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Background: As age progresses, decline in physical function predisposes older

adults to high fall-risk, especially on exposure to environmental perturbations such

as slips and trips. However, there is limited evidence of association between daily

community ambulation, an easily modifiable factor of physical activity (PA), and

fall-risk. Smartphones, equipped with accelerometers, can quantify, and display daily

ambulation-related PA simplistically in terms of number of steps. If any association

between daily steps and fall-risks is established, smartphones due to its convenience

and prevalence could provide health professionals with a meaningful outcome measure,

in addition to existing clinical measurements, to identify older adults at high fall-risk.

Objective: This study aimed to explore whether smartphone-derived step data during

older adults’ community ambulation alone or together with commonly used clinical

fall-risk measurements could predict falls following laboratory-induced real-life like slips

and trips. Relationship between step data and PA questionnaire and clinical fall-risk

assessments were examined as well.

Methods: Forty-nine community-dwelling older adults (age 60–90 years) completed

Berg Balance Scale (BBS), Activities-specific Balance Confidence scale (ABC), Timed

Up-and-Go (TUG), and Physical Activity Scale for the Elderly (PASE). One-week and

1-month smartphone steps data were retrieved. Participants’ 1-year fall history was

noted. All participants’ fall outcomes to laboratory-induced slip-and-trip perturbations

were recorded. Logistic regression was performed to identify a model that best predicts

laboratory falls. Pearson correlations examined relationships between study variables.

Results: A model including age, TUG, and fall history significantly predicted laboratory

falls with a sensitivity of 94.3%, specificity of 58.3%, and an overall accuracy of 85.1%.

Neither 1-week nor 1-month steps data could predict laboratory falls. One-month steps

data significantly positively correlated with BBS (r = 0.386, p = 0.006) and ABC (r =

0.369, p = 0.012), and negatively correlated with fall history (rp = −0.293, p = 0.041).

Conclusion: Older participants with fall history and higher TUG scores were more likely

to fall in the laboratory. No association between smartphone steps data and laboratory
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fall-risk was established in our study population of healthy community-dwelling older

adults which calls for further studies on varied populations. Although modest, results

do reveal a relationship between steps data and functional balance deficits and fear

of falls.

Keywords: fall prediction, steps data, smartphone technology, falls, older adults

INTRODUCTION

Falls are a common and a serious problem in older adults
aged 60 years and above (Rubenstein, 2006; Carpenter et al.,
2019). Even the healthiest community-dwelling older adults

are not immune to falls, especially on exposure to external
environmental perturbations such as slips and trips which

accounts for 60% of outdoor falls among community-dwelling

older adults aged 70 years and above (Berg et al., 1997; Luukinen
et al., 2000; Crenshaw et al., 2017). Such falls occur due to age-
related physiological changes resulting in balance dysfunction,
reduced muscle strength, and impaired gait pattern, predisposing
older adults to high fall-risk (Ambrose et al., 2013; Zhao et al.,
2018). Additionally, with progressing age, older adults experience
a decline in physical function and activities of daily living which
further increases fall-risk (Smee et al., 2012; Welmer et al., 2017).
Falls result in several deleterious physical consequences such as
fractures and soft tissue injuries but also lead to fear of falling,
thereby resulting in further self-imposed restriction of physical
activity (PA) (Pereira et al., 2014; Young and Mark Williams,
2015).

Apart from aging, a fall-risk factor which is non-modifiable,
PA which can mitigate age-related declines in muscle strength,
balance, and agility is considered a modifiable risk-factor.
Due to its adaptability, PA could be systematically monitored
and enhanced in the community-living geriatric population
to reduce fall-risk. Although sparse, evidence using the self-
reported questionnaire, Physical Activity Scale for the Elderly
(PASE), demonstrated that fallers had lower PASE scores (less PA)
compared to non-fallers and that the low scores were associated
with high fall-risk and fear of falling (Roig et al., 2011; Oliveira
et al., 2017). Such a questionnaire-based assessment can serve
as an inexpensive tool to assess PA among community-dwelling
older adults over a period of 7 days (Washburn et al., 1993;
Logan et al., 2013; Duray and Genc, 2017). However, it has
several limitations. Firstly, self-reported techniques show recall
bias, especially when used by older adults with possibly declining
memory. Additionally, the need to give socially desirable answers
can affect the accuracy of results (Perell et al., 2001). Finally,
studies suggest that PASEmight have a floor effect because several
activities listed in PASE, such as outdoor gardening, yard work,
painting, and wall papering, might not be commonly performed
activities by older adults (Sallis and Saelens, 2000).

