatment effect esti-
mate that is less biased from confounding arising after treatment 
initiation as well (Appendix 2.3b). The logic of the method is rela-
tively straightforward. In addition, its core principle that introducing 
a predictable amount amplification of residual confounding should 
permit estimation (through extrapolation) of the amount of con-
founding prior to amplification may have enduring value, even if the 
specifics of the method outlined here are altered by future research. 
What remains to be determined is how well the method actually 
works in practice, when applied to simulated and real-world data.

It is difficult to predict the method’s performance a priori. While 
many challenges can be anticipated, further study of this method 
appears clearly warranted. Importantly, some of the many poten-
tial challenges anticipated in this manuscript would be expected to 
reduce the accuracy of the proposed method but not invalidate the 
basic approach. It also should be noted that the potential exists for 
this method to provide several distinct benefits: 1) the potential to 
use a greater variety of variables than strict instrumental variables 
as the basis to address unmeasured confounding (specifically, being 
able to use variables to that have associations with outcome, as well 
as those that do not); 2) the apparent potential to use a set of vari-
ables to produce confounding amplification when no single variable 
is sufficient, and 3) possibly the potential to address confounding 
after treatment initiation as well as at baseline. Thus, this proposed 
method seems to have enough potential advantages to justify its 
further investigation as one approach that might contribute to the 
broad aim of making nonrandomized treatment effect estimates less 
subject to confounding. Such research would also help establish 
whether this method also might contribute to the more challenging 
objective of deriving nonrandomized treatment effect estimates that 
truly approximate those that would be observed in randomized tri-
als in that population.

For all these reasons it is hoped that the extent and the detail of 
the information provided here will allow research on this proposed 
method to proceed rapidly. Such research would allow for the 
important determination to be made regarding where this method 
stands in value compared to other methods proposed for obtaining 
unconfounded treatment effects.
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Appendix Table 1. Step-by-step application of the ACCE Method (hypothetical example).

Scenario: A genuine treatment effect risk ratio (RR) = 1.10 exists for the investigated intervention (e.g., medication, surgery, psychotherapy, 
etc.). This association, however, is concealed by a larger amount of residual confounding (RR = 1.15) in the initial model (Model 1). This leads 
to bias in the observed association between the intervention and outcome in Model 1 (treatment effect estimate of RR = 1.265). Model 1 has 
an R2 of 0.25.

Applying the ACCE Method, an additional variable or variable(s) is identified that is substantially associated with treatment. This identified 
variable has an association of RR = 1.05 with the outcome, and a 4:1 imbalance (80% versus 20%) between the treatment groups in Model 1. Upon 
introduction into Model 2, this imbalance changes to a 1.08:1 imbalance (52% versus 48%) once this variable is included in the propensity 
score and balanced through stratification or matching. Model 2 (which has an R2 of 0.5) has a treatment effect estimate of RR = 1.2985.

Step Description Verbal and Symbolic Formula Example

1a

Construct propensity score 
Model 1 (“M1”) and determine its 
prediction of exposure and derive 
a Treatment Effect Estimate when 
the propensity score is used to 
stratify or match the treatment 
groups

Model 1 Treatment Effect Estimate = TEEM1  
 
Model 1 prediction of exposure (in this case, 
using the metric R2) = R2

M1 

TEEM1 = RRM1 = 1.265 alternatively: 
 
TEEM1 = βM1 = ln(1.265) = 0.2351 
 
 
R2

M1 = 0.25 

1b

Construct propensity score 
Model 2 (“M2”) and determine its 
prediction of exposure and derive 
a Treatment Effect Estimate when 
the propensity score is used to 
stratify or match the treatment 
groups

Model 2 Treatment Effect Estimate = TEEM2  
 
Model 2 prediction of exposure (again using the 
metric R2) = R2

M2 

TEEM2 = RRM2 = 1.2985 alternatively: 
 
TEEM2 = βM2 = ln(1.2985) = 0.2612 
 
 
R2

M2 = 0.5 

2

Estimate Proportional 
Confounding Amplification 
(“CAmpProp”) (between Model 1 
and 2) 
 
(either through use of a Prediction 
of Exposure metric or an “Internal 
Marker”)a 

For R2, if both R2 < 0.56, THEN:  
 
Proportional Confounding Amplification between 
Models = Inverse of (Proportional Amplification in 
Model 2 divided by Proportional Amplification in 
Model 1) 
 
Using R2, Proportional Amplification of each 
model is given by (1 / (1 - R2)), so this would 
equal: 
 
(1 / (1 - R2

M2) / (1 / (1 - R2
M1)) = CAmpProp

b  

CAmpProp = (1 / 0.5) / (1 / 0.75) = 1.5

Step 3  
This step adjusts the change in the observed treatment effect estimate between Model 2 and Model 1 by the contribution that is 
attributable to the increased balance in the Introduced Variable or variables that produced the confounding amplification. Performing this 
simple adjustment requires 4 substeps, and in the case of Step 3b, further substeps within that subset.

