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Abstract: The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all
organisms, however bacterial ligases essential for DNA replication use 3-nicotinamide adenine
dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use
adenosine-5'-triphosphate. This fact leads to the conclusion that NAD"-dependent DNA ligases in
bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative
medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due
to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli
strains. Here, through the use of a virtual high-throughput screen and manual inspection of the
top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were
evaluated in respect to their Mycobacterium tuberculosis NAD* DNA ligase inhibitory effect by a newly
developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide,
mitonafide) inhibited the activity of M. tuberculosis NAD*-dependent DNA ligase A at concentrations
of 50 pM. At the same time, the ATP-dependent (phage) DNA LigT4 was unaffected by the agents
at concentrations up to 2 mM. The selected compounds appeared to also be active against actively
growing tubercle bacilli in concentrations as low as 15 uM.
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1. Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a leading infectious disease
factor, responsible for 1.5 million deaths each year. The pathogen has spread extensively worldwide
and there has been a constant increase in the number of multi-drug- and pan-drug-resistant Mtb strains
in recent years [1,2]. Multidrug-resistant TB (MDR-TB) is caused by bacilli that are insensitive to
the most effective drugs against TB (isoniazid and rifampicin). MDR-TB infection can result from
either infection with a drug-resistant microorganism or resistance acquired during treatment. MDR
tuberculosis is now widespread throughout the world, with approximately half a million cases reported
in 2013 [3]. Moreover, an unsettling number of infections with extensively drug-resistant tuberculosis
strains (XDR-TB) have recently been reported; these strains, in addition to harboring resistance to
isoniazid and rifampicin, are insusceptible to second-line anti-TB drugs such as fluoroquinolone,
amikacin, kanamycin or capreomycin [4,5].
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These two drug-resistant types of tuberculosis are extremely difficult to cure, as they do not
respond to the standard six-month treatment. The length of therapy can exceed two years and requires
application of expensive and toxic drugs. Once the tubercle bacilli acquire resistance, they can transmit
from an infected host to new host in the same way as drug sensitive TB. Among the 480,000 people
diagnosed with MDR-TB in 2013, approximately 9.0% suffered from the XDR-TB form. In response, in
2014 alone, nearly 2 billion USD were spent on the prevention, diagnosis and treatment of MDR-TB [3].

The increasing frequency of MDR/XDR-TB including pan-drug-resistant TB cases, the long
duration of antituberculosis therapy, and the serious side effects of second-line antituberculosis drugs
have made it clear that novel anti-TB agents are urgentely required [6]. New regimens for MDR or XDR
tuberculosis that are more tolerable and more effective are necessary. The new anti-TB drugs should
have several characteristics, namely a good safety profile, higher potency than existing drugs, a shorter
required duration of therapy, effectiveness in treating MDR and XDR strains and no antagonistic
activity against other tuberculosis drugs [7]. An antibacterial enzyme target should be essential for the
microorganism and not present in the host (for a recent review see Plocinska et al., [8]).

One such candidate is DNA ligase, an indispensable constituent in all organisms due to its
critical role in DNA replication [9]. DNA ligase catalyzes phosphodiester-bond formation between
immediately adjacent 5'-phosphate and 3'-hydroxyl groups in single- and double stranded DNA
and plays a central role in DNA metabolism. The ligation reaction involves formation of a covalent
enzyme-adenylate intermediate using either NAD" or ATP as the adenylate group donor (for more
details see a recent review by Pergolizzi et al. [10]). Eukaryotic cells utilize ATP-ligases, including
ligase I, which seems to be essential for joining Okazaki fragments at the replication fork. Prokaryotic
cells carry either the NAD" ligase, as in Escherichia coli and Salmonella Typhimurium, or both
NAD™*- and ATP-dependent ligases, such as in Mtb and Streptomyces coelicolor [11-14]. However,
only the NAD*-dependent ligase of Mtb is essential for viability, even in an ATP-dependent
ligase-overproduction background [9].

An essential nature of the NAD*-dependent ligases for bacterial viability make them a possible
target for novel anti-bacterial drugs. Consequently, a number of NAD"-dependent DNA ligase A
inhibitors has been described [15-28] and are active against a range of bacteria, such as: E. coli, S. aureus,
S. Typhimurium, Bacillus subtilis, Enterococcus faecalis, Thermus filiformis, Streptococcus pneumoniae,
Mycoplasma pneumoniae, Haemophilus influenzae as well as M. tuberculosis [17-20]. Some of the
published research operations were impressive-including a screen of 850,000 compounds, followed by
optimization and toxicity tests on rats and dogs [22,23,28].