Contrary to self-reported measures, wearable sensor
technology comprising of research-based (ActivPal and
ActiGraph) and commercially available (FitBit and Apple
watch) motion sensors automatically track and store PA
and thus effectively combat the issue of recall-bias. Such

accelerometer-based wearable sensors are able to identify
PA patterns (frequency, duration, and intensity) under both
controlled laboratory conditions and uncontrolled, realistic
conditions of daily living (Plasqui and Westerterp, 2007;
Gomersall et al., 2016; Rosenberger et al., 2016). Additionally,
commercially available wearable sensor technology records and
stores PA simply in terms of number of steps for several months
and years. Thus, commercially available wearable sensors have
gained popularity for PA monitoring in both young and older
adult populations. The advantage of such technology is that step
count can be easily interpreted by older adults themselves or
by clinicians and used for comparative analysis by researchers.
Among various PA parameters (distance covered, number
of steps, and energy expenditure), step data has become the
hallmark measure of PA monitoring (Tudor-Locke et al., 2005).
One probable reason that steps are being used to represent PA is
because walking is one of the most commonly reported forms of
activity performed even among sedentary older adults (Paillard
et al., 2004). In addition, other than its significant health benefits,
walking has become a focus for public health interventions
because of its feasibility and acceptability (Li et al., 2005).

Although commercially available accelerometer-based
wearable sensors have several advantages, they have
demonstrated reduced long-term compliance in older adults
(compared to the younger population) due to the need of
carrying an extra device and sometimes the cost associated with
it (Marschollek et al., 2011; Ferrari et al., 2012). Thus, with
the advancement in smartphone technology, the latter have
replaced or supplemented wearable sensors for PA monitoring.
Smartphones equipped with tri-axial accelerometers can be
used in conjunction with inbuilt or freely available smartphone
applications for measuring and recording step data. Studies
indicate that smartphone applications similar to wearable sensor
technology can deliver step data in a user-friendly interface
(Higgins, 2016; Lu et al., 2017). For example, Harries et al.
reported that participants had greater adherence to using the
smartphone applications than wearing their wearable devices
because running the smartphone application was quite simple
and did not require much effort (Harries et al., 2016). In addition
to their easy implementation, studies demonstrated that the
accuracy of step data collected using smartphones was just as
high as accelerometer-based sensors (Higgins, 2016; Lu et al.,
2017).

Although the significance of PA as a modifiable fall-
risk factor is established (Chan et al., 2007; Pereira et al.,
2008), to the authors’ knowledge there is limited evidence of
association between daily life ambulation and fall-risk. Studies
that demonstrated the association of daily-life ambulation and
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fall-risk (Rispens et al., 2015; van Schooten et al., 2015), utilized
wearable-sensor technology and determined various daily-life
ambulatory gait parameters that can predict fall-risk in older
adults. However, they did not take number of steps into
consideration. Limited studies have considered using number of
steps as a parameter to identify fallers. Brodie et al. (2015) found
that shorter ambulatory periods with fewer steps recorded using a
wearable sensor can identify older adult fallers. However, another
study byWeiss et al. (2013) did not find any significant difference
between fallers and non-fallers based on the number of steps.
Secondly, most fall-risk prediction studies involve retrospective
or prospective data of real-life falls collected subjectively via a
fall diary. Such a method can introduce a recall bias on the
number and type of falls (i.e., the cause of falls). Usually, a large
sample of participants are needed to be monitored consistently
over a long period of time to collect sufficient fall events. With
recent advances in technology, it is possible to reproduce slip
and trip-like falls that closely resemble those encountered in
daily life (albeit in safe laboratory conditions) to determine the
prognostic capacity of various fall-risk measures (Bhatt et al.,
2011). Thus, such experimental method allows for an immediate
and quantifiable investigation of participants’ susceptibility to
certain types (i.e., slip and trip) of falls over a short test session.

In summary, free-living steps data, an easily accessible
aspect of PA, collected by smartphone could largely increase
the feasibility of studies on PA in the geriatric population
under realistic community-living conditions. With the ability
to reproduce real-life like falls in a laboratory environment,
we could explore the association between daily steps data and
fall-risk without the need to conduct a longitudinal study with
community-based monitoring. If any association between daily
steps taken and fall-risk is established, smartphone-based PA
monitoring could provide health professionals with a meaningful
outcome measure, in addition to existing clinical measurements,
to better identify older adults at high fall-risk.