3a

Determine if an association (“IntV:
O”) exists between the Introduced 
Variableb (“IntV”) and the 
Outcome (“O”) by examining the 
association within the treatment 
arms for each Modelc 

IntV:Outcome Association = IntV:O or, as mean 
value, “RRi:o” 
 
More specifically: 
 
IntV:O Model 1Treatment Group 1 = IntV:OM1 Tx Grp 1 
 
IntV:OModel 1Treatment Group 2 = IntV:OM1 Tx Grp 2 
 
AND 
 
IntV:OModel 2Treatment Group 1 = IntV:OM2 Tx Grp 1 
 
IntV:OModel 2Treatment Group 2 = IntV:OM2 Tx Grp 2 

IntV:OM1 Tx Group 1 = 1.045 (as RR) 
 
IntV:OM1 Tx Group 2 = 1.055 (as RR) 
 
Mean IntV:O1 = RRi:oM1 = 1.05d  
 
 
IntV:OM2 Tx Group 1 = 1.046 (as RR) 
 
IntV:OM2 Tx Group 2 = 1.056 (as RR) 
 
Mean IntV:O2 = RRi:oM2 = 1.051d 
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Step Description Verbal and Symbolic Formula Example

Appendix Table 1 (continued)

Step 3b  
Determine the degree to which change in the Treatment Effect estimate is due to increased balance in the Introduced Variable.

3b1

Estimated the Confounding 
attributable to Original (Model 1) 
Imbalance in Introduced Variable 
(“CIntVM1”) 
 
This is done through use of the 
Bross equation.e

p = probability (e.g., 80%) 
 
ln [(pM1 Tx Grp  1 * (RRi:oM1 - 1) + 1) / (pM1 Tx Grp 2 * (RRi:oM1 - 1) + 1)] 
 
 
ln [(pM2 Tx Grp  1 * (RRi:oM2 - 1) + 1) / (pM2 Tx Grp 2 * (RRi:oM2 - 1) + 1)]

CIntVM1 = 
ln[(0.8 * (1.05 - 1) + 1) / (0.2 * (1.05 - 1) + 1)] = 0.0293

3b2

Estimated Confounding 
attributable to the Subsequent 
(Model 2) Imbalance in 
Introduced Variable (“CIntVM2”)

ln [(pM2 Tx Grp 1 * (RRi:oM2 - 1) + 1) / 

(pM2 Tx Grp 2 * (RRi:oM2 - 1) + 1)]

CIntVM2 = ln[(0.52 * (1.051 - 1) + 1) / 

(0.48 * (1.051 - 1) + 1)] = 0.002

3b3

Determine the change in 
Treatment Effect Estimate 
observed between Model 1 and 
Model 2 that is attributable to 
the increased balance in the 
Introduced Variable (resulting 
from stratification or matching on 
the propensity score).

Change in Effect Estimate (Model 2 - Model 1) 
attributable to increased balance of Introduced 
Variable (“ΔTEE(IntV)”): 
 
CIntVM2 - CIntVM1 = ΔTEE(IntV)

ΔTEE(IntV) = 0.002 - 0.0293 = -0.0273

3c

Calculate the Change in the 
observed Treatment Effect 
Estimate (Model 2 versus Model 1) 

Model 2 Effect Estimate - Model 1 Effect Estimate = 
Change in Effect Estimate (“ΔTEE(CAmp)”): 
 
TEEM2 - TEEM1 = ΔTEE(CAmp) 

ΔTEE(CAmp) = 0.2612 - 0.2351 = 0.0261

3d

Adjust the Change in the observed 
Treatment Effect Estimate from 
Model 1 to Model 2 by the 
amount of change accounted 
for by increased balance in the 
Introduced Variable

Change in Effect Estimate (Model 2 - Model 1) -  
Difference in Treatment Effect Estimate 
attributable to the Introduced Variable = Adjusted 
Treatment Effect Estimate Change (“AdjΔTEE”): 
 
ΔTEE(CAmp) - ΔTEE(IntV) = AdjΔTEE 

AdjΔTEE = 0.0261 - (-0.0273) = 0.0534

Step 4  
Determine the Residual Confounding from the “Amplifiable Fraction” and the Introduced Variable, the sum of which provides an estimate 
of Total Residual Confounding, and Subtract this Sum from the Model 1 Treatment Effect Estimate to obtain an unconfounded treatment 
effect estimate. This starts by calculating the estimate of Residual Confounding due to the “Amplifiable Fraction,” through extrapolation 
by dividing the adjusted change in the treatment effect estimates by the proportional difference in confounding amplification expected 
between the two models.

4a

Calculate estimate of Residual 
Confounding in Model 1 except 
for the Introduced Variable by 
dividing the adjusted change in 
Treatment Effect Estimate by the 
effect of the change in amount 
of confounding amplification 
between the models. That is, 
by the ratio of the confounding 
amplification expected in each 
model

Adjusted Treatment Effect Estimate Change 
/ (Confounding Amplification - 1) = Residual 
ConfoundingModel 1 except for IntV (“CResM1-IntV”): 
 
AdjΔTEE / (CAmpProp - 1) = CResM1-IntV

CResM1-IntV = 

0.0534 / ((1 / (1 - R2
M2) / (1 / (1 - R2

M1)) - 1) 
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Step Description Verbal and Symbolic Formula Example

Appendix Table 1 (continued)

Step 4b  
Determine the Total Residual Confounding in Model 1 by taking the result of Step 4a, adding the original contribution of the Introduced 
Variable or variable(s), and then subtracting this sum from the Model 1 Treatment Effect Estimate to obtain an estimate of the 
unconfounded Treatment Effect Estimate (for Model 1).