Interestingly, even these extensive experimental efforts eventually had to be accompanied by
rational (structure guided) design to achieve the necessary results [23,28]. Many additional examples
of structure guided design of NAD*-dependent ligase A inhibitors exist [25-27]. Systematic efforts
to design new Lig A inhibitors based on structural information and theory have been presented by
the Srivastava group [17-19]. In these presented studies, the authors follow a very similar procedure
involving classical, freely available docking software and rigid structures of DNA LigA, which included
PDB-1TAE from E. faecalis, [17-19] PDB-1ZAU from M. tuberculosis modeled on PDB-1TAE, [18,19]
human ATP-dependent ligase I PDB-139N and homology model of viral T4 Lig based on T7 DNA
ligase PDB-1A0I [18,19]. Additionally, in one of these studies [19] the group presents an interesting
analysis of conserved water clusters in crystal structures of the adenylation domain in LigA from
B. subtilis, E. faecalis, T. filiformis and M. tuberculosis. This type of information has previously been
shown to be of great importance for rational drug design. Two of the most popular options for the
analysis include replacing the water oxygen with another polar atom from an inhibitor or the insertion
of polar groups within the inhibitor in locations that increase the chances of forming a water-mediated
contact with an enzyme-binding site [29-32]. The data included in the above-mentioned studies is
complemented by thirteen NAD"-dependent LigA crystal structures that have been deposited into
the Protein Data Bank [33]. However, none of the published studies has presented a pharmacophore
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of the active site. Moreover, no scientific article has demonstrated the activity of a compound in
M. tuberculosis culture.

2. Results

2.1. Virtual High Throughput Screening

The study started with a virtual high-throughput screen, as described in the Methods section.
Because classical scoring functions suffer from a wide range of shortcomings, [34,35] manual inspection
of a number of the highest scored ligands is generally required. In this case, the top 200 records were
checked, and the most promising ligands were selected based on such factors as the degree of ligand
burial within the protein binding pocket or likeliness of adopting a specific conformation. In many
cases, compounds were docked onto the enzyme’s surface, and the majority of the compound was
located outside the protein’s active pocket. These cases were discounted, and ultimately, 23 compounds
were selected for in vitro studies. These 23 compounds were also filtered against known Pan Assay
Interference Compounds (PAINS) structure filters, with no match returned.

2.2. Ligation Assay Development

To study the inhibitory effect of in silico-selected compounds on NAD"-dependent DNA ligases,
a high-throughput assay was required. An Applied Biosystems Genetic Analyzer 3500 Sequencer
and its snap-shot protocol were applied to monitor the ligation efficiency of a double-stranded DNA
40-bp substrate carrying a single-strand nick between bases 18 and 19 (see Supplementary Materials
Figures 51-54 for details). The selective inhibition of the bacterial ligase required a compound that is
active against NAD"-dependent but not ATP-dependent DNA ligase, which is an essential eukaryotic
enzyme. Therefore, the developed ligation assay was based on two bacterial NAD"-dependent DNA
ligases (from M. tuberculosis and E. coli) and an ATP-dependent ligase from the bacteriophage Ty.
The Mtb LigA was expressed and purified as described previously [9]. Both the E. coli and T, enzymes
were obtained from commercial sources. The amount of Mtb LigA protein, the temperature and the
reaction time were standardized in the ligation assay (for details, see Figures 52-54, respectively, in the
Supplementary Materials). The final ligation protocol applied for all experiments is described in the
Methods section. Several ligation assays have been employed by other groups, which mainly differ
with regard to the product detection method. The early protocols used a radioactive substrate that was
analyzed on a polyacrylamide gel [18]. More recently, a fluorescent marker has been used in place of
the radioactive marker [36]. Ligase activity has also been determined by a plasmid recircularization
assay and by luminescent detection of AMP [16].

2.3. The In Vitro Inhibitory Activity of Selected Compounds

The inhibitory activity of compounds selected by virtual (in silico) screening was tested in the
ligation assay described above. All chemicals were dissolved in DMSO (dimethyl sulfoxide) and added
in a various concentrations into the ligation reactions carrying bacterial (NAD"-dependent) and T4
(ATP-dependent) ligases. DMSO in a final concentration of 10% was used as a control to exclude any
inhibitory effect of DMSO. None of the tested compounds inhibited the activity of ATP-dependent Ty
ligase at concentrations up to 2 mM. Seven out of 23 tested chemicals appeared to inhibit the activity
of bacterial ligases, including K2 (pinafide) and M2 (chetochromin), at concentrations as low as 50 uM
(for details, see Tables S1-S9, Supplementary Materials). The remaining sixteen in silico-selected
compounds, were not able to effectively inhibit the activity of bacterial ligases at concentrations of
2 mM. The experimental vs. predicted inhibitor potencies are presented in Figure 1.
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Figure 1. Experimental vs. predicted inhibitor potency. x-axis: experimental score, y-axis: theoretical

4 5
Experimental

score. Red squares-after the docking; Blue stars-after the docking and QM SP energy calculation

(M062X/6-31g(d)); Green dots-after the docking, MM minimization and QM SP energy calculation

(M062X/6-31g(d)).

