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Abstract

Detecting quantitative trait loci (QTL) and estimating QTL variances (represented by the

squared QTL effects) are two main goals of QTL mapping and genome-wide association

studies (GWAS). However, there are issues associated with estimated QTL variances and

such issues have not attracted much attention from the QTL mapping community. Estimated

QTL variances are usually biased upwards due to estimation being associated with signifi-

cance tests. The phenomenon is called the Beavis effect. However, estimated variances of

QTL without significance tests can also be biased upwards, which cannot be explained by

the Beavis effect; rather, this bias is due to the fact that QTL variances are often estimated

as the squares of the estimated QTL effects. The parameters are the QTL effects and the

estimated QTL variances are obtained by squaring the estimated QTL effects. This square

transformation failed to incorporate the errors of estimated QTL effects into the transforma-

tion. The consequence is biases in estimated QTL variances. To correct the biases, we can

either reformulate the QTL model by treating the QTL effect as random and directly estimate

the QTL variance (as a variance component) or adjust the bias by taking into account the

error of the estimated QTL effect. A moment method of estimation has been proposed to

correct the bias. The method has been validated via Monte Carlo simulation studies. The

method has been applied to QTL mapping for the 10-week-body-weight trait from an F2

mouse population.

Author summary

One of the goals of QTL mapping and GWAS is to quantify the size of a QTL, which is

measured by the QTL variance or the proportion of trait variance explained by the QTL.

The effect of a QTL appears in a linear or linear mixed model as a regression coefficient

and defined as a fixed effect. The estimated QTL variance in conventional QTL mapping

studies takes the square of the estimated QTL effect. This is a biased estimate of QTL vari-

ance. An unbiased estimate of the QTL variance should be obtained by (1) treating the

QTL effect as random and estimating the variance of the random effect or (2) adjusting
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the squared estimated QTL effect by the squared estimation error. We proved that the two

methods are identical. We further proved that the usual R2 (goodness of fit) in regression

analysis is equivalent to the biased QTL heritability while the adjusted R2 is equivalent to

the bias corrected QTL heritability.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Quantitative trait locus (QTL) mapping [1] and genome-wide association studies (GWAS) [2]

are the main tools for identifying genomic regions harboring quantitative trait loci. These QTL

regions are the targets for molecular geneticists to further expand the experiments, to clone the

actual genes for agronomic traits and to help breeders develop optimal marker assisted selec-

tion (MAS) programs [3]. Goring et al. [4] stated that the primary goal of QTL mapping and

GWAS is to locate QTL and the secondary goal is to quantify the sizes of QTL. The size of a

QTL is represented by the squared QTL effect or the QTL variance. We believe that estimating

the variances of QTL is equally important as locating the QTL because only QTL with large

effects are useful for application while small effect but statistically significant QTL are not eco-

nomically meaningful. Statistical significance is primarily determined by the sample size. A

small-effect QTL can be detected in a very large sample, but such a small-effect QTL is useless

in any breeding programs. The final reported variance of a detected QTL is often converted

into the proportion of phenotypic variance contributed by the QTL, called the QTL heritability

[5,6]. In addition, whether a QTL is large or small is determined relative to the residual or phe-

notypic variance.

In interval mapping [1], composite interval mapping [7,8] and genome-wide association

studies [2], the effect of a QTL appears as a regression coefficient in a linear model or a linear

mixed model. The regression coefficient is a parameter in the model. The least squares or max-

imum likelihood estimate of a QTL effect is often unbiased [1,9]. However, when the unbiased

estimate of the QTL effect is converted into a squared QTL effect, i.e., QTL variance, the esti-

mated variance is no longer unbiased. The bias can be substantially high for small-effect QTL

detected from small samples [6]. This bias is not related to the Beavis effect, which is primarily

caused by significance tests [10–12]. Biased estimates of QTL variances discussed in previous

literature is almost all related to significance tests, i.e., the Beavis effect. However, the bias can

occur even if there is no significance test associated with the estimation and this bias has been

virtually ignored in the QTL mapping community [6]. There was little theoretical explanation

for the bias. Broman [13] and Allison et al. [14] also noted that estimates of non-significant

QTL effects may also be biased, primarily due to the constraints of QTL parameters. For exam-

ple, if QTL heritability is the parameter, its solution space must be constrained between 0 and

1. If the true QTL heritability is close to 0 or close to 1, then the estimated QTL heritability will

be biased towards the middle of the constrained interval.

Beavis effect is a phenomenon that reported QTL from relatively small samples are often

larger than they actually are [4,10–12]. The current study is focused on bias in estimated QTL

variances not due to the Beavis effect but due to a wrong statistical model being used.

The current models for QTL mapping and genome-wide association studies are linear

models and linear mixed models [2,8,15,16]. The effect of a QTL appears in these models as a
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parameter that is subject to estimation. The QTL variance is often defined as the squared QTL

effect and the estimated QTL variance is simply obtained by squaring the estimated QTL effect

[5,6]. In general, the QTL variance is determined by the QTL effect and the frequency of the

QTL alleles in the target population [17]. For example, in an F2 design of QTL mapping, sup-

pose that we code the genotype indicator variable as Z ¼
ffiffiffi
2
p

for A1A1, Z = 0 for A1A2 and Z ¼
�

ffiffiffi
2
p

for A2A2 [18]. Let α be the average effect of gene substitution, i.e., the QTL effect [19]. In

the absence of dominance and no segregation distortion, the QTL variance is defined as

s2
QTL ¼ varðZÞa2 ¼ a2, where varðZÞ ¼ s2

Z ¼ E Z2ð Þ � E2 Zð Þ ¼ 1 � 0 ¼ 1.

In classical quantitative genetics [19,20], the effect of a quantitative trait locus is treated as a

fixed effect but the genotype indicator variable is treated as random. The QTL variance is

defined as s2
QTL ¼ s

2
Za

2 ¼ 2pqa2, where p is the frequency of the “high” allele and q = 1–p is the

frequency of the “low” allele and s2
Z ¼ 2pq is the variance of the genotype indicator variable

under the assumption of Hardy-Weinberg equilibrium. The genotype indicator variable Z
here is coded as the number of “high” alleles in one of the three genotypes, i.e., Zj = 2 for geno-

type A1A1, Zj = 1 for genotype A1A2 and Zj = 0 for genotype A2A2. The textbook [19] provides

a model for the variance and no estimation of the variance is presented. When the dominance

effect is absent (d = 0) or the two alleles have an equal frequency, the average effect of gene sub-

stitution is defined as α = a + d(q–p) = a, where a ¼ G11 �
1

2
G11 þ G22ð Þ is called the “additive

effect.” The genotypic value (G11) is interpreted as the average trait value from all individuals

with genotype A1A1 and G22 is the average trait value for all individuals with genotype A2A2.

The genotypic values (G11 and G22) are not estimated parameters from a finite sample but the

true genotypic values under the assumption of being obtained from an infinitely large sample.

In classroom teaching, an instructor may use a finite sample to demonstrate how Gij is

obtained, but the genotypic values are defined as the true values. A naïve estimate of the addi-

tive variance is ŝ2
QTL ¼ 2pqâ2, which is an over estimate of the additive variance.

The statistical models of QTL mapping in a designed experiment are fixed models because

the QTL effect (α) is the parameter subject to estimation and no distribution is assigned to this

fixed effect. We are not criticizing the fixed effect models in classical quantitative genetics;

rather, we point out that the naïve estimate of the QTL variance (estimated effect squared) is

biased. Gianola et al [21] first systematically investigated the properties of this QTL variance.