4b1

Derive an estimate of Total 
Residual Confounding in Model 1 

Residual ConfoundingModel 1except for IntV + IntVM1 
Confounding = Total Residual ConfoundingModel 1 
(“CTotResM1”): 
 
CResM1-IntV + CIntVM1 = CTotResM1

CRes1 = 0.1068 + 0.0293 = 0.1361 
 
e0.1398= 1.15 
 
RRTotal Confounding (Model 1) = 1.15f 

4b2 

Derive an Estimate of the 
Unconfounded Treatment Effect 

Model 1 Effect Estimate - Total Residual 
ConfoundingModel 1 = Unconfounded Treatment 
Effect Estimate (“TEEUnC”): 
 
EEM1 - CTotResM1 = TEEUnC 

TEEUnC = 0.2351 - 0.1361 = 0.0990 
 
e0.0953 = 1.10 
 
RRUnconfounded (Model 1) = 1.10f,g

Summary Equation for the ACCE Methodh,i

a”Internal Marker” = a measured covariate deliberately not included in the propensity score that is generally uncorrelated with other pro-
pensity score covariates. The internal marker serves to index the amount of confounding amplification between treatment groups that occurs 
between Model 1 and Model 2. If an internal marker is used, then Confounding Amplification (Camp) = Final Internal Marker Covariate 
Imbalance / Initial Internal Marker Covariate Imbalance.

bFor all associations involving the Introduced Variable, the association would include the association of the Introduced Variable plus the 
associations of its correlates, to the extent that these associations influence the observed association between the Introduced Variable and 
outcome. When balance in the Introduced Variable is referenced, this also refers to balance in both the Introduced Variable and, to a lesser 
extent, its correlates.

cEither within-treatment arm or overall regressions can be performed. Examining the association within treatment arms prevents the asso-
ciation with the intervention, which may be substantial, from influencing the estimation of the IntV-Outcome association. The association 
between Introduced Variable and Outcome is an aggregate of direct and indirect associations. This aggregate association is then used in 
Step 3b to estimate the quantitative effect on the treatment effect estimate of adding the Introduced Variable into the propensity score (and 
increasing its balance through stratification or matching) that is independent of confounding amplification.

dBased on averaging the coefficients (i.e., ln(RR)). The most straightforward circumstance for the within-treatment arm approach is if 
the observed association is highly comparable in both treatment arms and both models. If so, as an approximation these values can be 
averaged. Determining these Introduced Variable-outcome regression coefficients separately for each model has an essential function. 
In Model 2, the Introduced Variable-outcome association would also be expected to suffer some confounding amplification relative to 
Model 1. In this hypothetical example, the observed association is varied slightly to illustrate that (Appendix 4). 

eSince the Introduced Variable(s) is a measured covariate or covariates, it is possible to determine its initial imbalance in Model 1, and the 
degree to which this imbalance changes in Model 2. This information can then be combined (through use of the Bross equation8) with the 
coefficients derived in Step 3a to estimate the component of the change in the Treatment Effect Estimate between Model 1 and Model 2 that 
is attributable to increased balance in the Introduced Variable(s) and its correlates.

( )
( )

(M2 – M1)

M1

M M1 IntV
1 IntV

2
M1

2
M2

(TEE TEE ) Conf
Conf

1
1

1

M
Unconfounded

TEE
TEER

R

∆
− −

− − =
  −   −  −   

2
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fThe congruence between the scenario’s genuine treatment effect and total confounding and these values should not be seen as validating 
the method. The scenario’s effects estimates were selected based upon what would be expected from confounding amplification operating 
consistent with the system described here. However, this step-by-step example does illustrate how, absent the effects of random variability, 
the mechanics of how this series of calculations would function to produce the desired values (i.e., Total Residual Confounding and an 
Unconfounded Treatment Effect Estimate) from the initial values (i.e., the confounded Model 1 and 2 treatment effect estimates, an estimate 
of confounding amplification, and an estimate of the contribution to confounding of the Introduced Variable and, to a more uncertain degree, 
its correlates).

gTo obtain the most rigorous estimate of the unconfounded treatment effect, in theory, two additional terms are necessary (Appendix 2.1, 
Appendix 3.2a, and Appendix Figure 1c). The first term estimates the contribution of any change in imbalance in the measured, included 
propensity score covariates from Model 1 to Model 2 to Model 2 residual confounding (as estimated through multivariate regression coef-
ficients and the Bross equation) needs to be subtracted from the change in the treatment effect estimates (in addition to Confint delta). This 
subtraction is needed since this change in imbalance in the included propensity score covariates represents another process separate from full 
confounding amplification (i.e., to the degree predicted by R2) that can contribute to the change in treatment effect estimate from Model 1 to 
Model 2. In general, I would expect the insertion of the Introduced Variable into Model 2 to typically worsen, at least slightly, any imbalance 
in the propensity score covariates that existed in Model 1. The second term represents the residual confounding in Model 1 attributable to the 
fact that the propensity score variables are not brought into perfect, 50/50 balance. The practical significance of these components in most 
instances is uncertain and these steps add considerable labor. Nevertheless, if these calculations are able to be performed routinely (perhaps by 
automating the process), this will ensure those instances where this adjustment is important will not be overlooked. Please see Appendix 2.1 
and Appendix 3.2a for further discussion and Appendix Figure 1c for the more complex, more strictly rigorous, equation.