Thus, this study examined whether smartphone-derived steps
data either as a single factor or along with other commonly
used clinical fall-risk measures could predict laboratory-induced
slip or trip related fall-risk in older adults. We also examined if
the steps data would correlate with the questionnaire-based PA
assessment, the PASE, and with other commonly used clinical
fall-riskmeasures. Additionally, the study included a sub-analysis
to determine the prediction capacity of both 1-week step data vs.
1-month step data to better understand the time dependency, if
any on the predictive and associative relationships of step data.

METHOD

Participants
Community-dwelling ambulatory healthy older adults were
recruited within a 50-mile radius from the laboratory in the
city and the neighboring suburbs of the Greater Chicago Area.
The study participants were recruited through advertisements via
study flyers distributed at different senior centers, community
exercise centers, and independent senior living facilities.
Participants were included in the study if they were at least
60 years old, weighed <250 pounds, received a cognitive score

TABLE 1 | Sample demographics and baseline clinical measurements with the

mean and standard deviations.

Variables Fallers (N = 36) Non-fallers (N = 13)

Mean (SD) Mean (SD)

Age (y) 71.72 (5.56) 66.92 (5.15)

Weight (lbs) 160.73 (30.41) 152.84 (30.77)

Height (m) 1.64 (0.81) 1.71 (0.85)

TUG (s) 8.10 (1.23) 7.64 (1.21)

BBS (out of 56) 53.69 (2.05) 53.46 (2.36)

Fall history (%) 47% 38%

ABC (%) 87.80 (11.47) 85.16 (12.55)

PASE 129.57 (62.60) 159.54 (70.29)

MMSE 29.5 (0.77) 28.92 (1.65)

1-week steps 30534 (17637.5) 34286 (18544.5)

1-month steps 131528 (79996.9) 151004 (79328.5)

- <1,00,000 steps 62257.5 (23476.2) 62139 (27319)

- 1,00,000–2,00,000 139899.6 (33210) 145497 (26911)

- >2,00,000 steps 270834 (55744.2) 256759.7 (39458)

of >25 on the Folstein Mini Mental Status Exam (MMSE),
possessed a smartphone with the “Google Fit” application for
Android phones or “Health” application for iPhones for steps
data collection, and if they had installed and enabled their
respective application for at least 1 month prior to screening.
Exclusion criteria included participants with acute (<6 months)
musculoskeletal conditions such as back pain or fracture or
having a surgical history 6 months prior to the laboratory
perturbation test. Seventy-six participants agreed to participate
in this pilot study and were included in the initial screening.
Participants were excluded if they did not pass the initial
screening test (n = 9), did not have entire 1 month smartphone
data (n = 8) or if the smartphone steps data was not recorded
even if the participants mentioned that they carried their phones
(n= 5) or had incomplete laboratory data due tomissingmarkers
(n = 5). Ultimately, 49 participants were included in the final
analysis (Table 1). All participants provided written informed
consent and this study was approved by the Institutional
Review Board.

Study Design, Protocol, and Outcome
Variables
On the initial screening day, all participants underwent
various clinical measures to assess their balance [Berg Balance
Scale (BBS)], balance confidence [Activities-specific Balance
Confidence scale (ABC)], functional mobility [Timed Up-and-
Go test (TUG)], and PA [Physical Activity Scale for the Elderly
(PASE)]. The BBS assesses balance during functional tasks, and
the scores range from 0 to 56 with higher scores indicating
better balance and lower fall-risk (Whitney et al., 1998; Steffen
et al., 2002). The ABC scale assesses balance confidence across
16 activities, and the scores range from 0 to 100% with higher
percentages indicating a higher level of balance confidence
(Powell and Myers, 1995; Myers et al., 1998). The TUG score
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FIGURE 1 | This figure demonstrates the study protocol. Participants were

subjected to various fall-risk assessment measures such as Berg Balance

Scale (BBS), Activities specific balance confidence scale (ABC), Physical

activity scale for elderly (PASE), and previous 1-year fall history. One-month

smartphone steps data was also retrieved. Participants were subjected to

various fall-risk assessment measures such as the Berg Balance Scale (BBS),

Activities specific Balance Confidence scale (ABC), Timed Up and Go (TUG),

Physical Activity Scale for Elderly (PASE) and previous 1-year fall history. One

week and one-month smartphone steps data was also retrieved.

represents the time taken to stand up from a chair, walk a distance
of 3-m, turn around, and sit back on the chair. Higher scores
represent greater time taken to complete the test, indicating poor
functional mobility, and high fall-risk (Shumway-Cook et al.,
2000; Bohannon, 2006). The PASE scores were calculated from
weights and frequency values for each of the 12 types of activities,
and a higher score indicates greater PA (Washburn et al., 1993).
Self-recalled fall history for the past 1 year was also obtained
(Figure 1).

