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1  |  INTRODUC TION

Rice is a precious and popular food crop in the diets of about 75% 
of the world's populations (Soponronarit et al., 2004). Rice grains 
contain various minerals, proteins, and vitamins, which may be lost 

in the processing steps. Parboiling is an effective way as a pretreat-
ment in rice drying process that preserves the nutritional proper-
ties of grain to an acceptable extent (Jannasch & Wang, 2020). 
The physical properties of the milled rice grains play a critical role 
in determining their market value. Properties like head rice yield, 

Received: 8 February 2022  | Revised: 26 May 2022  | Accepted: 28 May 2022

DOI: 10.1002/fsn3.2953  

O R I G I N A L  R E S E A R C H

Investigation of rice performance characteristics: 
A comparative study of LR, ANN, and RSM

Mandana Mahfeli1 |   Mohammad Zarein1  |   Aliasghar Zomorodian2 |   Hamid Khafajeh1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.

1Biosystems Engineering Department, 
Tarbiat Modares University, Tehran, Iran
2Department of Biosystems Engineering, 
Shiraz University, Shiraz, Iran

Correspondence
Mohammad Zarein, Biosystems 
Engineering Department, Tarbiat Modares 
University, Tehran, Iran.
Email: m.zarein@modares.ac.ir

Abstract
Parboiling is a type of heat pretreatment used in rice processing to reach higher head 
rice yield and improve the nutrition properties of raw rice. In this research, the goals 
were prediction and determination of optimum conditions for parboiled rice process-
ing using the response surface method (RSM) as well as modeling the output values 
by linear regression (LR) and artificial neural networks (ANN). The parameters includ-
ing steaming time (0, 5, 10, and 15 min), dryer type (solar and continuous dryers), and 
drying air temperature (35, 40, and 45°C) were employed as input values. In addition, 
the breakage resistance (BR) and head rice yield (HRY) were selected as output val-
ues. The ANN- based nonlinear regression, the multi- layer perceptron (MLP), and the 
radial basis function (RBF) have been developed to model the process parameters, as 
well as the central composite design (CCD) was conducted for optimization of BR and 
HRY values. The outputs of RBF network have been successfully applied to predict 
higher coefficient of determination of BR and HRY as 0.989 and 0.986, respectively, 
indicating the appropriateness of the model equation in predicting head rice yield and 
breakage resistance when the three processing variables (steaming time, dryer type, 
and drying air temperature) are mathematically combined. Also, the lower root mean 
square error (RMSE) was obtained for each one as 0.043 and 0.041. The optimum val-
ues of BR and HRY were obtained as 12.80 N and 67.3%, respectively, at 9.62 min and 
36.9°C for a solar dryer with a desirability of 0.941. In addition, the same values were 
obtained as 14.50 N and 72.1%, respectively, at 8.77 min and 37.0°C for a continuous 
dryer with a desirability of 0.971.
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breakage resistance of kernels, broken rice ratio, grain hardness, 
and color are major determinants of milled rice acceptability by con-
sumers (Campbell et al., 2009). During the processing and milling 
operation, rice kernels seem to be prone to crack which is uncon-
trollable to prevent in order to obtain the optimum head rice yield 
(HRY). Parboiling pretreatment causes a higher head rice yield with 
assumed minimal damage to grains by gelatinization of rice starch 
during processing time. This may be due to the role of gelatinization 
of starch in filling the voids and fissures (Hapsari et al., 2016). By 
measuring the three- point bending strength in some researches, it 
was found a significant relationship between the physical proper-
ties and HRY of rice and also a strong relationship between HRY 
and the percentage of kernels that could tolerate certain breakage 
force (Qi et al., 2003). There have been many studies on optimiz-
ing the processing conditions to limit waste and improve the HRY 
during the conversion of paddy (Aquerreta et al., 2007; Jindal & 
Siebenmorgen, 1987; Mukhopadhyay et al., 2019; Siebenmorgen 
et al., 2004; Steffe & Singh, 1980). Artificial neural networks (ANNs) 
are an attractive mathematical tool that potentially is configured for 
engineering purposes, such as pattern recognition, forecasting, and 
data compression. Multi- layer perceptron (MLP) network and radial 
basis function network (RBF) are the most common architectures 
of ANN (Raj & David, 2020). MLP network as a supplement of feed- 
forward ANN is composed of input, hidden, and output layers. The 
RBF in its simplest form is a three- layer feed- forward neural net-
work that uses radial basis functions as activation functions of the 
inputs and neuron parameters (Venkateswarlu & Jujjavarapu, 2019). 
Presently, a well- trained ANN offers exciting possibilities to model-
ing and prediction in different fields of agriculture such as prediction 
of crop yield, seeding dates, and biomass production. The ANN is 
abundantly utilized to simulate various processes, particularly for 
some cases where other statistical modeling fails. Recently, there 
has been an increasing desire to apply ANN in agriculture due to 
faster prediction and possibility of adding or removing input and 
output variables compared to other conventional statistical models 
(Ghamari et al., 2010). Some researchers applied ANN models to es-
timate physical and physiological damage to seeds, determine the 
sugar content in fruits, estimate the crop yield, and moisture ratio 
of kernels during soaking. Results indicated that ANN models are 
the best methods for prediction because of its ability to modeling 
and classification in biological fields with more acceptable accuracy 
compared to other models (Kashaninejad et al., 2009; Khairunniza- 
Bejo et al., 2014; Khazaei et al., 2008; Liu et al., 2001; Oda et al., 
2012; Saad & Ismail, 2009). In many works, researchers compared 
regression models and ANN to predict the crop yield and quality 
(Kim, 2008; Kumar, 2020; Stangierski et al., 2019). The response sur-
face methodology (RSM) is a powerful mathematical modeling tool 
with a collection of empirical statistical techniques that is widely em-
ployed to find optimum conditions in varied processes to solve mul-
tivariable equations simultaneously by performing a minimal number 
of experimental runs (Betiku & Adesina, 2013; Danbaba et al., 2014; 
Karuppaiya et al., 2010; Mason et al., 2003). Danbaba et al. (2014) 
employed RSM involving central composite design (CCD) to study 