hIf preferred, the equation can be written with a slightly simpler denominator:

                                       

( )
( )

(M2 – M1)

M1

M M1 IntV
1 IntV

2
M1

2
M2

(TEE TEE ) Conf
Conf

1
1

1

M
Unconfounded

TEE
TEER

R

∆
− −

− − =
  −   −  −   

2

However, I emphasize the slightly more elaborate form in this manuscript for two reasons. First, I think it makes the less reduced form of 
the equation makes clearer why the reduced form of the equation has the form it does (i.e., why the fraction in the denominator simplifies 

to: 
( )
( )

2
M1

2
M2

1

1

R

R

−

−
). Second, I also think the less reduced form of the question, which relates to the understandable concept of “the confounding 

amplification of Model 2 divided by the proportional confounding of Model 1” in straightforward fashion, makes the overall equation seem 
more straightforward and easily understood, and hopefully, easier to remember.

In addition, the equation could also be alternatively written as follows:

                                       

( )
( )

(M2 – M1)

M1

M M1 IntV
1 IntV

2
M2

2
M1

(TEE TEE ) Conf
Conf

1

1
1

1

1

M
Unconfounded

TEE
TEE

R

R

∆
− −

− + =
  
  −   −  
  
 −   

2

a form which emphasizes the fact that both terms subtracted from TEE
M1

 together constitute the sum of residual confounding.

iFor the scenario posed at the beginning of the table, the method‘s Summary Equation would arrive at the following estimate of the uncon-
founded treatment effect:

beta coefficient = 0.2351 - ((0.2612 - 0.2351) - (-0.0273)) / (((1 / (1 - 0.5)) / (1 / (1 - 0.25))) - 1) - 0.0293 = 0.0990  (unconfounded TEE) 
(exponentiated, the unconfounded TEE equals RR = 1.10).
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Version 1

 05 January 2015Referee Report

doi:10.5256/f1000research.5125.r7091

 Gregory Matthews
Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA

The authors present a manuscript describing a procedure that allows for the quantification of the total
amount of residual confounding prior to bias amplification caused by propensity score models.  I believe
the procedure described in reasonable, and my biggest concerns with this manuscript are the
presentation of the approach, which I had a hard time following initially. I think this paper is deserving of
indexing as it is, but could be substantially improved with clearer presentation. 

Specific Comments:
The authors talk about creating two models (Model 1 and Model 2) that are nest within each other
in such a way that Model 2 contains all the variables in Model 1 plus one/several extra variable/s.  It
seems like there are money choices for this extra variable/s from among the possible variables.  Do
the authors have any specific advice on how this or these should be chosen?  They do mention
that this variable should be chosen to have ``discernible confounding amplification", but isn't it
possible that there are many acceptable choices that will satisfy this criteria?  In that case is there
any advice on how to choose between the good candidate variables?  
 
In Step 2 of the description of the method,the authors mention that the when $R^2$ is between
0.04 and 0.56 there is a linear relationship between unexplained variance and confounding
amplification.  I believe that this threshold is then used in Supplementary table 1 when they state
that the step should be taken only if R^2 is less than 0.56.  Should this step not be taken if R^2 is
less than 0.04?  Do the authors have any advice on what to do when R^2 is greater than 0.56? 

Minor Comments:
Should the outcome in Table 1B be hip fracture rather than all cause mortality?
 
Supplementary Table1, 3a I think this is a typo: ``IntV:"

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 02 Mar 2015
, ENRM VAMC Bedford, MA / Center for Healthcare Organization and ImplementationEric Smith

Research / UMass Medical School Dept. of Psychiatry, USA
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I would like to thank both reviewers for their thoughtful, insightful, and encouraging reviews.  I
particular appreciate their openness to a new methodology to attempt to estimate
residual/unmeasured confounding.  I am very glad to see that they recognized the value in
disseminating and exploring a methodology that takes a very different approach (and possibly an
approach that is more broadly applicable) than some of the limited number of alternatives currently
available to tackle the problem of unmeasured confounding.  Their specific comments were also
extremely valuable.
 
Both reviewers suggested that the manuscript would benefit from greater clarity; therefore I have
revised and enhanced the presentation of the method quite substantially.  The major ways I have
done this is to: 1) expand the description of the method in the text and adding cross-references to
the exact steps in the Appendix Table (which has also been expanded); 2) adding 3 additional
hypothetical examples to communicate more incrementally the rationale for the method; 3)
reorganized the manuscript Table so it reads more vertically than horizontally; 4) attempted to be
more precise and detailed in my language; and, perhaps most importantly, 5) expressed the entire
method mathematically in a single Summary Equation to help facilitate its understanding.  The
main manuscript text is substantially longer as a result of this increased explanation, but hopefully
less ambiguous at key points.  Some of the increase in length results from the more detailed
description of the method, but much of the increase relates to the more detailed hypothetical
examples, which some readers may not even feel a need to review.  Similarly, the Appendices are
considerably longer, but the reader is encouraged to pick and choose whether they want to review
some, none, or all of these based entirely on their interest.
 