2.4. Pinafide and Mitonafide Inhibition of Mtb Growth

40f10

The most active compound identified was K2, which completely inhibited the activity of
mycobacterial ligase (LigA) and inhibited 90% (minimal inhibitory concentration, MICgg) of E. coli
ligase activity at a concentration of 50 pM. K2 showed no effects on the activity of Ty ligase at
these concentrations and was selected for the bacterial growth inhibition study. The Mtb culture was
supplemented with various concentrations of K2, and the growth was monitored by measuring the
optical density (ODgqp) and colony-forming units (CFU). The growth of Mtb was inhibited by more
than 90% (MICgy) in the presence of 25 uM of K2 and by more than 50% (MICsp) in the presence of
15 uM of K2 (Figure 2A). A similar Mtb inhibitory effect was observed for mitonafide (Figure 2B).
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Figure 2. Time-dependent viability of M. tuberculosis at various concentrations of the compound

K2-300289 (A) and mitonafide (B).

It was observed in a control experiment that DMSO concentrations of up to 1% do not affect the
growth of Mtb. We also analyzed the growth of Mtb in the presence of the first-line antimycobacterial
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drug rifampicin. The growth of Mtb was inhibited at a rifampicin concentration of 24 pM. The inhibitors
of LigA selected by other groups [15-17] were not tested on the culture of Mtb; however, some of these
inhibitors were active against tested gram-positive and gram-negative bacteria [22,25-28]. Compounds
that are potent against an essential enzyme of Mtb might be not active against alive bacteria (especially
mycobacteria) due to factors such as intracellular modifications, exclusion by cell wall barriers, or
removal from the cell by efflux systems. For example, suramine efficiently inhibited the activity of
Mtb-DnaG (an essential primase) but was not able to inhibit the growth of tubercle bacilli [37]. Thus,
the chemicals selected in this study require improvement to be considered putative anti-Mtb drugs;
however, K2, M2 and mitonafide all seem to be interesting molecules for further study.

3. Discussion

Here, we had followed a combined in silico; in vitro; in vivo study which led to the identification
of naphthalimides as new antituberculosis agents. Pinafide, K2-300289, was identified by virtual and
in vitro screening of M. tuberculosis DNA LigA inhibitors. As identified by the in vitro assay, this
compound was able to inhibit the activity of bacterial NAD*-dependent DNA ligases (in concentration
of 50 uM-MICyg) but not the ATP-dependent (phage) variant of the DNA LigT, which was unaffected
at concentrations of the agent up to 2 mM. Pinafide was able to affect bacterial DNA replication,
leading to death (MICsg) of M. tuberculosis cells growing in a rich medium at doses as low as 15 pM.
Given the encouraging experimental results obtained for pinafide, we have decided to test it close
analogue-mitonafide. The compound seemed an interesting candidate due to a lack of a cyclohexane
ring, which, according to our spatial model, could have had introduce some repulsive interactions.

This compound also displayed a bactericidal effect against actively growing tubercle bacilli
in a concentration of 15 pM. Amonafide (4-aminobenzoisoquinolinedione) [C14H17N303] and its
structural analog mitonafide have been shown to intercalate with DNA and inhibit both DNA
and RNA synthesis [38]. It was also demonstrated that these drugs stabilize Topo II-cleavable
complexes in vitro [39]. The mitonafide analogs demonstrated selective targeting of leishmanial nuclear
topoisomerase II and human topoisomerase II and differential targeting of kinetoplast over nuclear
topoisomerase II in the parasite. Mitonafide analogs appeared to have multiple mechanisms of action
leading to death of leishmanias [40]. The binding of DNA and DNA strand brakes formation was
also noted for this compound [41]. Mitonafinde was also patented as an anti-angiogenic agent [42]
and has shown antineoplastic activity in vitro and in vivo [43]. This is the first time naphthalimides
have shown activity against bacterially replicative ligases and M. tuberculosis cells. This is also the first
study in which inhibition of LigA was shown to be sufficient to cause the death of M. tuberculosis cells.
The other compound identified by virtual screening as bacterial DNA ligase inhibitor, with activity
confirmed by an in vitro assay, was M-2, chaetochromin. M-2 was able to inhibit selectively bacterial,
replicative DNA ligases in concentration of 50 uM. Chaetochromin is a natural compound produced by
fungus Chaetomium globosum. Chaetochromin was patented as an HIV integrase inhibitor [44]. It was
also reported by Kong and colleagues [45] that aromatic polyketides mixture from a sponge-derived
fungus Metarhizium anisopline containing isochaetochromin B2 as well as purified isochaetochromin B2
exhibited activity against fast growing non-pathogenic mycobacteria M. phlei with MIC: 50.0 pug/mL.
However, the activity of isochaetochromin B2 against tubercle bacilli was not investigated.