They assigned a normal distribution to α, where the variance of that distribution is interpreted

as a prior uncertainty in the Bayesian framework. Chen et al [22] also proposed to treat the

QTL effect as random and the QTL variance as the parameter. In fact, Chen et al [22] investi-

gated the problem from an empirical Bayes point of view so that the QTL variance is the

parameter of the prior distribution of the QTL effect. More detailed analysis of QTL variance

can be found in Gianola et al. [23]. If we treat the QTL variance as the parameter of interest

and directly estimate the QTL variance, the bias will disappear. The first random model

approach to QTL mapping was proposed by Fernando and Grossman [24] for pedigree data

analysis followed by the random model interval mapping developed by Xu and Atchley [25]

for sib family data analysis. The repeated F2 design of experiment [17,26] is an extension of the

simple F2 design of experiment initiated by crossing a common parent with multiple indepen-

dent inbred lines. Since multiple parents are involved, the effects of parental alleles are treated

as random effects with mean zero and an unknown variance. This variance is the QTL vari-

ance, which can be estimated via the maximum likelihood method. The QTL variance is tested

with a likelihood ratio test [17,26]. QTL variance estimated this way is asymptotically unbiased

or with little bias in finite samples. More random model QTL mapping procedures were devel-

oped in a short span of a half dozen years towards the end of the 20th century [27,28]. When

the QTL effect is treated as a random effect, the parameter is the QTL variance and thus no
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bias or little bias is expected for the estimated QTL variance. Therefore, treating the QTL effect

as a random effect and estimating the variance of the random effect is an alternative way of

estimating QTL variance. We call the models with QTL effects treated as random effects ran-

dom models, although they can be mixed models, technically, because a random polygenic

effect may be included in the models. Note that we are talking about the bias in an estimated

QTL variance, regardless whether the QTL is statistically significant or not. The sib-pair

regression analysis of QTL mapping [29–32] is a fixed model (not a random model), but the

parameter itself (regression coefficient) is already the QTL variance and thus there is no bias

associated with the QTL variance in sib-pair regression analysis. The bottom line is that if the

parameter subject to estimation is already the QTL variance, no bias or little bias is expected

other than the bias caused by the Beavis effect.

Some genomic selection models have been adopted for multiple locus GWAS, e.g., models

of the Bayesian alphabet for genomic selection [21,33–36]. In Bayes A, markers of the entire

genome are included in a single model. Because the number of markers can be substantially

larger than the sample size, each marker effect is assigned a normal prior with mean zero and

an unknown variance. The prior variance of each marker is further described by a hyper prior

distribution so that the marker variance can be obtained via the posterior mean or posterior

mode estimation [34,37–40]. Marker variances obtained this way are not biased because they

are directly estimated from the data, not converted from the squared marker effects. In Bayes

B, each marker effect is assigned a mixture of two distributions, one is a normal distribution

and the other is just a zero with some non-zero probability mass [34,41]. The variance of the

normal distribution in the mixture is the marker variance. This variance is also unbiased or

with very little bias because the variance is not converted from the squared marker effect.

In contrast to the Bayesian alphabetic series of genomic selection models, the genomic best

linear unbiased prediction (GBLUP) [42], which is the same as the ridge regression [43,44],

cannot be used for GWAS in its original form because all markers are assigned to the same

normal distribution. The single variance is shared by all markers and is severely shrunk

towards zero. However, the test statistic of each marker from the ridge regression can be de-

shrunk to a comparable level as the typical mixed model GWAS [45–47]. Duarte et al. [45] de-

shrank the test for each marker so that the Wald test statistic was brought back to a level simi-

lar to the test of EMMA [15,48]. However, Duarte et al. [45] only de-shrank the test and the

estimated effect for each marker remains the same as the ridge regression. The two-step ridge

regression approach to GWAS developed by Shen et al [46] de-shrank both the effects and the

tests. The de-shrunk marker variances may be used to calculate the QTL heritability. Wang

and Xu (2020) recently developed another de-shrinking method that can de-shrink both the

test, the estimated marker effect, and the estimated marker variance. This variance is unbiased

and can be directly used to calculate the QTL heritability. The methods summarized here are

various extensions from the genomic selection models. They are not the typical methods of

GWAS. The typical methods are represented by EMMA and GEMMA [15,49].

An unbiased estimate of QTL variance will lead to a less biased estimate of QTL heritability,

which is expressed by ĥ2
QTL ¼ ŝ

2
QTL= ŝ

2
QTL þ ŝ

2
� �

, where ŝ2 is the estimated residual variance.

The QTL heritability has many different definitions, (1) proportion of the phenotypic variance

contributed by the QTL variance, (2) R squared, which is defined as the ratio of the regression

sum of squares to the total sum of squares, (3) Adjusted R2, which is a modified R2 by account-

ing for the number of independent variables, (4) pseudo R2 [50,51], which is designed for

logistic regression analysis for binary traits. All the R2 related measurements, except the

adjusted R2, may be called the model goodness of fit. We will show in the discussion that the

model goodness of fit is a biased estimate of the QTL heritability.
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The purpose of this study is to investigate the bias in the estimated QTL variance when the

QTL effect is treated as a fixed effect (in plants). We show that the bias disappears when the

QTL effect is treated as a random effect. We also propose a moment method to correct the

bias. The bias due to significance test (the Beavis effect) has been investigated by our laboratory

in a recent study where a truncated non-central Chi-square distribution has been used to

derive and correct the bias [52]. This study only focuses the bias due to the use of an incorrect

statistical model. We emphasize more on the conceptual issue than the practical application

issue.

2 Method

2.1 Model of a quantitative trait locus

Let y be a vector of phenotypic values for a quantitative trait collected from a mapping popula-

tion. The trait value can be described by the following linear mixed model,

y ¼ Xbþ Zaþ xþ ε ð1Þ

where Xβ represents fixed effects not associated with genes. If there are no fixed effects other

than the population mean, Xβ = 1μ, where X = 1 is a column vector of unity and β = μ is the

population mean (or intercept). Let g = Zα be an n × 1 vector of genotypic values for all indi-

viduals. The model is rewritten as

y ¼ 1mþ g þ xþ ε ð2Þ

where

μ is the population mean,

g is a vector of genotypic values for all individuals,

ξ is a vector of polygenic effects with an assumed N 0;As2
x

� �
distribution,

A is an additive relationship matrix, also called numerator matrix,

s2
x

is a polygenic variance,

ε is a vector of residual errors with an assumed N(0, Rσ2) distribution,

R is a residual covariance structure (often assumed to be R = I),

σ2 is the residual variance.

Let Zj be the genotype indicator variable of individual j for the locus of interest, which is

defined as

Zj ¼

þ1 for A1A1 with P ¼ p2

0 for A1A2 with H ¼ 2pq

� 1 for A2A2 with Q ¼ q2

ð3Þ

8
><

>:

where p = Pr(A1) is the frequency of allele A1 and q = Pr(A2) is the frequency of allele A2,

where p + q = 1. The three capital letters, P, H and Q are the frequencies of the three geno-

types and the population is assumed to be in Hardy-Weinberg equilibrium. Let α be the

genetic effect of the locus, which is often called the average effect of gene substitution in

classical quantitative genetics textbooks [19,20]. Since there is no distribution assigned to

the QTL effect α, it is a fixed effect. The genetic variance contributed by the locus under the
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fixed model is defined as

s2

QTL ¼ s
2

Za
2 ¼ 2pqa2 ð4Þ

Here, the genetic effect α is a fixed effect (constant) and Z is a random variable with mean

μZ = p–q and variance s2
Z ¼ 2pq. Although α is fixed, g = Zα is random because Z is random.

The Hardy-Weinberg equilibrium assumption is not required and we made that assumption

here is to be consistent with the classical definition of genetic variance defined in quantita-

tive genetics textbooks [19,20].