In addition, on the day of the initial screening the total steps
for the past 1-week and 1-month were retrieved and summed
from participants’ smartphones. Figure 2 presents the number of
steps walked each week for 4 weeks to indicate that consistent
data was collected thereby depicting their consistent PA behavior.
Based on the sum of 1-month step data collected for each
participant, we classified the data in 3 sub-categories (<1,00,000
steps, 1,00,000–2,00,000 steps, and more than 2,00,000 steps). A
qualitative questionnaire including four questions were asked (1)
number of hours the participant carries his or her phone, (2) the
time of day when the participant is most active, (3) whether the
participant carries his or her phone all the time they were active,
and (4) whether he or she owns a wearable fitness tracker such
as FitBit or Apple watch. All participants were then scheduled to
receive the laboratory slip and trip perturbations within 2 weeks
of the initial screening date (Figure 1).

Laboratory Fall Test
During the laboratory session, participants were assigned to
receive a novel slip and trip perturbation in random order.
Participants first had to walk 25–35 unperturbed baseline trials
to become familiar with the laboratory walking environment
before receiving their novel slip or trip perturbation. Each
participant received a single slip and a single trip given in a
random order. Thus, the participants experienced a total of two

FIGURE 2 | This figure demonstrates the total number of steps walked each

week for 4 weeks (1 month) to show that 1-month steps data provided

consistent information regarding the participant’s physical activity behavior

throughout 4 weeks.

perturbations while undergoing the laboratory test. They were
informed “a slip or trip may or may not occur during walking.”
The starting position was adjusted during baseline walking to
ensure the upcoming slip or trip trials were induced properly.
The slip was induced by a pair of low-friction movable platforms
imbedded in a 7-meter walkway. These platforms were mounted
on top of low-friction aluminum tracks resting on four force
plates (AMTI, Newton, MA). The unannounced release of the
platform occurred at heel strike of the perturbed (right) limb,
and, following the platform’s release, it was free to slide a distance
of up to 60 cm (Wang et al., 2019a). Such slip distance has been
reported to be enough to induce a fall in older adults (Figure 3A).
The laboratory trip was induced on the left side by a hinged metal
plate imbedded in the same walkway. During regular walking, the
plate was locked in a flat position by a pair of electromagnets. For
the trip trial, the electromagnets that kept the metal plate in a
flat position were powered off to unlock the plate and the springs
returned the plate to an upright position to induce a trip when
the vertical ground reaction force (GRF) under the unperturbed
(right) limb exceeded 80% of the participant’s body weight after
right heel strike (Figure 3B; Wang et al., 2012). All participants
were protected by a safety harness connected through a load
cell (Transcell Technology Inc., Buffalo Grove, IL) to a low-
friction trolley-and-beam system mounted to the ceiling along
the walking path. A fall was determined if the load cell detected
more than 30% of the participant’s body weight after the slip or
trip (Yang and Pai, 2011). Additionally, the perturbation outcome
was determined to be a fall based on the video recording if the
participant was visually observed to have fallen after the novel
slip or trip.

Statistical Analysis
Data was summarized using descriptive statistics (means and
standard deviations) for all variables including demographics,
that is, age, height and weight, fall-risk measurements such as
BBS, TUG, ABC, PASE as well as previous 1-year fall history and
1-week and 1-month smartphone steps. In addition, means and
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standard deviations were also calculated for each sub-category
based on 1-month data (<1,00,000 steps, 1,00,000–2,00,000 steps,
and more than 2,00,000 steps). Paired t-tests were performed
between faller and non-faller groups for overall 1-week and
1-month step data as well as its subcategories to determine
whether there is a significant difference in step data between
fallers and non-fallers (Lee et al., 2019). Multiple univariate
logistic regression analyses were performed to individually
identify variables that could best predict laboratory fall-risk
(induced by a slip and trip trial) in older adults. Laboratory
fall outcome was treated as a binominal variable with the
outcome for participants who fell in either one or both
of the two perturbations being denoted as 1 or else with
a 0. Hours of phone carriage was also inputted into the
logistic regression as a covariate. Based on the univariate
logistic regression results, variables with a significance of ≤0.1
were included in the multivariate logistic regression analysis
(Bursac et al., 2008; Sperandei, 2014). A multivariate logistic
regression analysis using a backward stepwise method was
performed to generate a model with variables that could
best predict laboratory-induced slip or trip induced falls in
older adults. A receiver operating characteristic (ROC) curve
was used to determine the cut-off scores (a score with the
highest sensitivity and specificity) of significant variables in the
univariate logistic regression and to determine the area under the
curve (AUC) for the overall model predicted by the multivariate
logistic regression. Pearson correlations were conducted to
examine the relationships between participants’ demographics,
total 1-week and 1-month smartphone collected steps, fall-risk
measurements, and PASE. Point biserial correlation was applied
to examine relationships between steps data and the dichotomous
fall histories.