Another important comment was Dr. Lunt’s comment that considerably further work needed to be
done on the method.  I couldn’t agree more, and it is my hope that the dividend that results from
laying out the method in such detail is that multiple research groups can quickly advance this
research.  As I try to anticipate and highlight as fully as possible, there are a number of important
uncertainties.  These uncertainties range from such fundamental points as how consistently
predictable the phenomenon of confounding amplification actually is, how accurately the difference
between effect estimates can be determined, and how accurate are the proposed Bross
equation-based corrections for the contribution of the Introduced Variable and, to a partial degree,
its correlates, on the estimates of the change in treatment effect estimate as well as the starting
Model 1 treatment effect estimate.  Indeed, it is not even certain whether the method can be
applied to some common logistic model effect estimates (e.g., odds ratio).  I have even identified
two more potential sources of uncertainty that are now included and discussed in the text and
appendices: whether the introduced variable-outcome regression coefficient would potentially also
suffer from at least some confounding amplification, and whether possible “constraints” might exist
to achievable confounding amplification in real-world settings.  So I am in complete agreement with
Dr. Lunt that this manuscript represents only the very start of what hopefully will be steady advance
of knowledge about this method and its value relative to other proposed approaches addressing
unmeasured confounding.  To my point of view, this is all the more reason to seek to enlist the
greater research community in this effort.
 
Nevertheless, it is important to note that approaches suggest themselves to address or minimize
many of these uncertainties, although much investigation is needed.  In addition, I want to
emphasize a key point: while a number of uncertainties exist relevant to the actual performance of
the method, it is my intention that, with this version of the manuscript, that there be no substantial
uncertainty concerning the specific approach that is actually being proposed.  I paid close attention
to the fact that Dr. Matthews and Dr. Lunt (who has published on bias amplification) appeared
uncertain about how to apply the method as described in Version 1.  I hope in this version that I
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uncertain about how to apply the method as described in Version 1.  I hope in this version that I
have communicated the method clearly enough that the vital next step can take place: testing the
method in simulated and real-world datasets.
 
It is for this reason – to facilitate the ability of as many interested research teams as possible to
contribute to the method’s evaluation and evolution – that I have taken particular pains to expand
communication concerning the overall logic, and underlying rationale, of the method and each of
its steps. There are certainly places in which my proposed solutions to potential challenges for the
method may prove imperfect or suboptimal (some possibilities might include the use of a
regression coefficient and the Bross equation to take account confounding from the Introduced
Variable-outcome relationship, the suggested approach to addressing possible confounding
amplification in the Introduced Variable-outcome coefficient, and/or the favoring of stratification
over matching to increase comparability of Model 1 and Model 2 mentioned in Appendix 2).  It is
my firm hope that other research groups can contribute by suggesting other approaches to
accomplishing that particular objective within in the method, or even other angles concerning how
to exploit confounding amplification to help estimate residual confounding. Therefore I wanted to
be particularly clear in explaining the method so that the objective to be accomplished in each step
was clear.  This communication has been done through expanded text, calculations, examples,
metaphors, technical Appendices, and the Summary Equation. I also outline the clear initial and
subsequent steps for research as I see them (most centered on simulation) in the Discussion. 
Hopefully the manuscript is now sufficiently clearer so that collaborative investigation and
elaboration of this method can take place.
 
I thank the reviewers for encouraging me to much more carefully clarify the logic and approach of
the method, and I hope they think that I have succeeded in that task.
 
In closing, I would like to address the remaining specific points brought up by the reviewers:

Dr. Lunt (Reviewer 1):
 

As mentioned above, I am extremely grateful for Dr. Lunt’s observation for noting that the
denominator of equations 3-6 in Reference 4 (Pearl, 2011) does indeed appear to support
the 1-R  relationship predicting the proportional amount of confounding amplification
separate from the Brooks and Ohsfeldt (2013) simulation.  This is potentially quite important,
for it suggests that application of the technique might not need to be limited to an R  of ≤
0.56 (one of the concerns of the 2  reviewer, Dr. Matthews).  It does, however, increase
the need to understand why the Brooks and Ohsfeldt simulation begins to exhibit nonlinear
confounding amplification above R  of 0.56.

 
 
Dr. Matthews (Reviewer 2):
 

Dr. Matthews asked a number of helpful questions concerning important details involved in
implementing the method that I see now were not addressed as directly and thoroughly as
they might have been.  So that many readers can easily benefit from his helpful inquiry
concerning recommendations on how to choose an instrumental variable without having to
access my response to this comment, I have added an entire Appendix (Appendix 7)
devoted in large part to this topic.  In addition to offering practical suggestions on
implementing the method, based on current knowledge, this Appendices also attempts to
anticipate the likely trade-offs involved in optimizing one characteristic of the method
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anticipate the likely trade-offs involved in optimizing one characteristic of the method
potentially at the cost of another characteristic (e.g., wanting to maximize confounding
amplification while minimizing differences between the two models that are separate from
confounding amplification).
 