When Z is considered as a random variable (different from the classical mixed models

where a design matrix is often considered as data), the expectation of the mixed model is E(y)

= 1μ and the variance of the mixed mode is

varðyÞ ¼ varðZÞa2 þ As2

x
þ Rs2 ð5Þ

This is an n × n variance matrix, where n is the sample size. The total phenotypic variance and

the partitioning of the total variance are shown below,

s2

P ¼
1

n
tr½varðZÞ�a2 þ

1

n
trðAÞs2

x
þ

1

n
trðRÞs2 ð6Þ

where n� 1tr varðZÞ½ � ¼ s2
z , n

-1tr(A) = 1 (assuming that no individuals are inbred), and n-1tr(R)

= 1 (assuming independent and homogeneous residual variance). Therefore,

s2

P ¼ s
2

Za
2 þ s2

x
þ s2 ð7Þ

Let s2
QTL ¼ s

2
Za

2 and the proportion of phenotypic variance contributed by the QTL is

h2

QTL ¼
s2
QTL

s2
P

¼
s2
Za

2

s2
Za

2 þ s2
x þ s

2
ð8Þ

At this moment, we have dealt with the model and not mentioned any estimation of the QTL

variance, which will be discussed later.

There is no doubt that model (1) or (2) is a mixed model because the same model includes

both the fixed effects (Xβ) and the random effect (Zα + ξ). However, in a typical mixed model,

the design matrices (X and Z) are treated as observed data and are considered as constants. In

quantitative genetics, the design matrix Z is considered as a variable and this makes the quanti-

tative genetics model different from a typical linear mixed model. If α is considered as a fixed

effect and Z is considered as “data”, the expectation of model (1) in a typical linear mixed

model analysis would be E(y) = Xβ + Zα and the variance matrix would be

varðyÞ ¼ As2

x
þ Rs2 ð9Þ

Information about the QTL disappears from the variance, which was first notified by Gianola

et al [21]. Therefore, model (9) is not a correct model for estimation of QTL variance. If we

assign a normal distribution to α with mean zero and variance s2
a
, model (1) remains a mixed

model with an expectation of E(y) = Xβ and a variance matrix of

varðyÞ ¼ ZZTs2

a
þ As2

x
þ Rs2 ð10Þ

Now the QTL variance s2
a

appears in the variance of y and we can talk about QTL variance and

the proportion of phenotypic variance contributed by the QTL. We now need to interpret a �

N 0; s2
a

� �
for a single α. According to Gianola et al [21], N 0; s2

a

� �
is called a prior distribution
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for α and s2
a

is the prior variance or prior uncertainty. Since there is only one random draw

from this distribution per population, the variance is defined as s2
a
¼ a2.

2.2 Estimated QTL variance and QTL heritability

It is not surprising to see the following simple extension of Eq (8) to estimate the QTL herita-

bility,

ĥ2ðBIASEDÞ
QTL ¼

s2
Zâ

2

s2
Zâ

2 þ ŝ2
x þ ŝ

2
ð11Þ

Unfortunately, this is not the correct estimate of QTL heritability (Luo et al. 2003) because

ŝ2
a
6¼ ðâÞ

2
¼ â2. The estimate is biased upward, especially when the sample size is small. The

reason is that α is unknown and it is replaced by an estimate. However, the estimation is sub-

ject to an estimation error, sâ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðâjaÞ

p
, which has not played a role in Eq (11). The correct

estimate of the QTL variance is

ŝ2

QTL ¼ s
2

Zŝ
2

a
¼ s2

Z â
2 � s2

â

� �
ð12Þ

The estimated QTL heritability is simply

ĥ2

QTL ¼
s2
Zðâ

2 � s2
a
Þ

s2
Zðâ

2 � s2
a
Þ þ ŝ2

x þ ŝ
2

ð13Þ

It is a common practice to standardize the Z variable prior to QTL mapping so that Z = (Z�–
μZ�)/σZ�, where Z� represents the Z variable in its original scale, μZ� and σZ� are the mean and

standard deviation of the original Z variable. The standardized Z variable has E(Z) = 0 and var
(Z) = 1. Using the standardized Z will result in

ĥ2

QTL ¼
â2 � s2

â

â2 � s2
â þ ŝ

2
x þ ŝ

2
ð14Þ

Hereafter, we use the standardized genotype indicator variable in all subsequent data analyses.

Therefore, s2
QTL ¼ s

2
a
¼ a2.

2.3 Treating QTL effect as random

Terminologies like QTL variance and QTL heritability are defined in the context of a random

QTL effect. However, all previous discussions are based on the fixed model framework for the

QTL effect. Let us assume a � N 0; s2
a

� �
. This treatment is a Bayesian analysis of QTL effect.

Recall that the linear mixed model in (1) is,

y ¼ Xbþ Zaþ xþ ε ð15Þ

When the QTL effect is treated as random, the expectation of y in Eq (15)) is E(y) = Xβ and the

variance matrix of y in Eq (15) is

varðyÞ ¼ V ¼ ZZTs2

a
þ As2

x
þ Rs2 ¼ ZZTla þ Alx þ R

� �
s2 ¼ Hs2 ð16Þ

where la ¼ s
2
a
=s2, lx ¼ s

2
x
=s2 and H = ZZTλα + Aλξ + R. The total phenotypic variance is par-

titioned below,

s2

P ¼
1

n
tr ZZTð Þs2

a
þ

1

n
tr Að Þs2

x
þ

1

n
tr Rð Þs2 ¼ s2

a
þ s2

x
þ s2 ð17Þ
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where

1

n
tr ZZTð Þ ¼

1

n

Xn

j¼1
Z2

j ¼ s
2

Z ¼ 1 ð18Þ

due to Z being defined as a standardized variable (E(Z) = 0 and var(Z) = 1).

We now introduce a restricted maximum likelihood (REML) method to estimate the QTL

variance. Let y ¼ s2
a
; s2

x
; s2

� �
be the three variance components. Given the expectation and

the variance of model (15), the restricted log likelihood function is

L yð Þ ¼ �
1

2
lnjVj �

1

2
lnjXTV � 1Xj �

1

2
ðy � Xb̂ÞTV � 1 y � Xb̂

� �
ð19Þ

where

b̂ ¼ ðXTH� 1XÞ� 1 XTH� 1yð Þ ð20Þ

which is not a parameter but expressed as a function of H and thus a function of θ. Therefore,

the likelihood function only contains three variance components, i.e., three parameters. Maxi-

mization of (19) with respect to θ yields the REML estimate of θ, denoted by ŷ ¼ ŝ2
a
; ŝ2

x
; ŝ2

� �
.

The price to pay for treating the QTL effect as random is that the solution is implicit and itera-

tions are required for the REML estimate of the QTL variance. Given the estimated variance

components, the estimated QTL heritability is

ĥ2

QTL ¼
ŝ2
a

ŝ2
a
þ ŝ2

x þ ŝ
2

ð21Þ

The variance matrix of the estimated θ can be obtained via the inverse of the information

matrix,

varðŷÞ ¼ I� 1 ŷ
� �

¼ �
@2L ŷ
� �

@y@y
T

2

4

3

5

� 1

ð22Þ

The detail of varðŷÞ is

varðŷÞ ¼ var

ŝ2
a

ŝ2
x

ŝ2

2

6
4

3

7
5 ¼

varðŝ2
a
Þ covðŝ2

a
; ŝ2

x
Þ covðŝ2

a
; ŝ2Þ

covðŝ2
a
; ŝ2

x
Þ varðŝ2

x
Þ covðŝ2

x
; ŝ2Þ

covðŝ2
a
; ŝ2Þ covðŝ2

x
; ŝ2Þ varðŝ2Þ

2

6
6
4

3

7
7
5 ð23Þ

The standard error of the estimated QTL heritability (ratio of variance components) can be

approximated via the Delta method. Let

X ¼ LT
Xŷ ¼ ½ 1 0 0 �

ŝ2
a

ŝ2
x

ŝ2

2

6
6
6
4

3

7
7
7
5
¼ ŝ2

a
ð24Þ
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and

Y ¼ LT
Y ŷ ¼ ½ 1 1 1 �

ŝ2
a

ŝ2
x

ŝ2

2

6
6
6
4

3

7
7
7
5
¼ ŝ2

a
þ ŝ2

x
þ ŝ2 ð25Þ

The variance-covariance matrix of X and Y is

var
X

Y

" #

¼
var ðXÞ covðX;YÞ

covðX;YÞ var ðYÞ

" #

¼
LT
X var ðŷÞLX LT

X var ðŷÞLY

LT
Y var ðŷÞLX LT

Y var ðŷÞLY

" #

ð26Þ

Let

ĥ2

QTL ¼
ŝ2
a

ŝ2
a
þ ŝ2

x þ ŝ
2
¼

X
Y

ð27Þ

The approximate variance of the estimated QTL heritability via the Delta method is