the effects of soaking temperature, steaming time, and drying time 
on the HRY of parboiled rice. They concluded that the research 
was conducted at the National Cereals Research Institute, Badeggi, 
Nigeria. Results indicated that regression coefficient of the devel-
oped model was significant (F- value 16.33 and p- value .003) indi-
cating that most of the variation in head rice yield can be explained 
by the regression model. Coefficient of regression R2 and adjusted 
R2 were .97 and .91, respectively, indicating appropriateness of the 
RSM and CCD model in predicting optimum rice parboiling condition 
for maximum head rice recovery (Danbaba et al., 2014). In a sim-
ilar study, RSM was successfully applied to optimize the process-
ing conditions in grain production (Ghodke et al., 2009; Ogunbiyi 
et al., 2018). Despite numerous studies about the use of RSM and 
ANN strategy in several food research studies, scarce information 
has been reported on the application and comparison of mathemat-
ical models to predict HRY and BR of grains (in particular parboiled 
rice) under different processing conditions. The traditional method 
of studying one modeling method at a time can be effective in some 
cases, but it will be more useful to consider combined methods of 
possible model predicting and optimizing effective parameters for 
biological or physical processes. The RSM, LR, and ANN methods, 
which are based on statistical principles, can be applied as tools to 
implement process improvement strategy that will drive optimal 
HRY and BR from a given paddy lot by performing a minimal num-
ber of experiments. In addition, optimizing of process using RSM in 
combination with factorial experimental design of Box– Behnken 
design is essential for fitting a quadratic surface, which works well 
for process optimization. It has been investigated the impact of vari-
ous parboiling processing conditions on rice characteristics by many 
researchers (Alkhafaji et al., 2020; Hunt, 2019; Likitrattanaporn & 
Noomhorm, 2011; Messia et al., 2012). Nevertheless, modeling and 
optimization of the processing of parboiled rice can improve the 
yield and its characteristics qualities. Meanwhile, different tools can 
be employed in modeling and optimization of experimental data for 
parboiling process. Such tools include RSM and ANN design, to men-
tion but a few. In previous studies, researchers have reported the 
use of one or two software applications (Dash & Das, 2019; Dash & 
Das, 2021). However, the use of the combination of all three RSM, 
ANN, and LR methods, in modeling and optimization of parboiling 
process of paddy (in particular Hashemi paddy cultivar) has received 
little or no attention from the researchers. Its main advantage is the 
ability to compare statistically various results obtained from each of 
the above- mentioned software applications and eliminate the dis-
advantages of using a single one. In addition, the comparison among 
three methodologies shows certain differences in overall accuracy, 
sensitivity, and optimal result.

Various parameters and evaluating “one- variable- at- a- time” 
could be time consuming, expensive, and inefficient. Thus, appli-
cation of process modeling approaches including RSM and ANN is 
required and beneficial for optimization and modeling of paddy par-
boiling conditions. As rice kernels are very fragile during processing, 
determining the parboiling condition is very critical and needs great 
optimization and care. The main goal of the present study was to 
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understand and compare the topography of the different methods 
(RSM, LR, and ANNs) in terms of fitting quality and optimization, to 
find a region where the most appropriate response occurs. A sim-
ilar comparing study that was specifically developed to determine 
the maximum HRY and BR for Hashemi paddy cultivar parboiled in 
different conditions of steaming time (zero, 5, 10, and 15 min), dryer 
type (solar and continuous dryers), and inlet drying air temperature 
(35, 40, and 45°C) has not yet been reported.