During the extensive computational procedure, the following contacts were identified as being
crucial for binding of K2-300289 to LigA: GLU 87 (—488 k] /mol), GLU 121 (—127 kJ/mol), LEU 238
(—41 kJ/mol), GLU 239 (—31 kJ /mol), GLN 307 (—22 k] /mol). At the same time, molecular contacts
with AAs: ARG 308 (117 k] /mol), ARG 182 (102 k] /mol), Lys 300 (80 k] /mol), HSD 240 (26 k] /mol)
were identified to destabilize the protein (Figure 3, see Supplementary Materials Tables S10-S35 for all
the calculated values). Most importantly, the simplicity of the drug-lead K2-300289 structure leaves
plenty of space for potential modification. Such modifications (random or rational) should sustain the
inhibitory effect against bacterial, replicative DNA ligases as well as bactericidal activity to obtain a
compound effective in nanomolar concentrations.
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(A) GLU 87

*(G) HSD 240

(D) GLY 239

(E) GLN 307
(C) LEU 238 A=(0.0, 0.0, 0.0)
K2-300289 B=(-2.7, -8.5, -16.4)
C=(4.8, -3.3, -7.1)
D=(3.7, -1.9, -4.0)
' E=(-1.2, 4.4, -11.8)
(B) GLU 121 F=(0.6, 10.5, -9.9)
G=(5.4, 0.5, 0.2)

Figure 3. Common contacts across the training set. (A) Compound K2-300289 and the amino acids
forming the conserved contacts; (B) Pharmacophore. The spheres represent the amino acids forming
contacts with the ligands and are centered at their centers of mass (COM). The sphere radius is
equal to the maximum distance between the amino acid COM and one of its atoms. The attractive
AAs were colored in green, the repulsive in blue. A =(0, 0, 0); RA =3.5; B =(-2.7, -85, —16.4);
RB=3.7,C=(48,-33,-7.1);RC=3.6;,D=(3.7, 1.9, —4.0); RD=2.1; E=(-1.2,44, —11.8); RE=4.3,
F=(0.6,10.5, —9.9), RF=5.1, G = (6.4, 0.5,0.2), RG = 3.7. All coordinates are given in Angstroms.

4. Materials and Methods

4.1. Bacterial Strains and Growth Conditions

The M. tuberculosis H37Rv strain was grown at 37 °C on Middlebrook 7H10 medium supplemented
with OADC (Difco, Becton, Dickinson and Company Sparks, Baltimore, MD, USA). The liquid cultures
were grown in Middlebrook 7H9 broth (Difco) supplemented with OADC.

4.2. Growth Inhibition Assay

To determine the inhibitory concentration, the Mtb liquid cultures (ODgy = 0.1) initiated with
bacteria being in logarithmic phase (ODgg = 1.0) were supplemented with various concentrations of
pinafide (K-2) and mitonafide. Compounds were dissolved in dimethylsulfoxide (DMSO) and added
directly to the growth medium; the final concentration of DMSO in the medium never exceeded 0.1%
(v/v) and had no effect on the growth of Mtb. The inhibitory growth effect was determined based on
cells density (ODggg) and colony-forming units (CFU) 0, 24, 48, 72, 96 h after supplementation of Mtb
cultures with pinafide in comparison to a control (without pinafide) culture. Colonies were counted
after 4 weeks of incubation at 37 °C.