var ðĥ2
QTLÞ �

X
Y

� �2 var ðXÞ
X2

� 2
covðX;YÞ

XY
þ
var ðYÞ

Y2

� �

¼
X
Y

� �2 LT
X var ðŷÞLX

X2
� 2

LT
X var ðŷÞLY

XY
þ

LT
Y var ðŷÞLY

Y2

" # ð28Þ

The standard error of the estimated QTL heritability is

sĥ2
QTL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var ðĥ2
QTLÞ

q

ð29Þ

2.4 The MM and REML estimates of QTL variance

When the genotype indicator variable is standardized, the estimated QTL variance presented

in Eq (12) is rewritten as

ŝ2

a
¼ â2 � s2

â
ð30Þ

This is a moment estimate of the QTL variance. Let us take the expectation of â2,

E â2ð Þ ¼ a2 þ s2

â
¼ s2

a
þ s2

â
ð31Þ

The moment method of estimation for s2
a

is obtained by replacing E â2ð Þ by â2 in Eq (31),

which leads to

â2 ¼ s2

a
þ s2

â
ð32Þ

We then solve for s2
a

from Eq (32), resulting in an unbiased estimate of the QTL variance,

ŝ2

a
¼ â2 � s2

â
ð33Þ

This method is called the moment method (MM). The MM estimate of QTL variance utilizes

the result of a fixed model (the mixed model with the QTL effect being treated as a fixed effect).

The REML method for estimation of QTL variance directly deals with a random model (the

mixed model with the QTL effect being treated as a random effect). Estimates from the two dif-

ferent approaches are identical if negative estimates from MM are set to zero.
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Let â be the estimated QTL effect from the fixed model and varðâjaÞ ¼ s2
â

be the squared

estimation error. When the residual error of the fixed model in Eq (1) is normally distributed,

the estimated QTL effect is also normally distributed, i.e., â � N a; s2
â

� �
. In this case, â and s2

â

are sufficient statistics of α. To estimate the variance of α (the QTL variance s2
a
), we can simply

obtain it from the sufficient statistics, not from the original data. Let us propose a random

model for â (treated as an observed data point),

â ¼ aþ eâ ð34Þ

where α is the true value with a normal distribution a � N 0;s2
a

� �
and eâ � N 0; s2

â

� �
is the

residual error with a known error variance. The expectation of model (34) is E âð Þ ¼ 0 and the

variance is

varðâÞ ¼ varðaÞ þ varðeâÞ ¼ s2

a
þ s2

â
ð35Þ

The likelihood function from the sufficient statistics is

L s2

a

� �
¼ �

1

2
lnðs2

a
þ s2

â
Þ þ

â2

s2
a
þ s2

â

� �

ð36Þ

The ML solution is

ŝ2

a
¼

â2 � s2
â

for â2 > s2
â

0 for â2 > s2
â

ð37Þ

(

which is exactly the MM estimate of s2
a

if negative solution is truncated at zero. A statistically

more elegant notation for Eq (37) is

ŝ2

a
¼ ðâ2 � s2

â
Þ
þ

ð38Þ

The equivalence between MM and REML will also be demonstrated empirically via Monte

Carlo simulations later in the Result Section.

3 Data availability

3.1 Data of a working example from rice

Data and SAS codes used in the working example in the Result Section are given in Supple-

mentary files. S1 Data contains the phenotypic values and the numerical codes (before and

after standardization) of the genotypes for the locus of interest (Bin725), where the raw and

standardized codes are named z0 and z, respectively, and the phenotypic value is named y. S2

Data is the kinship matrix calculated from genome-wide markers (1619 bins). S1 Code con-

tains the SAS codes of PROC MIXED for parameter estimation.

3.2 Data of an application to QTL mapping in mice

The mouse population consists of 110 F2 mice derived from the cross between the B6 strain

and the BTBR strain of mice [53]. The trait analyzed is the 10-week-body-weight. The mouse

population was genotyped for 193 microsatellite markers over 19 autosomes with an average

of 10 cM per marker interval. We added one pseudo marker in every 5 cM to generate a map

with a total of 466 marker positions (193 real markers and 273 pseudo markers). An n ×
n = 110 × 110 kinship matrix was calculated from the 466 marker genotypes and this kinship

matrix was used for QTL mapping under the polygenic model (S3 Data). The GLIMMIX pro-

cedure in SAS was used to analyze the data. PROC GLIMMIX is a very general procedure that
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can handle generalized linear mixed models. The mouse data and the SAS code to analyze the

data are provided in S4 Data and S2 Code, respectively.

4 Result

4.1 A working example

An IMF2 (immortalized F2) population of rice with n = 278 hybrids was used as an example

for illustration [54]. The trait is the 1000-grain weight (KGW). The experiment was replicated

in two years (1998 and 1999). The average of the two- year replicates is the response variable

for data analysis. There are m = 1619 bins (segregating markers) available for QTL mapping.

The three genotypes (A, H and B) are coded as 1 for A, 0 for H and -1 for B. The kinship matrix

was calculated from all 1619 markers. The kinship matrix was eventually normalized prior to

the data analysis. A normalized kinship matrix has a property of tr(K) = n, i.e., the trace of K
equals the sample size. The data were originally published by Hua et al. [54] and later by Xu

et al. [55]. We illustrated the analysis of a single marker (Bin725) as an example. This locus is

known to contain a QTL for grain width (GW) [56]. The numerically coded genotypes of this

locus were standardized prior to the data analysis. The phenotypic values and the numerical

codes (before and after standardization) of the genotypes for the locus (Bin725) are given in S1

Data. The raw and standardized codes are named z0 and z, respectively. The phenotypic value

is named y. The kinship matrix is provided in S2 Data. The SAS codes of PROC MIXED are

given in S1 Code.

The same data were fitted to two models. One is the so called fixed model where the QTL

effect was treated as a fixed effect. The other is the so called random model where the QTL

effect was treated as a random effect. Both models have a random polygenic component and

thus both are mixed models. Table 1 shows the parameters estimated from the two models.

The fixed model estimates for the parameters are also the MM estimates while the random

model estimates are called the REML estimates. The two methods are clearly the same (see

Table 1). The MM method is computationally more robust than the REML method because it

estimates two variance components while the REML method estimates three. The estimated

QTL variance from the fixed model is

ŝ2

QTL fixed modelð Þ ¼ â2 � varðâjaÞ ¼ 0:52782 � 0:11222 ¼ 0:2660

and thus the estimated QTL heritability from the fixed model is

ĥ2

QTLðfixed modelÞ ¼
ŝ2

QTLðfixedÞ
ŝ2

QTLðfixedÞ þ ŝ2
x þ ŝ

2
þ

0:2660

0:2660þ 3:5054þ 0:3842
¼ 0:06401

Table 1. Estimated parameters of trait KGW from the fixed and random models for bin 725 of the rice population (s2
a
¼ a2).