2  |  MATERIAL S AND METHODS

The Iranian local rice cultivar of Hashemi, which is classified as a tall 
grain rice, was applied for parboiling experiments at Biosystems lab-
oratory, University of Shiraz. After the harvesting process, the paddy 
was found to contain an initial moisture content of approximately 
28 ± 1 (% w.b.). Before the different steps of experiments were done, 
sealed plastic bags were used to keep the rice samples that have 
been stored at 4 ± 1°C in a refrigerator. In this study, parboiling of 
paddy grains was accomplished by the conventional method that 
consists of soaking, steaming, and drying processes. Paddy samples 
were soaked in hot water at 80°C for 1 h. Open steaming step was 
then conducted following draining of water. Two drying modes of 
passive solar and continuous method were employed for drying. 
Following the drying step, paddy grains were subjected to open 
aeration at room temperature for 1 week to reach a final moisture 
content of 11.5 ± 1°C. A testing rubber roll huller (Satake THU- 35A, 
Japan) was then applied to dehusk the dried paddy samples. Many 
studies on the mechanical properties of grains reported that bend-
ing strength and fracture energy are a proper criterion to determine 
the performance of rice kernels (Lu & Siebenmorgen, 1995). On 
the other hand, due to difficulty of tensile strength tests for rice, 
the best option for testing is bending test (Nassiri & Etesami, 2015; 
Zhang et al., 2005). A three- point bending test was conducted by 
the Instron Testing Machine (STM- 20 SANTAM, Iran) with a loading 

rate of 10 mm/s. In order to evaluate the sample breakage resistance 
in bending, two types of raw and parboiled dehusked samples (per 
type of 100 g of grain) were isolated by random selecting and then 
loaded by Instron jaw blades (Figure 1).

Generally, the HRY was introduced as weight percentage of 
grains three- fourths or more of whole grain (in terms of head rice 
yield) or weight percentage of husked paddy (in terms of rice- 
processing yield) to the total weight of milled rough rice (Farounk 
& Islam, 1995). In order to significantly improve the accuracy and 
acceleration of model performance, data value normalization was 
accomplished as follows (Lallahem & Mania, 2003):

 where Xnorm = normalized value, x = observed value, xmin = minimum 
values, and xmax = maximum values.

The measured data from these experiments were then used to 
optimize the design with all three RSM, ANN, and LR models with 
the objective of a maximal HRY and BR. Statistical comparison be-
tween the targets and predicted parameters was made using root 
mean square error (RMSE), mean absolute percentage error (MAPE), 
and the coefficient of determination (R2).

2.1  |  Linear regression (LR) model

Regression analysis is an effective statistical technique for examin-
ing parboiling pretreatment effects on mechanical properties of rice 
kernels. This approach is applied as a tool to estimate and model 
linear relationships (denoted by a best- fitted straight line) between 
variables and predict optimum response values using mathematical 
equations. Conventionally, the LR model is expressed as:

(1)Xnorm =
x − xmin

xmax − xmin

(2)y = b0 + b1x1 + … + bnxn + e

F I G U R E  1  Measuring the breakage 
resistance of rice in three- point bending 
test using Instron machine
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 where y = value of the dependent variable, xn = predictor variable, 
bn = coefficient value, e = observed error (uncontrolled factors and 
experimental error). The (bj) is model parameters determined by a re-
gression model.

2.2  |  Artificial neural network (MLP, RBF) models

Neural networks can be applied as a direct substitute for autocor-
relation, multivariable regression, LR, trigonometric, and other sta-
tistical analysis and techniques (Singh et al., 2003). Neural networks 
with respect to its unique aspects for pattern identify from compli-
cated data can be used to present solutions in complex problems 
that may not be previously applied by common computer methods. 
A trained neural network can be professionally exposed and mod-
eled a set of categorized data to compare, simulate, optimize, and 
analyze response variables in terms of favorite situations. In addi-
tion, a multi- layer network technique detects best patterns using 
information sets for data mining and forecasting. In order to expose 
optimal outputs of network, the main premise is selection of Neuron 
Model (Single- Input Neuron, Transfer Functions, and Multiple- Input 
Neuron) and Network Architectures (A Layer of neurons, Multiple 
Layers of Neurons, and Recurrent Networks) (Simpson, 1991). Multi- 
layer perceptron and radial basis function neural networks, as two 
of the neural architecture of ANN networks, can be used to simulate 
process outputs of regression problems with high accuracy (Kumar 
& Yadav, 2011; Lim et al., 2000). Radial basis function (RBF) com-
pared with multi- layer perceptron (MLP) is responsive only to a lim-
ited part of input space, but MLP has more distributed approach. 
In present study, the predictive performance of two different ANN 
architectures (MLP and RBF) was applied to the estimation of the 
BR and HRY. For the purpose of this study, the toolbox of ANN was 
applied to predict the nonlinear relationship between the input vari-
ables (steaming time, dryer type and drying air temperature) and 
the outputs (HRY and BR). The schematic of the ANN model used 
is presented in Figure 2. The data employed for experimental study 
were randomly divided into three groups: 70% in the training set, 
15% in the validation set, and 15% in the test set. The structure of 
the three- layer feed- forward network studied in this paper was built 
using three input variables and two output variables to select the 
best predictive model. Feed- forward back- propagation and algo-
rithm of Levenberg– Marquardt (TRAINLM) were used in developing 
the ANN architecture. Different number of neurons in the hidden 
layer ranging from 1 to 16 neurons and transfer function (Tansig and 
Logsig) was applied based on the trial method to develop the op-
timum ANN model that can minimize the deviations between the 
predicted and experimental results. Also, the output signal for ac-
curacy was determined by modifying the number of layers, weight 
sum of input variables, and bias during algorithm iterative until the 
ANN outputs were closer to the actual values. The best training 
performance of the developed ANN model was terminated at the 
lowest RMSE and highest determination coefficient (R2) for train-
ing set. Sanusi and Akinoso (2021) also reported a similar approach 

while modeling impact of process variables on brown rice quality 
and overall energy consumption (Sanusi & Akinoso, 2021).

