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Abstract

Estuaries cover ,1% of marine habitats, but the carbon dioxide (CO2) effluxes from these net heterotrophic systems
contribute significantly to the global carbon cycle. Anthropogenic eutrophication of estuarine waterways increases the
supply of labile substrates to the underlying sediments. How such changes affect the form and functioning of the resident
microbial communities remains unclear. We employed a carbon-13 pulse-chase experiment to investigate how a temperate
estuarine benthic microbial community at 6.5uC responded to additions of marine diatom-derived organic carbon
equivalent to 4.16, 41.60 and 416.00 mmol C m22. The quantities of carbon mineralized and incorporated into bacterial
biomass both increased significantly, albeit differentially, with resource supply. This resulted in bacterial growth efficiency
increasing from 0.40±0.02 to 0.55±0.04 as substrates became more available. The proportions of diatom-derived carbon
incorporated into individual microbial membrane fatty acids also varied with resource supply. Future increases in labile
organic substrate supply have the potential to increase both the proportion of organic carbon being retained within the
benthic compartment of estuaries and also the absolute quantity of CO2 outgassing from these environments.
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Introduction

Estuaries are net heterotrophic systems [1,2] and represent a

significant source of CO2 to the atmosphere: Regional-scale estimates

suggest that European estuaries represent 5–10% of Western Europe’s

anthropogenic CO2 emissions [3]. The exact contribution of estuaries

to the global atmospheric CO2 emissions remains contentious, but

estimates range between 0.25–0.45 Pg C y21 [2,4]. Bacteria play a

pivotal role in the mineralization of organic matter along estuaries,

with CO2 emissions from these ecosystems originating principally

from bacterial respiration [2,5]. They are also fundamental for

mediating changes in the nitrogen cycle [6], and thereby influence the

availability of key nutrients for primary producers. It follows that

understanding the processes controlling microbial mineralization in

estuarine waterways is a prerequisite for predicting the future role of

this habitat in global elemental cycles and thus climate regulation.

Estuarine sediments can efficiently bury organic matter, sequestering

both carbon and nitrogen from the atmosphere [1,7,8]. A deeper

appreciation of estuarine biogeochemistry is therefore also required if

we are to forecast how the production and storage of organic matter in

coastal ecosystems will be affected by further anthropogenic change.

Agricultural practices and human wastewaters both contribute

significantly to the eutrophication of rivers and coastal systems

[9,10], resulting in a greater supply of labile organic substrates to the

seabed. Work conducted on bacterioplankton communities has

demonstrated that the rates and efficiencies with which they grow are

both positively related to substrate availability [11–13]. A positive

relationship between benthic estuarine mineralization rates and

carbon input also exists when multiple locations are considered [1].

Far less is known about how increased organic matter supply affects

benthic microbial community structure and function within a single

estuary. Indeed, estimates of estuarine benthic bacterial growth

efficiency (BGE) and the factors controlling it are scarce [14]. We

used a carbon-13 (13C) tracer study to explore the hypothesis that

substrate quantity affects the composition and short-term metabolic

response of the benthic bacterial community in a temperate estuary.

Increasing quantities of 13C-labelled diatoms were added to hand-

collected sediment cores, allowing us to quantify the amounts of

diatom-derived carbon that were mineralized and incorporated into

benthic bacterial biomass during the experiment. Our results

demonstrate that carbon mineralization, bacterial biomass produc-

tion and BGE are all coupled to the supply of labile substrates,

illustrating that resource quantity plays a key role in controlling the

short-term fate of organic matter in temperate estuarine sediments.

Materials and Methods

Study Site and Sediment Collection
The experiment was conducted on natural whole-sediment

communities retrieved from the tidal mudflats in the lower reach
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of the Ythan Estuary, Aberdeenshire, Scotland, UK (57u20.0859N,

02u0.2069W). All necessary permissions for work on the Ythan and

Forvie National Nature Reserve were obtained from Scottish

Natural Heritage. The sediments at the experimental location

have a mean particle diameter of 50 mm [15] and contained 1.5%

organic carbon by dry weight in the upper 1 cm. A total of 12

Perspex cores (10 cm ID6600 mm length) were inserted 12 cm

into the sediments by hand at low tide and the resulting material

retrieved. All sediment cores were transferred to a temperature

controlled laboratory, set at the in situ temperature of 6.5uC,

within 30 minutes of collection. Each core subsequently received

3.8 L of UV-sterilized, 10 mm filtered seawater previously

collected from the estuary at high tide (,33 psu).