Parameter Fixed model Random model

Estimate StdErr Estimate StdErr

α 0.5278 0.1122 0.5039 0.1096

s2
a

0.2660 - 0.2660 0.3939

s2
x

3.5054 0.5375 3.5038 0.5371

σ2 0.3842 0.0938 0.3845 0.0938

https://doi.org/10.1371/journal.pcbi.1009923.t001
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The estimated QTL heritability from the random model is

ĥ2

QTLðrandom modelÞ ¼
ŝ2

QTLðrandomÞ
ŝ2

QTLðrandomÞ þ ŝ2
x þ ŝ

2
¼¼

0:2660

0:2660þ 3:5038þ 0:3845
¼ 0:06403

The two estimates are nearly identical. The standard error of the estimated QTL heritability

can be obtained from the random model because we have an asymptotic variance-covariance

matrix of the three estimated variance components (Table 2). Let

ĥ2

QTL ¼
X
Y
¼

0:2660

0:2660 þ 3:5038þ 0:3845
¼ 0:06403

Define LT
X ¼ 1 0 0½ � and LT

Y ¼ 1 1 1½ �, and let varðŷÞ be the 3 × 3 asymptotic variance

matrix listed in Table 2. The delta approximation of the variance for the estimated QTL herita-

bility is

var ðĥ2
QTLÞ �

X
Y

� �2 LT
X varðŷÞLX

X2
� 2

LT
X varðŷÞLY

XY
þ

LT
Y varðŷÞLY

Y2

" #

¼
0:266

4:1543

� �2

�
0:1552

0:2662
� 2�

0:155392

0:266� 4:1543
þ

0:393749

4:15432

� �

¼ 0:007933

The standard error of the estimated QTL heritability is

sĥ2
QTL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:007933
p

¼ 0:089069

Note that the standard error is even larger than the estimated QTL heritability itself, due to the

relatively small QTL variance and the small sample size (n = 278).

The naïve (biased) estimate of the QTL heritability is

ĥ2ðBIASEDÞ
QTL ¼

â2

â2 þ ŝ2
x þ ŝ

2
þ

0:52782

0:52782 þ 3:5054þ 0:3842
¼ 0:066833

which is slightly higher than the unbiased estimate (0.06401). The relative bias is (0.06683–

0.06401)/0.06401 = 4.4%.

We also investigated the R2 of the mixed model with the QTL effect being treated as a fixed

effect. Since the model is a mixed model with a random polygenic component, there is no easy

way to calculate various sums of squares. As a result, we used the pseudo R2 [50] to measure

the model goodness of fit, which is an alternative way to measure the proportion of phenotypic

variance contributed by a QTL. The likelihood ratio test statistic is

LRT ¼ � 2 L0 ŝ
2

x
; ŝ2

� �
� L0 â; ŝ

2

x
; ŝ2

� �� �
¼ � 2� � 464:4þ 455:05ð Þ ¼ 18:7

Table 2. Asymptotic variance-covariance matrix of the estimated variance components for trait KGW from the

random model analysis (REML) for bin 725 of the rice population (s2
a
¼ a2).

var ðŷÞ s2
a

s2
x

σ2

s2
a

0.15520 0.00036 -0.00020

s2
x

0.00036 0.28840 -0.02950

σ2 -0.00020 -0.02950 0.00881

https://doi.org/10.1371/journal.pcbi.1009923.t002
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The pseudo R2 is

R2

pseudo ¼ 1 � expð� LRT=nÞ ¼ 1 � expð� 18:7=278Þ ¼ 0:065054

which is higher than the unbiased h2
QTL (0.06401) and lower than the biased h2

QTL (0.06683).

4.2 Equivalence between the REML and MM estimates of a QTL variance

We fixed the population size at n ×m = 10 × 5 = 50, where n is the number of families and m is

the number of full siblings per family. The polygenic variance and the residual variance were

fixed at s2
x
¼ s2 ¼ 10. A QTL was simulated with frequencies of Pr(A1A1) = 0.25, Pr(A1A2) =

0.5 and Pr(A2A2) = 0.25, respectively. The numerical codes (Z variable) for the three genotypes

were set at 1, 0 and -1, respectively, for the three genotypes. The Z variable was eventually stan-

dardized to have mean 0 and variance 1. Four simulation experiments were conducted under

four different levels of QTL heritability (h2
QTL): 0.05, 0.10, 0.15 and 0.20. The s2

a
¼ a2 values

(true values) were calculated from

a2 ¼ s2

x
þ s2

� � h2
QTL

1 � h2
QTL

¼ 20�
h2
QTL

1 � h2
QTL

where s2
x
¼ 10 and σ2 = 10 are the polygenic and residual variances, respectively. The α2 values

are 1.0526, 2.2222, 3.5294 and 5.0000, respectively, corresponding to the four different levels of

QTL heritability. Each experiment was replicated 500 times. The estimated QTL variances

from the fixed model (truncated moment) and the random model (REML) were compared by

plotting the fixed model estimate against the random model estimate (Fig 1). All points of the

scatter plots are on the diagonal lines except a couple of points slightly deviating from the diag-

onals. The simulations empirically validated that the truncated moment method is equivalent

to the REML method. The slight deviations between the two methods is due to local conver-

gence of the REML method because it involves three variance components while the truncated

moment method involves only two variance components. In real data analysis, the random

model analysis is not necessary because it is identical to the fixed model analysis and the latter

is significantly faster than the former in terms of computational speed (see Discussion).

4.3 Bias of estimated QTL variance

4.3.1 Single marker analysis. This method is similar to interval mapping, where one QTL

is included in a regression model and there is no polygenic background control for multiple

QTL. To show the bias in estimated QTL variance and QTL heritability, we simulated data in

the following scenarios. The residual variance was set at σ2 = 20, the population mean was set

at μ = 10. The QTL heritability ranged from 0 to 0.2 incremented by 0.001. The QTL genotype

indicator variable (Z) was generated from three genotypes with frequencies of 0.25, 0.5 and

0.25, respectively. The squared QTL effect corresponding to a given QTL heritability was cal-

culated from

a2 ¼
h2
QTL

1 � h2
QTL

s2 ¼
h2
QTL

1 � h2
QTL

� 20

The Z variable was eventually standardized, i.e., μZ = 0 and s2
Z ¼ 1, prior to data analysis. The

sample size varied at the following levels: 25, 50 100, 150, 200 and 250. A total of 500 replicated

experiments were conducted under each scenario. The average of the 500 replicates was plot-

ted. The estimated QTL variances (squared method, moment method and restricted maximum

likelihood method) are plotted against the true QTL variance.
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The results are shown in Fig 2. The naïve squared method (purple) is clearly biased

upwards because the curves deviate far from the diagonal lines. The bias of the squared method

is progressively reduced until the sample reaches 250 where the bias is barely noticeable. The

REML method (blue curve) shows some bias when the true QTL variance is small and the sam-

ple is very small (n = 25 and n = 50), but the bias fades away quickly as the sample size reaches

n = 100. The moment method (negative estimate is allowed) shows no bias in all sample sizes

and in all range of the true QTL variance.

Fig 1. Comparison of the estimated QTL variances from the fixed model and the random model. Moment estimate (fixed model) of QTL

variance plotted against REML estimate (random model) of QTL variance when the true QTL heritability is (A) 0.05, (B) 0.10, (C) 0.15 and (D) 0.20.

https://doi.org/10.1371/journal.pcbi.1009923.g001
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Fig 2. Plots of estimated QTL variances from three methods against the true QTL variance. The six panels of the figure show

the results of six different sample sizes (n), which are 25, 50, 100, 150, 200 and 250, respectively.

https://doi.org/10.1371/journal.pcbi.1009923.g002

PLOS COMPUTATIONAL BIOLOGY Estimating QTL Variance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009923 March 11, 2022 15 / 30

https://doi.org/10.1371/journal.pcbi.1009923.g002
https://doi.org/10.1371/journal.pcbi.1009923


We also compared the estimated QTL heritability under the six sample sizes. Here, we first

calculated the average QTL variance estimated from 500 replicated simulation experiments.

We then calculated the estimated QTL heritability from the average estimated QTL variance,

as demonstrated below,

ĥ2

QTL ¼
ŝ2

QTL

ŝ2
QTL þ ŝ

2

The same trends observed for the estimated QTL variance were also observed here for the esti-

mated QTL heritability (see Fig 3).