RESULTS

Based on the results of the qualitative questionnaire, 12 older
adults used Android phones whereas 37 used an iPhone. On
average, participants carried their phones 9 h (9.06 ± 5.6 h) per
day. Of all the participants, 38 reported they were active most of
the time they carried their phones, 6 reported they were active
even during the time they did not carry their phones, and 5 were
unable to recall or answer the question. Only 11 participants
owned a wearable device such as a Fitbit.

Out of the 49 participants, 35 participants fell on at least
one perturbation during the laboratory fall test. Thirty-two
participants fell only on the slip perturbation, 18 participants
fell only on the trip perturbation, and 14 participants fell on
both slip and trip perturbations. Table 1 indicates the means of

TABLE 2 | Variables and their significance (p-value) and R square value based on

univariate logistic regression results.

Variable p-value R square value

Age 0.011 0.147

Weight 0.592 0.006

Fall History 0.056 0.075

MMSE 0.177 0.036

ABC 0.313 0.022

BBS 0.820 0.001

TUG 0.043 0.100

PASE 0.320 0.020

1-week steps 0.863 0.003

1-month steps 0.198 0.040

FIGURE 3 | (A) Schematic diagram that indicates the experimental slip set-up demonstrating the participant in a safety harness attached to the load cell and reflective

markers attached to the anatomical landmarks. As the right heel of the participant land on the moveable platform, it is unlocked to slide up to a distance of 60 cm. (B)

The experimental trip set-up demonstrating the trip plate in its upright position as an obstacle to induce a trip.
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TABLE 3 | Overall model predicted based on multivariate logistic regression results along with the sensitivity, specificity, overall accuracy, and the area under the curve

(AUC) found using the Receiver Operating Curve (ROC).

Model Variable Significance Sensitivity Specificity Overall accuracy Overall significance AUC

1 Age 0.006 97.1 41.7 83.0 0.002 0.807

Fall history 0.0065

2 Age 0.012 94.3 58.3 85.1 0.002 0.831

TUG 0.169

Fall history 0.122

demographic data and outcome measures of fallers and non-
fallers groups. Based on the results of the paired t-test there was
no significant difference in overall 1-week and 1-month step data
or its sub-categories between fallers and non-fallers (p > 0.05).
Based on the univariate regression analyses, age, and TUG were
the only significant variables with the significance value set at p
= 0.05 (Table 2) and fall history having a near significant value of
p = 0.056. Based on the results of the ROC curve, we established
that the variable age with a cut-off score of 69.5 had a sensitivity of
63.9% and specificity of 61.5%, indicating that older adults above
69.5 years had a greater fall-risk. Similarly, for the variable TUG,
the cut off score of 7.49 had a sensitivity of 80% and specificity of
58.3%, indicating that older adults who took longer than 7.49 s to
complete the TUG test were at greater fall-risk.

Furthermore, variables with a significance of ≤0.1 for the
univariate logistic regression analysis were included in the
multivariate logistic regression analysis using the backward
stepwise method (Table 2). The multivariate regression analysis
revealed an overall model (Model 1) including age and fall history
with an overall accuracy of 83% to predict laboratory-induced
falls with a sensitivity of 97.1% and specificity of 41.7% (p =

0.002). The area under the curve (AUC) for the model was 0.807.
A model before the final model included TUG in addition to
variables age and fall history (Model 2). Addition of TUG in the
final model (Model 2) improved the overall accuracy to 85.1%
with a sensitivity of 94.3% and a better specificity of 58.3% (p
= 0.002). The AUC of this model increased to 0.831 (Table 3).
Figure 4 indicates the AUC for both the models.

Thus, participants who were older, had a higher TUG score
(took longer to complete the test), and had a history of falls were
more likely to fall during the laboratory-induced perturbations.
The best logistic regression model which predicted immediate
laboratory fall is represented as Predicted Logic of (Laboratory
fall) = 18.175 + (0.207)∗Age + (0.525)∗TUG + (1.324)∗History
of fall. Based on this, the odds of falling for a person who had
a fall history in the previous year would be 3.75 times more
than those with no falls. Similarly, for each 1 s increase in TUG
score (slower), the odds of experiencing perturbation-induced
falls would be 1.69 times higher. Further, for every 1-year increase
in age, the odds of falling on laboratory perturbation would be
1.22 times higher.