Regarding Dr. Matthew’s 2  major point, the simulation research that I hope follows this
manuscript will likely provide the best guidance on what approaches should be taken if the
R  is < 0.04 or > 0.56.  It should be noted, however, that, until that research is available, it is
to be hoped that almost all propensity score models will succeed in achieving an R  of at
least 0.04.  Furthermore, one remedy for circumstances in which Model 2 exceeds an R  of
0.56 seemingly would be simply to remove measured covariates from the propensity score
model until Model 2’s R2 is ≤ 0.56.  This is a pragmatic, but not a perfect solution, since as
pointed out in Appendix 3.2, such a step places extra weight on the method achieving an
accurate estimate of residual/unmeasured confounding, since more of that type of
confounding now exists.  Also, as discussed in Appendix 4, if variables have to be removed
from the propensity score, priority should be given to removing variables with little or no
correlation with the Introduced Variable(s) and retaining in the propensity scores, to the
extent possible, variables that correlate with the Introduced Variable(s) 
 
I also thank Dr. Matthews for pointing out the mislabeling of the outcome in Table 1.  As
mentioned, in addition to correcting this error, I have entirely restructured this Table to make
it read more vertically than horizontally, at least in regard to the information pertaining to
Model 1 versus Model 2. 
 
Regarding the “IntV” terminology in Supplementary Table 1, I have retained this
abbreviation. “IntV” is my attempt to propose a nomenclature (abbreviation) for the
introduced variable that will separate it from instrumental variables (which, unfortunately,
share the same initials).  “InV” might also be useable, but I felt the extra letter of “IntV” as an
abbreviation for the term “Introduced Variable” made sense because the abbreviation was
less likely to appear to be simply an erroneous typing of “IV.”  

I have also made the following minor changes:
 

Capitalized “Introduced Variable(s)” to make each of its mentions more noticeable, since
this variable or variables plays a key role in the method.
 
Expanded the discussion of the potential impacts of correlations between various types of
variables on the method’s estimates, and added Appendices that explore potential threats
to the accuracy of the Introduced Variable-outcome regression coefficient, that provide
explanation of the method’s components (and key uncertainties) in reference to the terms of
the ACCE Method Summary Equation, and that begin to explore the use of sets of
Introduced Variables and the practical trade-offs to be considered when implementing the
method.
 
Tried to be consistent with my language concerning “confounding amplification”: 
“proportional confounding amplification” refers to the percentage increase in residual
confounding predicted by 1-R2, some other measure of exposure prediction, or an internal
marker, while “quantitative confounding amplification” refers to the numerical change in the

treatment effect estimate (technically, the change in the treatment effect estimate adjusted
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treatment effect estimate (technically, the change in the treatment effect estimate adjusted
for the impact of increased balance in the Introduced Variable(s)). 
 
Replaced the term “multiple” Introduced Variable(s) with the term “set of Introduced
Variables” to make it clearer I am referring to simultaneously insertion of several to many
Introduced Variables, rather than the sequential use of different single Introduced Variables.
 
Clearly labeled the Hypothetical Examples as Hypothetical Examples, moving them out of
“Results.”
 
Changed the examples from “odds ratio” to “risk ratio” due to concerns that noncollapsibility
of the odds ratio might interfere with the subtraction of the Model 1 and Model 2 treatment
effect estimates necessary to estimate the quantitative effect of confounding amplification.
 
Invented the term “amplifiable fraction of residual confounding” to hopefully better
communicate that (if the Introduced Variable(s) has any association with outcome) it is only
the residual confounding separate from that which is attributable to the Introduced
Variable(s) (which is not amplified) that is able to be amplified.  Hopefully this has made this
clearer.
 
Removed the somewhat redundant word “Supplementary” from “Supplementary Appendix
Table.”
 
Corrected a minor subtraction error in the Appendix Table, Equation 3b (and subsequent
steps), that had no substantive impact on the estimates of total residual confounding and
the unconfounded treatment effect estimate. Also corrected a notation error in Step 4a
where “M2” had been written “M3” by mistake.

 No competing interests were disclosed.Competing Interests:

 27 November 2014Referee Report

doi:10.5256/f1000research.5125.r6843

 Mark Lunt
Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK

This article outlines a very interesting approach to using propensity score methods to correct for
unmeasured confounding. That was not the aim of the propensity score, and current methods are not able
to do this, so it potentially represents a considerable advance.
 
The idea is conceptually a simple one, related to the well-established use of instrumental variables to
control for unmeasured confounding. However, I have not come across this idea before, and the author is
to be congratulated on his originality.
 
Having said that, I was a little disappointed in the presentation of the method. I do not feel that I am in a
position to apply this method to any of my own data. One reason that I took so long over the review was

that I wanted to be certain I fully understood the method by applying it myself, but it has become obvious
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that I wanted to be certain I fully understood the method by applying it myself, but it has become obvious
that I will not be able to in a reasonable timescale.
 
Greater precision in the presentation would have been welcome, whether that was explicit mathematical
formulae, or simply causal diagrams showing how the various biases arose and which causal paths
contributed to which estimates. This has been done very well in some of the references. For example, the
relation between bias amplification and 1-R  is given a clear mathematical basis in reference 4, and I
would regard this as more convincing than simulation evidence.
 
I’m sure that the author would agree with me that there is a lot of work to be done on this method before it
can be applied routinely. I hope that this paper does spark that research, and that the author gets the
credit he deserves for coming up with this potentially very useful idea.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 02 Mar 2015
, ENRM VAMC Bedford, MA / Center for Healthcare Organization and ImplementationEric Smith

Research / UMass Medical School Dept. of Psychiatry, USA

I would like to thank both reviewers for their thoughtful, insightful, and encouraging reviews.  I
particular appreciate their openness to a new methodology to attempt to estimate
residual/unmeasured confounding.  I am very glad to see that they recognized the value in
disseminating and exploring a methodology that takes a very different approach (and possibly an
approach that is more broadly applicable) than some of the limited number of alternatives currently
available to tackle the problem of unmeasured confounding.  Their specific comments were also
extremely valuable.
 