4.3.2 Polygenic model analysis. The model includes a polygenic effect to control the

genetic background. Such a mixed model is the GWAS model [2] and the polygenic controlled

QTL mapping procedure [16]. This model is analogous to the composite interval mapping

where the genetic background is controlled by selected co-factors. We simulated full-sib family

data with m = 5 full siblings per family. The number of families in a simulated population

determines the sample size. We set the number of families at n = 5,10,20,30,40,50, correspond-

ing to samples sizes n ×m = 25,50,100,150,200,250, respectively. The residual variance was set

at σ2 = 10 and the polygenic variance was set at s2
x
¼ 10. The QTL heritability is defined as

h2

QTL ¼
a2

a2 þ s2
x þ s

2

which allows us to calculate the QTL effect α via

a2 ¼
h2
QTL

1 � h2
QTL

s2

x
þ s2

� �
¼ 20�

h2
QTL

1 � h2
QTL

Again the genotypic code of a single QTL was standardized when used to generate and analyze

the data. The true h2
QTL value ranges from 0 to 0.2 incremented by 0.001. Each experiment was

replicated 500 times.

The plots of the average estimated QTL variance from the 500 replicated simulations

against the true QTL variance are illustrated in Fig 4. The purple curves (the naïve squared

method) is seriously biased in small samples (n = 25 and n = 50). However, the bias is very

small for n = 100 and is barely noticeable when the sample size is above 150. The REML esti-

mate is biased for n = 25 when the QTL variance is smaller than 2 (corresponding to QTL heri-

tability of 0.075). The moment estimate of QTL variance is unbiased in all sample sizes and in

the entire range of QTL variance. Similar trends were observed for the QTL heritability (see

Fig 5).

Comparing Fig 2 with Fig 4 (also Fig 3 with Fig 5), we realized that adding a polygene to

the model can reduce the bias of the naïve squared method and the REML method relative to

the corresponding single-marker analysis methods.

4.4 An application to QTL mapping for a mouse population

The mouse population consists of n = 110 F2 mice genotyped for 193 markers. Adding 273

pseudo markers uniformly across the entire genome generated a map with an average of 5 cM

per marker interval. The total number of marker positions is 193 + 273 = 466. We scanned the

entire genome with two different models under two different strategies of QTL mapping. The

two models are the fixed model and the random model. In the fixed model, the fixed effects

included the intercept, the sex effect (1 for male and 0 for female) and the standardized marker

genotype indicator variable. No random effect was included in the fixed model other than the
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Fig 3. Plots of estimated QTL heritability from three methods against the true QTL heritability. The six panels of the figure

show the results of six sample sizes (n), which are 25, 50, 100, 150, 200 and 250, respectively.

https://doi.org/10.1371/journal.pcbi.1009923.g003
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Fig 4. Plots of estimated QTL variance against the true QTL variance under the polygenic model. The six panels of the figure

show the results of six sample sizes (n), which are 25, 50, 100, 150, 200 and 250, respectively.

https://doi.org/10.1371/journal.pcbi.1009923.g004
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Fig 5. Plots of estimated QTL heritability against the true QTL heritability under the polygenic model. The six panels of the

figure show the results of six sample sizes (n), which are 25, 50, 100, 150, 200 and 250, respectively.

https://doi.org/10.1371/journal.pcbi.1009923.g005
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residual error. For the random model, the standardized marker genotype indicator variable

was included in the model as a random effect. The fixed effects included the intercept and the

sex effect. The two QTL mapping strategies are the interval mapping procedure and the poly-

genic mapping procedure. The polygenic model, by definition, included a polygenic effect in

the model to capture the polygenic background effect, while the interval mapping procedure

does not include this polygenic effect.

Fig 6 shows the comparisons of the two models under the two strategies of QTL mapping

for the 10-week-body-weight trait of the mouse population. The blue circles are the plots of the

estimated QTL variances from the random model (QTL effect defined as a random effect)

against the QTL variances from the fixed model moment method (QTL effect defined as a

fixed effect). The red circles are the plots of the QTL variance from the squared effect method

against the QTL variance from the fixed model moment method. Clearly, the random model

and the fixed model moment methods are identical in the estimated QTL variance because the

blue circles are all on the diagonals of the plots, while the QTL variance estimated from the

squared effect method is consistently biased upward because the red circles are all above the

diagonals of the plots. The left panels (Fig 6A and 6C) of the figure show the estimated QTL

variances from the two models under the two QTL mapping procedures. The right panels (Fig

6B and 6D) of the figure compare the QTL heritability for the two models under the two QTL

mapping procedures. The top panels (Fig 6A and 6B) of the figure show the result from the

interval mapping procedure while the bottom panels (Fig 6C and 6D) show the result from

the polygenic model analysis. Comparing the two QTL mapping procedures (interval mapping

vs. polygenic mapping), the biases in estimated QTL variance (heritability) are greater for the

polygenic method than the biases for the interval mapping procedure.

Fig 7 shows the Wald test statistic profiles and the QTL heritability profiles for the two QTL

mapping procedures (interval mapping vs. polygenic mapping). The patterns of the profiles

are much the same for the two procedures, but the profiles of the polygenic procedure have

been substantially reduced compared to the interval mapping procedure. The threshold of the

Wald test after Bonferroni correction is

tW ¼ qchisq 1 � 0:05=193; 1ð Þ ¼ 13:34533 ð39Þ

where 193 is the number of real markers. The interval mapping procedure detected a signifi-

cant marker on Chromosome 2 that is associated with the body weight trait of mice (Fig 7A

and 7B). This marker, however, is not significant for the polygenic method (Fig 7C and 7D)

due to strong shrinkage of the polygenic method. Interestingly, the marker with the highest

Wald test statistic from the polygenic method is on Chromosome 18 with a Wald test statistic

of 9.73 (not significant).

We now describe the marker on Chromosome 2 with the highest Wald test detected from

the interval mapping procedure. This is a pseudo marker about 9 cM away from a real marker.

The test statistic is W = 17.72 with p = 0.00002559. The estimated QTL heritability from the

fixed model moment method, the random model method and the squared effect method are

0.1333, 0.1333 and 0.1401, respectively. The bias is (0.1401–0.1333)/0.1333 = 5.14%. None of

the markers were significant from the polygenic method. The marker with the highest test sta-

tistic from the polygenic model analysis is on Chromosome 18 and it is a pseudo marker, 15

cM away from a real marker. The Wald test of this pseudo marker is W = 9.73 with a p-value

of p = 0.001812845. The estimated QTL heritability are 0.1155, 0.1153 and 0.1271, respectively,

for the fixed model moment method, the random model method and the squared effect

method. The relative bias of the squared effect method is (0.1271–0.1153)/0.1153 = 10.21%.
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5 Discussion

In practice, the bias correction is only necessary for populations smaller than 200. Since most

QTL mapping and GWAS experiments are conducted with sample sizes perhaps larger than

200, the current study is not intended to be read by crop and animal breeders. Tree breeders

are a special group who often deal with small samples. QTL mapping and GWAS in trees may

need bias correction for estimated QTL variances. The current study contributes more to the

Fig 6. Comparison of QTL variance and heritability from three estimation methods (squared, random model and fixed model). (A) and (B)

Plots of estimated QTL variance and heritability from the square method and the random model method against the estimates from the fixed model

approach for interval mapping. (C) and (D) Plots of estimated QTL variance and heritability from the square method and the random model

method against the estimates from the fixed model approach for polygenic mapping.

https://doi.org/10.1371/journal.pcbi.1009923.g006
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quantitative genetics theory than to practical data analysis. Typical QTL mapping and GWAS

models include QTL effects as fixed effects while the sizes of QTLs are reported as QTL vari-

ances or QTL heritability. The concept of variance does not go well with a fixed effect. It is the

random effect that involves a variance. This conceptual relationship has been confused in the

QTL mapping community for over three decades. This study has clarified this fundamental

relationship.

Another fundamental contribution of this study to statistics is the “randomized fixed model

approach” to estimating variances. If the number of levels of a random effect is small, this ran-

domized fixed model can be used to estimate the variance associated with the random effect.