Pearson correlations revealed a significant negative
correlation between age and hours of phone carriage (r =

−0.300, p = 0.046), indicating that the older participants carried
their phones for less time than the younger ones. One-week steps

FIGURE 4 | This figure demonstrates the area under the curve (AUC) for

model 1 (area under the black line) comprising of variables age and fall history

and model 2 (area under the gray line) comprising of variable age, fall history,

and Timed Up and Go (TUG) found using the Receiver Operating Curve (ROC).

data did not correlate with any clinical fall-risk measure and
history of fall. However, 1-month steps data positively correlated
with higher BBS (r = 0.386, p = 0.006) and ABC (r = 0.369, p
= 0.012) scores and negatively correlated with previous 1-year
fall history (rpb = −0.293, p = 0.041). Additionally, hours of
phone carriage positively correlated with steps data (r = 0.327,
p = 0.028) and, hence, was inputted as a covariate in logistic
regression. There was no significant correlation between steps
data and PASE score.

DISCUSSION

This study explored the relationship between smartphone steps
data and other commonly used clinical fall-risk measures
and determined their ability to predict laboratory-induced
slip or trip falls in healthy community-dwelling older adults.
Univariate logistic regression analyses predicted age and TUG
as individual significant predictors of laboratory falls with fall
history having a near significance value. Multivariate logistic
regression determined a model, which included age and fall
history that best predicted laboratory-induced slip or trip fall-
risk. Addition of TUG to the final model improved the overall
prediction capacity of the model. Neither 1-week nor 1-month
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steps data could predict laboratory-induced fall-risk as a single
predictor or in the multivariate model. A weak but significant
positive correlation was noted between 1-month smartphone
steps and BBS and ABC scores and a negative correlation
was seen with previous 1-year fall history. No correlation was
found between smartphone steps and PASE scores or other
fall-risk measures.

Based on the multivariate logistic regression results, the final
model predicted included age and fall history (Model 1) with
a sensitivity of 97.1%, specificity of 47.1%, overall accuracy
of 83%, and AUC of 0.807, indicating that older adults with
a previous history of fall were predisposed to a greater fall-
risk during laboratory-induced perturbations. Our results are
consistent with the previous literature indicating that older adults
with a fall history have difficulty maintaining postural control
and thus are at a higher fall-risk (Horak et al., 1989; Ambrose
et al., 2013). Similarly, the relationship between aging and falls
is consistent with previous literature which indicated that fall
rates increase with aging (Ageing Life Course family Community
Health World Health Organization, 2008). For example, Pai
et al. (2010) demonstrated reduced stability control in older
adults compared to young adults, thereby predisposing them to a
greater risk for falls during laboratory-induced slip perturbations.
Furthermore, aging also has an effect on the recovery stepping
response which is critical for establishing a new functional base
of support following a perturbation thereby further increasing
fall-risk (Tseng et al., 2009).

A model before the final model included TUG in addition to
variables age and fall history (Model 2) with similar sensitivity
of 94.3%, a better specificity of 58.3%, overall accuracy of 85.1%,
and a higher AUC of 0.831. Additionally, TUG as a single
factor had significant prediction for laboratory-induced falls,
indicating that participants who took longer to finish the test had
greater risk for laboratory-induced falls. Our results were similar
to a previous study, wherein TUG was able to independently
predict 60% of slip-induced falls (Bhatt et al., 2011), and these
falls resulted in the center of mass (COM) moving behind the
forwardly sliding base of support (BOS). Thus, a lower TUG
score could indicate a superior ability of the participant to rapidly
relocate the COM over the displaced BOS resulting in improved
COM state stability against slip-induced balance loss (Pai and
Iqbal, 1999). Conversely, participants would experience forward
instability following a trip perturbation due to the forward shift
of both COM velocity and displacement with respect to the
BOS. Therefore, a faster walking speed could increase forward
instability, resulting in a greater risk for trip-induced falls (Pavol
et al., 2001; Wang et al., 2019b). The TUG test scores could thus
have had opposing predictive effects for slip vs. trip perturbation.
In spite of the possibility of such an opposing relationship
between TUG scores and fall-type, TUG emerged as a significant
fall-risk predictor probably due to the fact that there were greater
slip falls (n = 32) than trip falls (n = 18). However, in spite of
being a significant predictor in the univariate regression analyses,
it was not included in the final multivariate logistic regression
model comprising of age and fall history probably due to the
opposite effect of walking speed on the recovery of slip and
trip explained above (Model 1). Even though TUG was included

in the second model, surprisingly the individual significance of
the variables fall history and TUG was lost. This might possibly
be because in Multivariate logistic regression analysis, the two
variables are basically “competing” with each other for explaining
laboratory falls.