Both reviewers suggested that the manuscript would benefit from greater clarity; therefore I have
revised and enhanced the presentation of the method quite substantially.  The major ways I have
done this is to: 1) expand the description of the method in the text and adding cross-references to
the exact steps in the Appendix Table (which has also been expanded); 2) adding 3 additional
hypothetical examples to communicate more incrementally the rationale for the method; 3)
reorganized the manuscript Table so it reads more vertically than horizontally; 4) attempted to be
more precise and detailed in my language; and, perhaps most importantly, 5) expressed the entire
method mathematically in a single Summary Equation to help facilitate its understanding.  The
main manuscript text is substantially longer as a result of this increased explanation, but hopefully
less ambiguous at key points.  Some of the increase in length results from the more detailed
description of the method, but much of the increase relates to the more detailed hypothetical
examples, which some readers may not even feel a need to review.  Similarly, the Appendices are
considerably longer, but the reader is encouraged to pick and choose whether they want to review
some, none, or all of these based entirely on their interest.
 
Another important comment was Dr. Lunt’s comment that considerably further work needed to be
done on the method.  I couldn’t agree more, and it is my hope that the dividend that results from
laying out the method in such detail is that multiple research groups can quickly advance this
research.  As I try to anticipate and highlight as fully as possible, there are a number of important
uncertainties.  These uncertainties range from such fundamental points as how consistently
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research.  As I try to anticipate and highlight as fully as possible, there are a number of important
uncertainties.  These uncertainties range from such fundamental points as how consistently
predictable the phenomenon of confounding amplification actually is, how accurately the difference
between effect estimates can be determined, and how accurate are the proposed Bross
equation-based corrections for the contribution of the Introduced Variable and, to a partial degree,
its correlates, on the estimates of the change in treatment effect estimate as well as the starting
Model 1 treatment effect estimate.  Indeed, it is not even certain whether the method can be
applied to some common logistic model effect estimates (e.g., odds ratio).  I have even identified
two more potential sources of uncertainty that are now included and discussed in the text and
appendices: whether the introduced variable-outcome regression coefficient would potentially also
suffer from at least some confounding amplification, and whether possible “constraints” might exist
to achievable confounding amplification in real-world settings.  So I am in complete agreement with
Dr. Lunt that this manuscript represents only the very start of what hopefully will be steady advance
of knowledge about this method and its value relative to other proposed approaches addressing
unmeasured confounding.  To my point of view, this is all the more reason to seek to enlist the
greater research community in this effort.
 
Nevertheless, it is important to note that approaches suggest themselves to address or minimize
many of these uncertainties, although much investigation is needed.  In addition, I want to
emphasize a key point: while a number of uncertainties exist relevant to the actual performance of
the method, it is my intention that, with this version of the manuscript, that there be no substantial
uncertainty concerning the specific approach that is actually being proposed.  I paid close attention
to the fact that Dr. Matthews and Dr. Lunt (who has published on bias amplification) appeared
uncertain about how to apply the method as described in Version 1.  I hope in this version that I
have communicated the method clearly enough that the vital next step can take place: testing the
method in simulated and real-world datasets.
 
It is for this reason – to facilitate the ability of as many interested research teams as possible to
contribute to the method’s evaluation and evolution – that I have taken particular pains to expand
communication concerning the overall logic, and underlying rationale, of the method and each of
its steps. There are certainly places in which my proposed solutions to potential challenges for the
method may prove imperfect or suboptimal (some possibilities might include the use of a
regression coefficient and the Bross equation to take account confounding from the Introduced
Variable-outcome relationship, the suggested approach to addressing possible confounding
amplification in the Introduced Variable-outcome coefficient, and/or the favoring of stratification
over matching to increase comparability of Model 1 and Model 2 mentioned in Appendix 2).  It is
my firm hope that other research groups can contribute by suggesting other approaches to
accomplishing that particular objective within in the method, or even other angles concerning how
to exploit confounding amplification to help estimate residual confounding. Therefore I wanted to
be particularly clear in explaining the method so that the objective to be accomplished in each step
was clear.  This communication has been done through expanded text, calculations, examples,
metaphors, technical Appendices, and the Summary Equation. I also outline the clear initial and
subsequent steps for research as I see them (most centered on simulation) in the Discussion. 
Hopefully the manuscript is now sufficiently clearer so that collaborative investigation and
elaboration of this method can take place.
 
I thank the reviewers for encouraging me to much more carefully clarify the logic and approach of
the method, and I hope they think that I have succeeded in that task.
 
In closing, I would like to address the remaining specific points brought up by the reviewers:
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Dr. Lunt (Reviewer 1):
 

As mentioned above, I am extremely grateful for Dr. Lunt’s observation for noting that the
denominator of equations 3-6 in Reference 4 (Pearl, 2011) does indeed appear to support
the 1-R  relationship predicting the proportional amount of confounding amplification
separate from the Brooks and Ohsfeldt (2013) simulation.  This is potentially quite important,
for it suggests that application of the technique might not need to be limited to an R  of ≤
0.56 (one of the concerns of the 2  reviewer, Dr. Matthews).  It does, however, increase
the need to understand why the Brooks and Ohsfeldt simulation begins to exhibit nonlinear
confounding amplification above R  of 0.56.