2.3  |  Multi- layer perceptron (MLP) model

The MLP neuron network is known as a common architecture for 
neural networks. The MLP consists of node (neuron) layers (an input 
layer, a hidden layer, and an output layer). The MLP model used ac-
tivation function in all neurons to obtain an output by mapping of 
weighted sum of the inputs and bias terms. This arrangement pre-
sents a structure with feed- forward layered topology known as 
feedforward ANN (Alexandridis & Chondrodima, 2014). The MLP 
network is back propagated from an output layer to one or more hid-
den layers and, eventually, to an input layer, with a number of neu-
rons in each layer. It was known the neuron connection between the 
input layers and hidden layers as the input weight matrix and neuron 
relationship between hidden layers and output layers is identified as 
the output weight matrix (Zhao et al., 2009). Each node or neuron, 
after calculating the sum of weighted input signals (xj, for j = 1, 2,…, 
n), creates a nonlinear activation function to generate output signal 
y as (Zarein et al., 2019):

 The function of Sigmoidal feedforward artificial neural networks that 
satisfies this criterion is expressed as (Dawson & Wilby, 1998):

 By comparison of neural network error measures, we can estimate 
the performance of the network. Error can be determined based on 
the difference between the targeted and predicted outputs. The 
error function can be evaluated as in the study cited herein (Zarein 
et al., 2019):

 where k = element index in the output vector, zpk = the kth element 
of the pth target pattern vector, p = the training pairs index of vectors, 
and z'pk = the kth element of the predicted vector when pattern p is 
expressed as input to the network.

2.4  |  Radial basis function (RBF) neural network

In the field of linear and nonlinear data modeling, RBF model is 
based on supervised learning that commonly uses radial basis 
functions as activation functions. RBF networks is a popular al-
ternative because of its mathematical simplicity, the computations 
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relatively cheap, and also quick learning (learning in one stage) of 
the given application (Alexandridis & Chondrodima, 2014). This 
RBF neural network structure is similar to the MLP model except 
that it has a hidden layer with nodes as RBF units. Two main pa-
rameters of RBF model are location of the function's center and 
its deviation or width. The hidden unit determines the distance 
between an input data vector and the center of its RBF. The RBF 
gradually increased to a peak when the distance between the 
input vector x and its center vector declines to zero value. The 
output of the weights connecting the hidden layer to the output 
layer is a linear combination of RBFs of the inputs and neuron pa-
rameters that its processing is rapid (Foody, 2004). The output of 
RBF network is:

 where M = the number of basic functions, x = the input data vector, 
wkj = a weighted connection between the basis function and output 
layer, and Øj = the nonlinear function of unit j, which is typically a 
Gaussian form.

 where x = input of RBF unit, μ = the center of RBF unit, and σ j = the 
spread of the Gaussian basis function. Optimization of weights is done 
by least mean square (LMS) algorithm once the centers of RBF units 
are determined. In this study, centers were randomly selected from 
the data set.

2.5  |  Response surface methodology (RSM)

The RSM is an efficient procedure widely used for designing, op-
timizing, developing, and analyzing new scientific and existing 
products. The RSM presents criteria to evaluate the effect of in-
dependent variables, alone or in combination, on processes. In 
addition, the RSM makes it possible to predict the most precise 

response using compilation of mathematical methods (Farooq Anjum 
et al., 1997; Halim et al., 2009). In order to determine the optimum 
value, Equation (8) is applied:

 where ß0 = regression coefficients for intercept, ßi = linear coeffi-
cients, ßij = interaction coefficients.

ßjj = quadratic coefficients, Xi and Xj = coded independent vari-
ables and ε = error.

In this study, central composite design (CCD) was carried out 
with 22 run and three center points. The performances of the LR, 
MLP, RBF, and RSM models were compared using statistical parame-
ters of R2, MAPE, and RMSE as follows (Zarein et al., 2015):

 

 

 where z = the measured value, z' = the predicted value, N = the total 
number of observations (Armaghani et al., 2015; Garg et al., 2015).