Although smartphones are prevalent and can be readily used
in the community, steps data collected were unable to accurately
predict laboratory falls. Additionally, our results indicated no
difference in total 1-week, 1 month, or sub-category step data
between fallers and non-fallers. Thus, indicating that either there
was no association between daily steps, a single aspect of PA,
and fall-risk (given the steps collected by smartphones were
accurate) or smartphone is an insufficient tool in collecting steps
data under free-living condition. Our study survey indicated that
only 22.44% (11/49) of participants in the current study had
access to an extra wearable PA tracker (Fitbit). Thus, older adults
majorly relied on smartphones for PA monitoring. However, a
few study participants mentioned in the survey that they only
carried their phones when going outside. Thus, we might have
missed out on data when older adults were physically active but
not carrying their phones, especially when they were walking
inside their homes while performing daily routine activities.
Moreover, participants were not given any instruction by the
experimenter on the way they should carry their smartphone.
Thus, the participants could have carried their smartphones in
many different manners, and the phones could have recorded
steps differently based on their position and orientation (Carter
et al., 2018; Funk and Karabulut, 2018). A recent study also
suggested that smartphone updates and different application
versions might potentially change the outcomes of smartphone-
based assessments (Brodie et al., 2018). It is also unclear whether
the type of smartphone application matters, and if there was a
difference between the “Health” and “Google Fit” applications
since both were used in the study.

PA assessed using PASE was not a significant predictor of
fall-risk. The PASE questionnaire might not accurately predict
fall-risk in older adults as it only monitors PA over a span of
7 days, which might not be enough to provide an overall view
of older adults’ PA. As mentioned earlier, recall bias involved
in such self-report technique might also limit the accuracy
of PA measurement. Additionally, studies have demonstrated
reporting bias for subjective questionnaires like PASE, such
as individuals overestimating the time spent on strenuous
activities or underestimating the time spent on activities that
require less exertion (Bolszak et al., 2014). Also, such subjective
questionnaires might lead to participants giving socially desirable
answers. As PA is encouraged in older adults, participants
might overestimate their PA to attain social approval. Such
behavior would provide inaccurate data, thus further limiting
PASE’s sensitivity for fall prediction. Furthermore, PASE involves
scoring an individual based on their frequency scores obtained
for moderate to strenuous activities which may not be commonly
performed by older adults. Thus, PA assessments should
comprise of activities performed frequently by older adults
to provide better fall-risk prediction. Measurement of these
activities might also explain why PASE scores did not correlate
with smartphone steps, as PASE considered the overall PA of
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older adults, including everyday household, recreational, and
occupational activities, whereas smartphones only considered
steps data.

BBS was not a significant predictor of falls in healthy older
adults, which is consistent with the previous literature (Mancini
and Horak, 2010; Bhatt et al., 2011). Previous studies suggest
that individuals with a BBS cut-off score of 45 and above are
high-functioning and at a lower risk of falls (Berg et al., 1992a,
1997). However, despite the average BBS score in our study
sample being 53.57, a score much higher than the threshold
suggesting a low risk of fall (Berg et al., 1992b), 36 participants
out of 49 still fell during at least one laboratory-induced
perturbation and 22 had previous fall histories, indicating the
limited sensitivity of BBS. One probable reason might be that
BBS assesses volitional balance control and does not account
for or measure impairments in reactive balance. Secondly, it has
shown to have a ceiling effect in healthy older adult population
as it rates performance mostly during standing tasks (Newton,
1997; Langley and Mackintosh, 2007). Such tasks might not be
challenging enough to assess dynamic balance control during
daily living functional tasks in our population of community-
dwelling, healthy older adults. Thus, the tasks performed and
tested in BBS lack task-specificity to assess fall-resisting skills,
thereby indicating its limited sensitivity for predicting fall-risk
upon exposure to real-life like large external perturbations.