We estimate the fixed effect as the best linear unbiased estimate (BLUE) and then convert the

estimated fixed effect into a variance, like we presented in Eq (30) for the estimated QTL vari-

ance. A single regression coefficient is considered as just one level of a random effect. For mul-

tiple levels of a random effect, say α = [α1 α2]T, and if each level of the random effect follows

the same distribution, say ak � N 0;s2
a

� �
for k = 1,2, the randomized fixed model approach to

estimating s2
a

is a simple extension of the MM estimate, as shown below,

ŝ2

a
¼

1

2
tr ââT � varðâjaÞ½ � ¼

1

2

X2

k¼1
â2

k � varðâkjakÞ
� �

ð40Þ

Fig 7. Wald tests and estimated QTL heritability for body weight of the F2 mouse population. (A) and (C) show the Wald test statistics from interval

mapping and polygenic mapping, respectively. (B) and (D) show the estimated QTL heritability from interval mapping and polygenic mapping,

respectively.

https://doi.org/10.1371/journal.pcbi.1009923.g007
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where varðâjaÞ is a 2 × 2 variance matrix. In quantitative genetics, the four epistatic effects per

pair of loci (additive × additive, additive × dominance, dominance × additive and

dominance × dominance) may be modeled as a random effect with four group levels. Each

level of the epistatic effects follows the same normal distribution denoted by N 0;s2
EP

� �
. The

epistatic variance (s2
EP) may be easily estimated using Eq (40) with the 2 levels in the formula

substituted by 4 levels of the epistatic model. The original random (or mixed) model method-

ology does not have an explicit estimate of a variance component for the ML and REML meth-

ods. The randomized fixed model provides an explicit solution. As a result, this new method is

much like the Type3 method of the MIXED procedure in SAS, but it is the QTL mapping ver-

sion of the Type3 method.

Variance components may also be estimated via the Bayesian method by assigning a prior

distribution to each variance components. The Bayesian estimate of s2
a
¼ a2 is drastically dif-

ferent from the maximum likelihood estimate of s2
a

in the situation of regression analysis. The

reason is that the variance is defined and estimated from a “single group level.” A good Bayes-

ian estimate of a variance component needs at least three group levels [57–59]. The MCMC

procedure in SAS was used to implement the Bayesian method for parameter estimation. Since

coding PROC MCMC for the polygenic model using the marker-inferred kinship matrix is

very difficult, we only investigated the simple model without the polygenic background con-

trol. Five different prior distributions were investigated, including the uniform prior on s2
a

and

a weakly informative half-Cauchy prior on σα. Please see S1 Note for a complete list of prior

distributions investigated in this project. Table A in S1 Note shows the results of Bayesian esti-

mates of parameters in comparison with the estimates of the restricted maximum likelihood

methods for the hybrid rice data (data of the working example). The estimated QTL effects

and residual variances across a range of prior distributions are much the same compared with

the estimates from the restricted maximum likelihood methods. However, the Bayesian esti-

mates of the QTL variance are drastically different from the REML estimate and the differences

are highly dependent of the prior distributions. Therefore, the proposed MM and REML esti-

mate of the QTL variance under one group level may be the only option for estimating QTL

heritability.

An alternative method to estimate the QTL heritability is the R squared (R2), which does

not rely on an estimated QTL variance. It requires partitioning of the total sum of squares into

the regression sum of squares and the residual sum of squares. The ratio of the regression sum

of squares to the total sum of squares is the R squared. This R squared is also called the coeffi-

cient of model determination, the model goodness of fit and so on. Take the interval mapping

(single marker analysis without control for the polygenic background) for example, the regres-

sion model is

y ¼ mþ Zaþ ε ð41Þ

where μ is the intercept and s2
Z ¼ 1 because variable Z has been standardized. The naïve esti-

mate of the QTL heritability is defined as

ĥ2 BIASEDð Þ

QTL ¼
â2

â2 þ ŝ2
ð42Þ

The R squared is defined as

R2 ¼
SSREG

SSREG þ SSRES
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where

SSREG ¼ â
2
Xn

j¼1

ðZj �
�ZÞ2 ¼ n � 1ð Þs2

Zâ
2 ¼ n � 1ð Þâ2

is the regression sum of squares and

SSRES ¼
Xn

j¼1

ðyj � m̂ � ZjâÞ
2
¼ n � 2ð Þŝ2

is the residual sum of squares. The R squared is

R2 ¼
n � 1ð Þâ2

n � 1ð Þâ2 þ n � 2ð Þŝ2
¼

â2

â2 þ ŝ2 n � 2ð Þ= n � 1ð Þ
ð43Þ

Comparing Eq (43) with Eq (42), we conclude that R2 > ĥ2
QTL. The equality is only approached

asymptotically. Since ĥ2 BIASEDð Þ

QTL defined in Eq (42) is already biased, the R squared is certainly

biased as well.

The adjusted R squared, however, is a modification of the original R squared by taking into

account the model size (number of independent variables). After a few steps of manipulation,

the adjusted R squared can be expressed as

R2

ADJ ¼ 1 � 1 � R2ð Þ �
n � 1

n � 2
¼

â2 � ŝ2= n � 1ð Þ

â2 � ŝ2= n � 1ð Þ þ ŝ2 n � 2ð Þ= n � 1ð Þ þ ŝ2= n � 1ð Þ
ð44Þ

We now re-write the estimated QTL heritability as

ĥ2

QTL ¼
â2 � s2

â

â2 � s2
â þ ŝ

2
¼

â2 � ŝ2= n � 1ð Þ

â2 � ŝ2= n � 1ð Þ þ ŝ2 n � 2ð Þ= n � 1ð Þ þ ŝ2= n � 1ð Þ
ð45Þ

where s2
â
¼ ŝ2= n � 1ð Þs2

Z

� �
¼ ŝ2= n � 1ð Þ and ŝ2 n � 2ð Þ= n � 1ð Þ þ ŝ2= n � 1ð Þ ¼ ŝ2 due to

the fact that s2
Z ¼ 1. Eqs (44) and (45) are identical and thus ĥ2

QTL ¼ R2
ADJ . The bias corrected

heritability is not the R squared goodness of fit but it is identical to the adjusted R squared.

The additive genetic variance of a quantitative trait locus presented in Eq (4) is given in

classical quantitative genetics textbooks [19,20]. Surprisingly, it is the result of a fixed model

treatment of the QTL effect. The naïve estimate of the QTL variance converted from the

squared effect is biased. With the random model, we can directly estimate the QTL variance

s2
a
¼ a2 via the REML method. However, there is no explicit solution for the REML estimation

of the QTL variance, even if the model is a single marker model without polygene. The MM

method is derived under the fixed model, but the MM estimate is identical to the REML esti-

mate. Under the single marker model (without the polygene), the MM estimate is explicit,

much more convenient to achieve than the random model REML estimate. Under the poly-

genic model with the QTL effect being considered as a fixed effect, there are two variance com-

ponents, s2
x

and σ2, explicit solution of the variance parameters are not available anyway. The

fixed model approach (yFixed ¼ s2
x
; s2

� �
) to estimating the QTL variance has two advantages

over the random model approach (yRandom ¼ s2
a
; s2

x
; s2

� �
). (1) In variance component analysis,

adding one more variance can substantially increase the computational time, especially in

large samples. Furthermore, in QTL mapping and GWAS, we are talking about estimating one

more variance component for every locus while the total number of marker loci can be up to

millions. (2) Adding one more variance component to the parameter array can complicate the

landscape of the restricted log likelihood function and increase the risk of local convergence.
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Regarding the computational times, we compared the fixed model and the random model of

PROC MIXED in SAS for the working example (IMF2 rice population with 278 lines at

bin725), the fixed model and random model took 3.40 and 3.49 CPU seconds, respectively.