R- squared (R2) value is a statistical measure that is commonly 
between zero and one, and illustrates the ability of a parameter to 
predict another parameter. The maximum value for MAPE (100) and 
the minimum value for RMSE (0) define the highest values for model 
performance. The MAPE is an index of accuracy ratio versus size of 
project that can be indicated based on percentage that can measure 
forecast accuracy. Good performance of the model is based on min-
imizing MAPE (Khoshnevisan et al., 2014). The present study used 
RSM combined with central composite design to investigate the 
effects of three identified factors (steaming time, dryer type, and 
inlet air drying temperature) on the response of paddy to parboiling 
process. Data were analyzed using IBM SPSS Statistics version 18.0 
(IBM), STATISTICA version 12.0 (StatSoft Inc.), and Design- Expert 
version 7.0.0.1 (Stat- Ease Inc.).
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F I G U R E  2  MLP and RBF neural 
network structure used in the study
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3  |  RESULTS AND DISCUSSION

3.1  |  Linear regression model

HRY and BR are among the key quality indices used by rice proces-
sors. Parboiled rice with high values of these factors could signify 
rice with potential market value. In this study, BR and HRY were 
considered as a function of steaming time, dryer type, and drying air 
temperature. Table 1 tabulates the coefficient of this function with 
t- ratio value and regression results for Equations 12 and 13. Results 
show that in terms of BR, it was detected significant changes be-
tween steaming times (p < .01), dryer type, and inlet drying air tem-
perature (p < .05). With respect to the obtained coefficients, it was 
known that an additional use of 1% for each of these inputs would 
lead to 1.092 increase in BR. The impacts of steaming time (p < .05), 
dryer type (p < .01), and inlet drying air temperature (p < .01) are sta-
tistically significant for HRY. The LR models for the prediction of BR 
(Equation [12]) and HRY (Equation [13]) are:

 

R- squared (R2) was applied to estimate the model's predictive 
performance for the measured and predicted values. Development 
of LR model for BR (R2 = .282) and HRY (R2 = .664) illustrated un-
suitable correlation for the relationships between the measured and 
predicted values as shown in Figure 3. A regression model in the 
form of a linear model was developed by Rao et al. (2007) that was 
related to all the variables in the thin layer drying experiments for 
parboiled rice. The linear model fitted well to the head rice yield val-
ues with a much higher coefficient of determination (R2 = .98). It was 
found from ANOVA that the temperature, velocity, and bed depth 
had a significant effect on HRY at the 5% level (Rao et al., 2007).

3.2  |  MLP model

In this study, several multi- layer perceptron networks with one or two 
layers and with 1– 20 neurons were executed, trained, validated, and 

generalized to determine the best function. It was chosen an efficient ap-
proach based on MLP Back Propagation Neural Network to build the pre-
diction models. MLP model runs by different steaming time, dryer type, 
and drying air temperature as input variables and the BR and HRY as out-
put variables. In the case of the final chosen model of MLP, the most suit-
able structure with one input layer, three input variables, one hidden layer 
with 7 neurons, and one output layer with one output variable (3- 7- 1 
structure) was selected. The predictive capability of the generated ANN 
models for HRY and BR was tested using unknown set of inputs data, 
and the predicted values and experimental values were plotted for HRY 
and BR as shown in Figure 4. With respect to observed cross- correlation 
among predicted and target values, it could be detected that MLP model 
was effective for the prediction HRY and BR of parboiled rice. Table 2 
indicates R2, RMSE, and MAPE values for prediction of models. Results 
exhibited satisfactory prediction performance for MLP method. The R2 
between the ANN experimental and predicted data for HRY and BR was 
0.983 and 0.981, respectively. This result showed that the predictive ac-
curacy of the ANN model for both output variables was high.

Behroozi- Khazae et al. previously investigated the possibility of 
application of the ANN approach with K- fold cross- validation along 
with the MVR to create reliable model of parboiling process of an 
Iranian rice variety with a small dataset. The highest value of R2 and 
lowest value of MSE for each MQ variables showed that the K- fold 
cross- validation and the ANN model can be used for modeling and 
predicting quality parameters of parboiling rice (Behroozi- Khazaei & 
Nasirahmadi, 2017).

3.3  |  RBF model

The RBF used a single- layer neural network to determine and model the 
network parameters. The transformation of input to output of the hidden 
layer cells takes place directly. This output cells multiplied by the weights 
entered a specific collector as the output of the neural network. Data 
used for network training were the one applied to generalize the MLP 
network. Actual values of the predicted BR and HRY variables are pre-
sented in the following scatter plots (Figure 5). R2, RMSE, and MAPE are 
indicated in Table 4. Based on achieved parameters of the final chosen 
model, the RBF model showed higher acceptability for the prediction of 
rice HRY (R2 = .986; RMSE = 0.041) and BR (R2 = .989; RMSE = 0.043) 
than that of the MLP ones. MLP, RBF, and ANFIS networks had been 
investigated to determine and predict percentage of swell of soil (S%) by 

(12)

BR = (0.225) S. T + ( − 0.159)Dryer type + ( − 0.182) Temperature + 0.491

(13)

HRY = ( − 0.109) S. T + ( − 0.187)Dryer type + ( − 0.454) Temperature + 0.846

TA B L E  1  Model summaries of the liner regression models for BR and HRY prediction

Independent variables

BR HRY

Coefficient Std.error t- value Coefficient Std.error t- value

Constant 0.491 0.072 6.827** 0.846 0.048 17.722**

Steaming time 0.225 0.079 2.864** −0.109 0.052 −2.084*

Dryer type −0.159 0.064 −2.479* −0.187 0.043 −4.386**

drying air temperature −0.182 0.079 −2.307* −0.454 0.052 −8.679**

Note: **,* Significant at 1 and 5% probability level, respectively.
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Yilmaz and Kaynar. Comparison of the results with the same by a mul-
tiple regression (MR) model showed that RBF performed much better 
than MLP, ANFIS, and MR for predicting the S percentage with lowest 
MAPE and RMSE and the highest R2 (Yilmaz & Kaynar, 2011).