Psychosocial factors assessed in terms of balance confidence
and fear of falling are crucial for fall prediction. However,
balance confidence measured using ABC was not a significant
fall-risk predictor. Previous studies done using ABC showed
inconsistent results for ABC’s ability to predict fall-risk (Lajoie
and Gallagher, 2004; Schepens et al., 2010). While few studies
demonstrated that ABC scores could differentiate fallers from
non-fallers, with fallers having a lower ABC score (Mak and
Pang, 2009; Hadjistavropoulos et al., 2011), other studies did
not demonstrate a link between ABC scores and falls. The study
results indicate the mean ABC score for our study population
was 85.79%. However, despite having a high balance confidence
score, suggesting a low risk of fall, over half of participants
fell upon experiencing a slip or trip perturbation, indicating
that ABC might demonstrate a ceiling effect as individuals
may overestimate their balance abilities. Thus, there could be
a potential mismatch between individuals’ self-perception of
their own balance abilities and their actual functional mobility,
balance, and gait impairment, thus limiting ABC’s sensitivity for
fall prediction.

Our results indicated no correlation between 1-week steps
data and commonly used clinical measurements for risk factors of
falls, however a positive correlation was noted between 1-month
steps data and BBS and ABC scores and a negative correlation
with previous 1-year fall history. The correlation of step data with
BBS could be expected considering the close association between
mobility and stability and the BBS known to be a gold standard
for assessing balance control in the older adults (Berg et al.,
1992a; Santos et al., 2011). Previous studies have reported that
enhancing one’s mobility via isolated walking programs improves
static and dynamic balance as well as overall postural stability
(Brooke-Wavell et al., 1998; Paillard et al., 2004). Although

there was a moderate positive correlation between these two
variables, both variables were not selected as fall-risk predictors
as discussed above.

The correlation between the ABC scale could also be expected
and justified. It is known that any improvements in balance and
stability may aid in reducing both fall-risk and the subsequent
fear of falling in older adults (Gusi et al., 2012). Previous
studies suggested that increased walking is associated with good
balance perception (Yang and Hsu, 2010). As the ABC scale
determines a person’s own perception of balance activities, those
who were more ambulatory and had more steps could have
had an enhanced balance perception of themselves and vice
versa. This might explain the paralleled finding of the positive
relationship between steps and balance confidence. However,
with the correlation between steps data and BBS and ABC being
very modest (r < 0.3), the potential of smartphones to be used as
a screening tool to identify older adults with reduced balance and
balance confidence needs further investigation.

Additionally, the results of the sub-analysis found that long-
term step monitoring yielded better association with commonly
used clinical measures. Several studies have utilized and
suggested that short-term monitoring for 1 week is adequate for
PA monitoring and fall-risk (Tudor-Locke et al., 2005; Huberty
et al., 2015). For example, a study done using wearable sensors
in middle-aged and older women indicated that 24 h monitoring
over a span of 1 week is a feasible approach for monitoring
activity behavior (Huberty et al., 2015). However, there are
several studies indicating that collecting long-term baseline data
might bemore accurate in yielding stochastic predictions (Mathie
et al., 2004; Yang and Hsu, 2010). For example, a review article on
PAmonitoring suggested that long termmonitoring could enable
better understanding of PA behavior (Taraldsen et al., 2012). It is
postulated that long-term data collection enables monitoring of
day to day variability thereby providing a better understanding of
consistent and habitual steps data of older adults and could thus
show a better correlation with clinical fall-risk measures. While
1-week monitoring might be more feasible and could increase
compliance, our results similar to few other studies suggest that
1-month monitoring might yield better results.

STUDY LIMITATIONS

This study has several limitations. In the current study, the
results could have been affected based on the hours and ways
of phone carriage by participants as no strict instruction was
given regarding phone usage. Further the software applications
inbuilt or installed on the phone varied (e.g., iPhone vs. Android)
which could have affected the step data accuracy. However,
these factors could not be controlled due to the design of
the study aiming at maximally collecting data in a natural
manner and environment. Future studies could conduct studies
with a uniform type of hardware (smartphone) and software
(application) and additionally use wearable motion sensors to
validate the association between daily steps data and older
adults’ fall-risk in response to laboratory-induced, real-life like
external environmental perturbations. Lastly, study participants
were among the healthiest community-dwelling older adults
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with a good physical performance and scores on clinical
measurements. Hence, it is unknown whether current findings
would also apply to frail older adults who are more susceptible
to falls.

CONCLUSION

The study revealed no association between smartphone steps
data and laboratory fall-risk in a group of community-dwelling
older adults with good physical performance. However, being the
first of its kind, the current results could be leveraged to design
further studies intending to use smartphone step data for fall-risk
prediction. Further, the study reinforced previous findings that,
older participants with fall histories and higher TUG scores were
more likely to fall in the laboratory.
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