 
 
Dr. Matthews (Reviewer 2):
 

Dr. Matthews asked a number of helpful questions concerning important details involved in
implementing the method that I see now were not addressed as directly and thoroughly as
they might have been.  So that many readers can easily benefit from his helpful inquiry
concerning recommendations on how to choose an instrumental variable without having to
access my response to this comment, I have added an entire Appendix (Appendix 7)
devoted in large part to this topic.  In addition to offering practical suggestions on
implementing the method, based on current knowledge, this Appendices also attempts to
anticipate the likely trade-offs involved in optimizing one characteristic of the method
potentially at the cost of another characteristic (e.g., wanting to maximize confounding
amplification while minimizing differences between the two models that are separate from
confounding amplification).
 
Regarding Dr. Matthew’s 2  major point, the simulation research that I hope follows this
manuscript will likely provide the best guidance on what approaches should be taken if the
R  is < 0.04 or > 0.56.  It should be noted, however, that, until that research is available, it is
to be hoped that almost all propensity score models will succeed in achieving an R  of at
least 0.04.  Furthermore, one remedy for circumstances in which Model 2 exceeds an R  of
0.56 seemingly would be simply to remove measured covariates from the propensity score
model until Model 2’s R2 is ≤ 0.56.  This is a pragmatic, but not a perfect solution, since as
pointed out in Appendix 3.2, such a step places extra weight on the method achieving an
accurate estimate of residual/unmeasured confounding, since more of that type of
confounding now exists.  Also, as discussed in Appendix 4, if variables have to be removed
from the propensity score, priority should be given to removing variables with little or no
correlation with the Introduced Variable(s) and retaining in the propensity scores, to the
extent possible, variables that correlate with the Introduced Variable(s) 
 
I also thank Dr. Matthews for pointing out the mislabeling of the outcome in Table 1.  As
mentioned, in addition to correcting this error, I have entirely restructured this Table to make
it read more vertically than horizontally, at least in regard to the information pertaining to
Model 1 versus Model 2. 
 
Regarding the “IntV” terminology in Supplementary Table 1, I have retained this
abbreviation. “IntV” is my attempt to propose a nomenclature (abbreviation) for the

introduced variable that will separate it from instrumental variables (which, unfortunately,
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introduced variable that will separate it from instrumental variables (which, unfortunately,
share the same initials).  “InV” might also be useable, but I felt the extra letter of “IntV” as an
abbreviation for the term “Introduced Variable” made sense because the abbreviation was
less likely to appear to be simply an erroneous typing of “IV.”  

I have also made the following minor changes:
 

Capitalized “Introduced Variable(s)” to make each of its mentions more noticeable, since
this variable or variables plays a key role in the method.
 
Expanded the discussion of the potential impacts of correlations between various types of
variables on the method’s estimates, and added Appendices that explore potential threats
to the accuracy of the Introduced Variable-outcome regression coefficient, that provide
explanation of the method’s components (and key uncertainties) in reference to the terms of
the ACCE Method Summary Equation, and that begin to explore the use of sets of
Introduced Variables and the practical trade-offs to be considered when implementing the
method.
 
Tried to be consistent with my language concerning “confounding amplification”: 
“proportional confounding amplification” refers to the percentage increase in residual
confounding predicted by 1-R2, some other measure of exposure prediction, or an internal
marker, while “quantitative confounding amplification” refers to the numerical change in the
treatment effect estimate (technically, the change in the treatment effect estimate adjusted
for the impact of increased balance in the Introduced Variable(s)). 
 
Replaced the term “multiple” Introduced Variable(s) with the term “set of Introduced
Variables” to make it clearer I am referring to simultaneously insertion of several to many
Introduced Variables, rather than the sequential use of different single Introduced Variables.
 
Clearly labeled the Hypothetical Examples as Hypothetical Examples, moving them out of
“Results.”
 
Changed the examples from “odds ratio” to “risk ratio” due to concerns that noncollapsibility
of the odds ratio might interfere with the subtraction of the Model 1 and Model 2 treatment
effect estimates necessary to estimate the quantitative effect of confounding amplification.
 
Invented the term “amplifiable fraction of residual confounding” to hopefully better
communicate that (if the Introduced Variable(s) has any association with outcome) it is only
the residual confounding separate from that which is attributable to the Introduced
Variable(s) (which is not amplified) that is able to be amplified.  Hopefully this has made this
clearer.
 
Removed the somewhat redundant word “Supplementary” from “Supplementary Appendix
Table.”
 
Corrected a minor subtraction error in the Appendix Table, Equation 3b (and subsequent
steps), that had no substantive impact on the estimates of total residual confounding and
the unconfounded treatment effect estimate. Also corrected a notation error in Step 4a
where “M2” had been written “M3” by mistake.

 No competing interests were disclosed.Competing Interests:

Page 50 of 51

F1000Research 2015, 3:187 Last updated: 29 APR 2015



F1000Research

 No competing interests were disclosed.Competing Interests:

Page 51 of 51

F1000Research 2015, 3:187 Last updated: 29 APR 2015