3.4  |  Comparison of ANN models

The main objective of development of LR and ANN (MLP- RBF) 
models in this study was performance comparison of models to 
predict optimal BR and HRY. The observed results from linear re-
gression analysis indicated that relationship between the output 

and input parameters is statistically unacceptable. The prediction 
models were developed with three inputs and two outputs and the 
networks were independently evaluated for each output. The ana-
lytical processes of models for prediction of BR and HRY showed 
that the obtained equations from the MLP model provided rela-
tively satisfactory prediction performance. The predicted values 
by the RBF model with three inputs and one output exhibited 
higher reliability compared to the ones predicted by the LR and 
MLP models. In addition, the R2, RMSE, and MAPE values showed 
that the performance of RBF model was better than LR and MLP 
models for prediction. Most of the published papers reported that 
the RBF models outperformed the other models (Wu et al., 2004).

F I G U R E  3  Cross- correlation of predicted and actual values of BR (a) and HRY (b) for linear regression model

F I G U R E  4  Cross- correlation between predicted and actual values of BR (a) and HRY (b) for MLP

Model

BR HRY

R2 RMSE MAPE (%) R2 RMSE MAPE (%)

LR .282 0.227 86.859 .664 0.293 104.382

ANN- MLP .981 0.055 18.381 .983 0.045 10.492

ANN- RBF .989 0.043 17.583 .986 0.041 10.331

TA B L E  2  Performance indices (R2, 
RMSE, and MAPE) for different models
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3.5  |  Optimization and validation using RSM

A central composite design was successfully employed in this study to 
develop a relationship between rice performance characteristics (BR 

and HRY) and independent variables (steaming time, dryer type, and 
drying air temperature) in order to maximize the BR and HRY. The BR 
and HRY for both dryers was varied from 5.34 to 15.90 N and from 
29% to 70%, respectively. The maximum BR (15.14 N) and HRY (70%) 

F I G U R E  5  Cross- correlation between predicted and actual values of BR (a) and HRY (b) for RBF

TA B L E  3  Experimental process obtained for rice samples

Run
Steaming time 
(min) Dryer type

Drying air 
temperature (°C)

BR (N) HRY (%)

Predicted Obtained Predicted Obtained

1 15 1 40 10.04 7.49 63.48 56.30

2 0 1 40 10.93 10.71 52.69 47.70

3 15 1 45 8.81 6.61 36.10 28.70

4 10 1 35 8.62 8.14 33.67 30.70

5 10 1 40 3.81 5.34 36.58 40.70

6 15 1 35 10.70 9.70 51.38 53.00

7 5 1 45 12.61 15.14 66.32 79.00

8 5 1 35 10.84 13.28 43.12 54.00

9 10 1 40 12.65 12.50 62.92 62.00

10 10 1 45 12.65 12.50 62.92 59.00

11 10 1 40 12.65 12.90 62.92 61.00

12 10 2 40 12.04 12.38 71.49 67.70

13 10 2 40 12.17 13.95 52.49 57.00

14 5 2 45 11.57 11.69 42.09 40.30

15 10 2 40 10.61 12.78 31.43 35.70

16 15 2 40 6.58 6.48 47.70 50.30

17 15 2 35 12.32 8.63 50.16 41.00

18 10 2 45 14.23 12.34 70.23 69.00

19 10 2 35 13.21 11.16 44.99 42.00

20 0 2 40 14.65 15.70 65.81 68.00

21 15 2 45 14.65 15.90 65.81 67.00

22 5 2 35 14.65 15.66 65.81 70.00
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were obtained at steaming time of 10 min by continuous dryer and 
at drying air temperature of 40°C. The advanced multiple regression 
analysis was conducted to determine the polynomial equation with 
the full regression model coefficient. The following equations present 
significant terms extracted from the coded form of model:

 

where BR and HRY are breakage resistance and head rice yield, 
respectively. A, B, and C are the coded forms of steaming time (min), 
dryer type, and drying air temperature (°C), respectively. From the 
equation, the coefficient with one factor signifies the effect in an 
individual form while the coefficient which has two factors and 
second- order form signifies the interaction between them and their 
fourth route effect. The suffix symbols positive or negative (+/−) 
signifies the synergy and antagonistic effects, where the positive 
stands for synergistic effect and the negative stands for antago-
nistic effect (Joshi et al., 2008). Then the model was investigated 
by analysis of variance (ANOVA) that was conducted for fitting the 
model using Design- Expert software. ANOVA is an effective statis-
tical method, which bifurcates into individual roots and allows user 
to find the sum of all the data variation in the model with specific 
sources of variation (Srikanth et al., 2018). Thus, the model variation 
is given in Table 3.