4.3. Cloning, Expression, and Purification of Protein

Cloning and purification of a recombinant form of M. tuberculosis LigA has been described
previously [9]. Note that this protein contains a 10-His tag within an extra 21 amino acids (2.5 kDa)
at the N-terminus. M. tuberculosis LigA was purified using nickel affinity chromatography (His-Bind
column from Novagen, San Diego, CA, USA). After concentrating, using Ultra 4 mL concentrators
(Amicon, Tullagreen, Carrigtwohill Co., Ireland) with a 30,000 molecular weight cut-off PES membrane,
protein sample concentrations were determined using the BCA method (Bio-Rad Protein Assay).
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4.4. Preparation of DNA Substrate

A double-stranded 40-bp DNA substrate carrying a single strand nick between bases 18 and 19
was used as the standard substrate in the ligation assays. This substrate was created in STE buffer by
annealing an 18-mer (5'-Tamra gtaaaacgacggccagtg-3') and a 22-mer (5'-Pho-aattcgagctcggtacccgggg-3')
to a complementary 40-mer (5'-ccccgggtaccgagetegaattcactggeegtegttttac-3'). The 18-mer contained a
Tamra molecule attached at the 5" end, and the 22-mer was phosphorylated at the 5" end. Equimolar
amounts of three complementary oligonucleotides were annealed using a DNA thermal cycler (Applied
Biosystems, Waltham, MA, USA) with a denaturation step of 95 °C for 5 min; then, the temperature
gradually decreased by 1 degree per minute to 20 °C. The resultant 40-bp substrate was cooled to 4 °C
and stored at —20 °C.

4.5. Analysis of Ligation Assay

The nicked 40-bp substrate was used for in vitro ligation assays. Generally, reaction mixtures
(10 pL) containing the Tamra-labelled substrate (10 M), enzyme (LigA Mtb—8.7 ng/uL; for control
LigA E. coli—1 U/uL and lig T4 2.5 U/pL) and ligation buffer (18 mMTris (pH 8.3), 4.6 mM MgCl,,
3.8 mM dithiothreitol, 0.15 mM NAD™*, 90.6 mM KCl, 10 mM (NH,),SO,4 were incubated at 16 °C for
1 h. After ligation, 1 uL ligation mixture, 1 uL LIZ120 size marker (Applied Biosystems) and 18 uL
formamide (Applied Biosystems) were denatured for 5 minutes at 95 °C, then quickly cooled on ice.
The samples were applied to the 96-well plate and analyzed using a Genetic Analyzer 3500 sequencer
(Waltham, MA, USA) and the snap-shot method.

4.6. Chemicals

The putative inhibitors of LigA including NSC5856-V1, NSC37553-Z1, NSC211490-O2,
NSC270737-N1, NSC281816-G3, NSC298892-Q1, NSC300289-K2, NSC345647-M2 were obtained from
National Cancer Institute, Chemotherapeutic Agent Repository, Rockville, MD, USA. All compounds
were dissolved in DMSO to concentrations of 20 mM before use.

Synthesis of pinafide (K2, 3-nitro-N-(2-(1-pyrrolidinyl)ethyl)-1,8-naphthalimide) and mitonafide
(3-nitro-N-(2-(dimethylamino)ethyl)-1,8-naphthalimide) was performed according to the literature
procedure [38]. The synthesis was carried out by nucleophilic addition of the amine corresponding
to the required side chain. The selected amine dissolved in absolute ethanol was combined with
3-nitro-1,8-naphtalic anhydride in the same solvent. The solid formed was filtered, crystallized and
recrystallized with hot ethanol.

4.7. Docking

The docking procedure was carried out using the AutoDock 4.2 suite [46] and the standard
Lamarckian Genetic Algorithm (LGA), with a slightly modified parameter set [47,48], i.e., population
size of 300, 5,000,000 energy evaluations, and 27,000 generations. To account for a high flexibility of
the NAD"-dependent DNA LigA, two different rigid receptor structures were used, which aimed
to represent the most important meta (stable) conformations [49]. Among 13 crystal structures of
NAD*-dependent LigA deposited at the Protein Data Bank [33] two (reference numbers: 1ZAU13 and
35SGI) are the M. tuberculosis enzymes. Because the atom coordinates of the adenylation domain were
almost identical in both cases (all atom RMSD below 1.2 A), the decision was made to screen ligands
against a structure obtained at a slightly higher resolution (3.15 A vs. 3.5 A) i.e., 1ZAU. This structure
represents the “open” enzyme conformation, in which domain 1a is not evolved in the cofactor binding.
The second structure was a model of M. tuberculosis LigA based on crystal structure of LigA from
E. faecalis in the “closed” state (PDB code 1TAE35). In this structure domain 1la comes on the top of
domain 1b and plays an active role in the NAD complexation. The model was build using the Modeller
package [50]. In both cases the grid box covered a whole available cavity, formed either by the domain
1b alone or by the domain 1b together with domain 1a. The receptor structures were screened against
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a library of 1592 structures from the National Cancer Institute Diversity Set 1148 downloaded via the
ZINC database [51].

Supplementary Materials: Supplementary materials can be accessed at: http:/ /www.mdpi.com/1420-3049/22/
1/154/s1.
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