The corresponding numbers of iterations required for convergence were 6 and 5 for the fixed

and random models, respectively. We then scanned the entire genome of 1619 markers for the

same rice population with both the fixed model and the random model of PROC MIXED in

SAS. The fixed model took 1 hour, 31 minutes and 38 seconds of CPU time to complete the

scanning. The random model, however, took 2 hours, 20 minutes and 39 seconds of CPU

time. The average numbers of iterations (over the 1619 loci) required for convergence were

11.73 and 12.25 for the fixed model and the random model, respectively.

Our common belief in QTL mapping and GWAS is that there are just a few detectable QTL

per experiment. When the sample size is very large, more QTL can be detected. The current

GWAS in human height has identified 83 associated SNPs with a sample size as large as

711428 individuals [60]. We are not interested in presenting QTL variances or QTL heritability

of the entire genome; rather, only variances of detected QTL need to be presented. Therefore,

we can still use the fixed effect model to scan the genome and only go back to the significant

loci to calculate the QTL variances. In this case, we can tolerate the extra cost of REML estima-

tion of QTL variances for the limited number of significant loci. One advantage of the REML

estimation for the QTL variance is that an asymptotic variance matrix for ŷRandom ¼

ŝ2
a
; ŝ2

x
; ŝ2

� �
is available in PROC MIXED. This matrix allows us to calculate an approximate

standard error of the estimate QTL heritability via the Delta approximation. Under the fixed

model, however, we only have the asymptotic variance matrix for ŷFixed ¼ ŝ2
x
; ŝ2

� �
; the vari-

ance for ŝ2
a
¼ ðâ � s2

â
Þ
þ

and the covariance between ŝ2
a

and ŷFixed are not available. Therefore,

we cannot calculate the standard error of the estimated QTL heritability. Another advantage of

the random model (treating QTL effects as random) is to calculate the heritability of a QTL in

a multiple QTL model when linkage disequilibrium (LD) among markers is present. This

problem has been investigated by Gianola et al. [23] under the fixed effect model. We now

review the fixed model approach using three loci as an example. The linear mixed model is

y ¼ Xbþ Z1a1 þ Z2a2 þ Z3a3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g

þ xþ ε ð46Þ

where Zk is the genotype indicator variable for QTL k and αk is the effect of QTL k for

k = 1,2,3. If these QTL are treated as fixed effects, the genetic variance associated with the three

loci is

varðgÞ ¼ s2

Z1
a2

1
þ s2

Z2
a2

2
þ s2

Z3
a2

3
þ 2sZ1Z2

a1a2 þ 2sZ1Z3
a1a3 þ 2sZ2Z3

a2a3 ð47Þ

where s2
Zk

is the variance of Zk and sZkZk0
is the covariance between Zk and Zk0 . This covariance

is called the linkage disequilibrium (LD). The variance contributed by the kth locus is [23]

s2

ak
¼ s2

Zk
a2

k þ
X3

k0 6¼k
sZkZk0

akak0 ð48Þ

This QTL variance looks very strange because the variance of QTL k contains effects of other

QTL. The genetic variance contributed by the three loci is collectively expressed by

varðgÞ ¼
X3

k¼1
s2

ak
¼ s2

a1
þ s2

a2
þ s2

a3
ð49Þ

When the LD is absent, the covariance sZkZj0
disappears and the variance of QTL k does not
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contain effects of other QTL. If the effects of all QTL are treated as random effects, the genetic

variance contributed by the three loci is

s2

g ¼
1

n
tr Z1Z

T
1

� �
s2

a1
þ

1

n
tr Z2Z

T
2

� �
s2

a2
þ

1

n
tr Z3Z

T
3

� �
s2

a3
ð50Þ

where s2
ak
¼ a2

k for k = 1,2,3. If the genotype indicator variables are standardized,

n� 1tr ZkZT
k

� �
¼ 1 for all k = 1,2,3, the above genetic variance is simplified into

s2

g ¼ s
2

a1
þ s2

a2
þ s2

a3
¼ a2

1
þ a2

2
þ a2

3
ð51Þ

Therefore, treating multiple QTL effects as random has substantially simplified the genetic var-

iance contributed by each QTL, even if LD is present.

A statistically significant QTL does not mean that it is significant biologically if the QTL

contributes a very small proportion of the trait variance. However, a large QTL of biologically

significance may not be significant statistically. The lack of power to detect such a QTL is pri-

marily due to interactions of the QTL with other QTLs in linkage disequilibrium. For example,

if two QTLs are in high LD but one is an antagonist of the other, neither one may be detected

because the effect of one locus is cancelled by the other. A multiple locus model may improve

the detection of both loci. More importantly, each locus may act as a member in a genetic net-

work that consists of many loci [61]. An individual locus may not be detected alone but is

detectable collectively as a network.

Regarding to the extra computational cost for correcting the bias, if the fixed model is used,

there is no extra cost, because the correction only needs the intermediate results of QTL map-

ping and GWAS, i.e., the estimated QTL effect and the squared estimation error per locus. The

intermediate results are often provided in the output files of QTL mapping and GWAS soft-

ware packages. It appears that the correction method requires the genotype indicator variable

(Z) to be standardized prior to the data analysis. In fact, this assumption is presented for ease

of presentation and is not absolutely required. If the results of QTL mapping and GWAS are

obtained from an unstandardized Z variable, we simply calculate the QTL variance using

ŝ2
QTL ¼ ŝ

2
Z â

2 � varðâjaÞ½ �, not ŝ2
QTL ¼ â

2 � varðâÞ. Calculation of ŝ2
Z for each locus presents

some extra computational burden.

Supporting information

S1 Data. Genotype indicator variables and phenotypic values of 1000 grain weight (KGW)

of rice from 278 hybrids. Column 1 (hybrid): IDs of 278 hybrid rice; Column2 (bin): this the

bin ID (Bin 725) chosen from a total of 1619 bins. Column 3 (y): This is the average phenotypic

value of KGW collected from 1998 and 1999. Column 4 (z0): This is the genotype indicator

variable, 1, 0, -1, representing the three genotypes, A, H and B, respectively. Column 5 (z): this

is the standardized genotypic indicator variable, z = (z0 –mean(z0))/stdev(z0).

(XLSX)

S2 Data. Marker inferred kinship matrix among the 278 hybrid rice. The matrix has been

normalized so that all diagonal elements are unity. The first column (parm) holds a value of 1

and the second column (row) holds the row number of the kinship matrix. col1 –col278 repre-

sent the column names of the kinship matrix. This format is required by PROC MIXED (a

SAS procedure).

(XLSX)

S3 Data. Marker inferred kinship matrix among the 110 mice. The matrix has been normal-

ized so that all diagonal elements are unity. The first column (parm) holds a value of 1 and the
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second column (row) holds the row number of the kinship matrix. col1 –col110 represent the

column names of the kinship matrix. This format is required by PROC MIXED and PROC

GLIMMIX (SAS procedure).

(CSV)

S4 Data. This file contains the genotype indicator variable (z0) and the standardized ver-

sion of this variable (z). It also contains the phenotypic values of the 10-week-body-weight

trait for all the 110 mice (y). The x variable indicates the sex, 1 for male and 0 for female. The

data are sorted by markers.

(CSV)

S1 Code. SAS code to read the data and estimate the variance components from the fixed

model and the random model of PROC MIXED. The first block of codes calls PROC

MIXED with the QTL effect being treated as a random effect. The second block of codes calls

PROC MIXED with the QTL effect being treated as a fixed effect.

(SAS)

S2 Code. SAS code to read the data and perform QTL mapping for the mouse population.

The file contains four blocks of SAS program, one for each of the four combinations of the two

models (fixed and random models) and the two procedures (interval and polygenic map-

pings). PROC GLIMMIX was used to perform the QTL mapping.

(SAS)

S1 Note. Description of the Bayesian method and the Bayesian estimate of QTL variance

(s2
a
). Table A: Estimated parameters for trait KGW from the fixed model, the random model

and the Bayesian analysis for bin 725 of the IMF2 rice population.
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