Figure 6 indicates a relatively strong correlation between the 
predicted and experimental values of BR and HRY, with a high value 
of determination coefficient (R2) .984 and .999, respectively. A simi-
lar study was performed by Ogunbiyi et al. wherein the RSM method 
was exclusively used for optimization of HYR and broken rice ratio. 
Examination of the observed and predicted values of HRY confirmed 

that the model can sufficiently predict the HRY for the parboiling 
factors. The adequacy of the model was further confirmed by the 
determination coefficient (R2) and R2 (adjusted) values (Ogunbiyi 
et al., 2018). The three- dimensional response surface plot of graph-
ical interface for regression equation of reaction variables is shown 
in Figure 7.

The 3D plots were also designed to evaluate the interactive effects 
of the independent variables. It is designed by plotting the response 
variable (HRY and BR) on the z- axis against independent variables while 
maintaining other variables at their optimal levels. The 3D plots are 
helpful for understanding both main and other interactive effects of 
the three factors. Figure 7 shows the surface plots of rice performance 
characteristics. The interaction between two independent variables on 
BR and HRY parameter is illustrated in plots from (a) to (d). Interactions 
of each independent variable on the response variables are plotted in 
surface plots using regression equation. Plot (a,b) reveals the significant 
interaction effect between steaming time (min) and drying air tempera-
ture (°C) on the changes in the BR is clearly observable in the plot; that 
is, the BR at first increases significantly by increasing both steaming 
time and drying air temperature at both dryer types. Also, there is an 
exponential increase in BR for increase in steaming time at 10 min at 
both dryers. According to Figure 7a, the highest value of BR for the solar 
dryer was obtained as 15.14 N at a drying air temperature of 35°C. On 
the other hand, Figure 7b shows the highest value of BR for the contin-
uous dryer as 15.9 N at a drying air temperature of 40°C. The maximum 
increase of BR was found to be 183.5% and 145.4% for the solar and 
continuous dryer, respectively. Therefore, the continuous dryer showed 
more BR values compared to the solar dryer because of overturning the 
rice grain on continuous dryer bed. In addition, their local movement 
orbital motion of the grains on the seed bed increased their chances 
to aerate from all directions. Continuous bed provides the possibil-
ity of accelerating the drying rate than fix bed in solar dryer (Nassiri 

(14)BR = + 12.98 + 1.01A − 0.88B − 0.76C − 0.005AB + 0.17BC − 4.82A2

(15)HRY = + 0.61 − 0.032A − 0.55B − 0.13C − 0.002AB − 0.004BC − 0.11A2

F I G U R E  6  Actual values versus predicted values of BR (a) and HRY (b)

22
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Pr
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9.50
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16.00

3.81 6.83 9.86 12.88 15.90

(a)
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28.00

40.75
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28.70 41.27 53.85 66.42 79.00

(b)
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Number
Steaming 
time (min)

Dryer 
type

Temperature 
(°C) BR (N)

HRY 
(%) Desirability

1 9.62* 1* 36.88* 12.80* 67.3* 0.941*

2 9.60 1 36.84 12.78 67.1 0.940

3 9.57 1 36.81 12.75 66.8 0.938

4 9.54 1 36.77 12.72 66.5 0.937

5 9.49 1 36.73 12.68 66.3 0.935

6 8.77* 2* 36.97* 14.50* 72.07* 0.971*

7 8.74 2 36.94 14.47 72.02 0.970

8 8.71 2 36.92 14.45 71.96 0.969

9 8.69 2 36.87 14.43 71.91 0.966

10 8.65 2 36.85 14.41 71.87 0.965

*Significant at 1% probability level.

TA B L E  4  Predicted conditions to reach 
optimum rice performance characteristics

F I G U R E  7  RSM surface plots of BR and HRY: (a,c) solar dryer and (b,d) continuous dryer
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& Etesami, 2011). Plot (c,d) presents the nature of steaming time and 
drying air temperature on the HRY. In addition, it can be observed a pro-
portional increase in the HRY as the steaming time increases, whereas a 

slight increase can be seen when the drying air temperature is increased 
at 10 min steaming time and drying air temperature of 35°C and 40°C 
for solar and continuous dryer, respectively. According to Figure 7c, the 
highest value of HRY for solar dryer was obtained as 68.7% at a drying 
air temperature of 35°C. On the other hand, Figure 7d shows the high-
est value of HRY for continuous dryer as 70% at a drying air tempera-
ture of 40°C. The maximum increasing of HRY was found to be 139.4% 
and 96.1% for solar and continuous dryer, respectively. Thus, the con-
tinuous dryer showed more HRY values compared to the solar dryer 
because of more bending strength of rice grains dried by the continu-
ous dryer. This phenomenon occurs due to alternative heating periods 
while unloading and reloading the dryer. Dong et al. (2010) reported 
that tempering has a significant influence on the moisture content gra-
dient in kernels. Tempering reduces heat fluxes and avoids crack devel-
opment within kernels, resulting in increased HRY (Dong et al., 2010). 
Eventually, to reach the optimization condition to maximize the BR and 

F I G U R E  8  Optimization results based on desirability: (a) solar dryer and (b) continuous dryer

TA B L E  5  Verification criteria of optimized responses based on 
error percentage

ST (min)
Temp 
(°C) DT Value BR (N)

HRY 
(%)

9.62 36.9 SD Actual 13.73 68.1

predicted 12.80 67.3

Error (%) 6.77 1.17

8.77 37.0 CD Actual 15.37 72.9

predicted 14.50 72.1

Error (%) 5.66 1.10

Abbreviations: CD, Continuous dryer; SD, Solar dryer.
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HRY values, the predicted conditions are as given in Table 4. The opti-
mum values of BR and HRY were obtained as 12.80 N and 67.3%, re-
spectively, at 9.62 min and 36.9°C for the solar dryer with a desirability 
of 0.941. In addition, the same values were obtained as 14.50 N and 
72.1%, respectively, at 8.77 min and 37.0°C for the continuous dryer 
with a desirability of 0.971. Separate and combined optimized solutions 
for each response with their desirability are shown for the solar dryer 
(Figure 8a) and the continuous dryer (Figure 8b). The best output was 
related to the HRY and BR for solar and continuous dryers, respectively. 
A test was performed comparing the optimized BR and HRY values 
with their actual values to assess the validation for both dryers. The 
responses showed the low error rates (under 10%). Table 5 indicates the 
optimization responses. The results showed that RSM could adequately 
model the rice parboiling process for maximum HRY and BR. The model 
successfully defined the degree of influence of each studied variable 
on the response variable. Therefore, RSM can be used to optimize the 
parboiling process for optimum HRY and BR. Danbaba et al. (2014) 
used RSM involving central composite design (CCD) to study the ef-
fects of soaking temperature, steaming time, and drying time on the 
HRY of parboiled rice. The coefficient of determination R2 and adjusted 
R2 were .97 and .91, respectively, indicating the appropriateness of the 
model equation in predicting head rice recovery when the three pro-
cessing variables are mathematically combined (Danbaba et al., 2014). 
Prediction of HRY and BR under various processing conditions can be 
improved to commercial production quality and effective policymakers 
and other decisionmakers in the field of rice production. In this study, 
the high R2 and low RMSE values for the HRY and BR variables showed 
that the ANN and RSM models can adequately predict and optimize 
the outputs, but more experimental data need to be gathered to obtain 
better accuracy of these parameters. In addition, it can be tested the 
accuracy of other modeling methods such as adaptive network- based 
fuzzy inference system and support vector regression to analyze rice 
parboiling process.

4  |  CONCLUSIONS

This study aimed at developing LR, MLP, and RBF models to predict 
and determine optimal output variables (BR and HRY) of Hashemi 
cultivar rice under different parboiling condition (steaming time, 
dryer type, and inlet drying air temperature). Several conclusions 
were drawn as follows:

1. Development of LR model for BR (R2 = .282) and HRY (R2 = .664) 
illustrated unsuitable correlation for the relationships between 
the measured and predicted values. The impacts of steaming 
time, dryer type, and inlet drying air temperature are statis-
tically significant for HRY and BR (p < .05).

2. The coefficient of determination was applied to estimate the 
predictive performance of the ANN models for the measured 
and predicted values. The R2 values were determined as .983 
and  .981 for BR and HRY, respectively. This result showed that 
the predictive accuracy of the ANN model for both output 

variables were high. With respect to observed cross- correlation 
among predicted and target values, it could be detected that 
MLP model was effective for predicting HRY and BR of par-
boiled rice.

3. It is concluded that RBF can provide a useful predictive tool for 
the estimation of rice HRY and BR parameters. Based on achieved 
parameters of the final chosen model, the RBF model shows 
higher acceptability for the prediction of rice HRY (R2 = .986; 
RMSE = .041) and BR (R2 = .989; RMSE = .043) than that of the 
MLP ones. It can be observed that RBF network can be used with 
almost the same accuracy and higher efficiency to model and pre-
dict output data than the MLP models.

4. The optimum values of BR and HRY were obtained as 12.80 N and 
67.3%, respectively, at 9.62 min and 36.9°C for solar dryer with 
desirability of 0.941. In addition, the same values were obtained 
as 14.50 N and 72.1%, respectively, at 8.77 min and 37.0°C for the 
continuous dryer with a desirability of 0.971. From the results, it 
can be concluded that RSM can adequately model rice parboiling 
processing for maximum HRY and BR.

5. In general, results indicated that RSM, LR, and ANN could be suc-
cessfully used to describe experimental data. All methods exhib-
ited certain advantages, that is, ANN showed minor advantage of 
fitting quality, while RSM provided further insights into optimiza-
tion of parboiling conditions.
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