Experimental Setup
The experiment consisted of four treatments, with three

replicates of each: Control (no substrate addition), low-, medi-

um-, and high-quantity of organic material. Sediments in the latter

three treatments received the equivalent of 4.16, 41.60 and

416.00 mmol organic carbon m22 respectively in the form of a
13C-labelled marine diatom, Chaetoceros radicans (49.4±0.3 atom %
13C). These quantities of carbon were chosen to fall below and

above 11.42 mmol organic carbon m22, the mean daily amount of

phytoplankton estimated to be deposited on Ythan sediments [16];

the three levels of organic enrichment are representative of the

mean daily quantities of carbon received by oligotrophic,

mesotrophic and hypertrophic estuaries respectively [17]. The

use of 13C-labelled C. radicans enabled us to trace the fate of the

constituent carbon into dissolved inorganic carbon (DI13C) and

bacterial biomass in a quantitative manner. Specific details of algal

culture techniques and biochemistry of the C. radicans are

presented elsewhere [18]. Immediately prior to experimentation,

the algal substrates were suspended in 10 ml of seawater and

gently pipetted directly onto the sediment surface to ensure

homogenous distribution. All cores were subsequently sealed with

lids to prevent gas exchange and incubated in darkness. Water

samples from each core, collected via lid ports immediately after

the introduction of substrates (t = 0) and every 4 hours thereafter,

were analysed for concentrations of dissolved oxygen, DIC and

DI13C, ammonium-nitrogen (NH4-N) and total oxidised nitrogen

(TOx-N; NO2+NO3). Core lids were gently depressed into the

cores as the water samples were drawn to avoid the production of

a head space. Stirrer-bars that passed through the lids via an o-ring

seal were rotated immediately prior to each sampling interval

without disturbing the sediment surface to ensure that the water

was well homogenized. Sediments were extruded at the end of the

experiment and the upper 1 cm was retained and stored at 280uC
for subsequent quantification of diatom carbon uptake into

bacterial biomass.

Sample Processing
Samples for determination of oxygen concentrations were

transferred into 10 ml Winkler bottles, fixed and subsequently

analysed using an automated Winkler titration system (785 DMP

Titrino, Metrohm U.K.). Concentrations of NH4-N and TOx-N

were determined using an automated segmented flow analyser

(Bran & Leubbe QuAAtro SFA, SEAL Analytical Ltd., U.K.).

Aliquots of water for the analysis of DIC and DI13C were sterile

filtered (0.2 mm) into Exetainers (Labco, U.K.), poisoned with 0.2%

(vol) mercuric chloride and stored at 4uC until analysis. DIC

samples were quantitatively converted to carbon dioxide before the

concentrations and carbon isotope ratios were determined using a

Gas-bench II connected to a DeltaPlus Advantage isotope ratio mass

spectrometer (IRMS; both Thermo Finnigan, Germany) [19]. The

mean amplitude of five replicate sample peaks was used to calculate

DIC concentration from a calibration curve derived from an

appropriate range of sodium carbonate standard solutions.

Purified phospholipid fatty acids (PLFAs) extracted from freeze-

dried sediment samples [20,21] were derivitized to yield fatty acid

methyl esters (FAMEs). The concentrations and carbon isotope

ratios of individual FAMEs were measured using a GC Trace

Ultra with combustion column attached via a GC Combustion III

to a Delta V Advantage IRMS (all Thermo Finnigan, Germany).

Individual PLFAs were quantified by combining the area of their

mass peaks, m/z = 44, 45 & 46, after background subtraction, and

comparison with a known internal standard (19:0) added to each

sample [22]. Bacterial carbon uptake was calculated from label

incorporation into the bacterial biomarker PLFAs i15:0, ai15:0

and i16:0 [23], assuming these represent 10% of total bacterial

PLFAs and 0.056 gC PLFA/gC biomass [24]. All calculations

relating to the uptake of 13C were made using well-established

equations [23]. Data are expressed as the total uptake and

mineralization of added diatom-derived carbon (12C +13C).

Bacterial growth efficiency (BGE) was estimated as: IB/(IB+RB),

where IB and RB are the quantities of diatom-derived carbon

incorporated into bacterial biomass and respired over the duration

of the experiment respectively. The resulting estimates are

considered to be minimum estimates as a proportion of the quan-

tified respiration may have been attributable to metazoan

organisms (see Discussion).

Statistical Analyses
All statistical analyses were conducted in the ‘R’ programming

environment [25] using the ‘nlme’ and ‘MASS’ packages [26,27].

Repeated seawater sampling from each core necessitated that all of

the resulting benthic flux data were analysed using linear mixed-

effects (LME) models that included core identity as a random effect

[28]. Variance covariate terms were also incorporated in the

random structure of the models in instances of unequal variances.

The fixed structures of the statistical models initially incorporated

time and treatment and an interaction between these terms.

Backwards model selection, based on the likelihood ratio test using

maximum likelihood estimation, was employed to determine the

fixed structures of the optimal models (OMs) [28,29]. Restricted

maximum likelihood estimation was used to generate model

parameter estimates. All OMs were validated to check that the

underlying assumptions were met: Normality of residuals was

examined by plotting theoretical quantiles versus standardized

residuals (Q-Q plots); homogeneity of variance was assessed by

plotting residual versus fitted values; independence was verified by

plotting residuals versus each covariate [28]. Estimated values±

standard errors (se) are presented.

Bacterial carbon uptake and BGE data were box-cox trans-

formed to attain homogeneity of variance prior to analysis using

one-way analysis of variance (ANOVA). Post-hoc multiple com-

parisons were achieved using Tukey’s honest significant difference

tests. Treatment effects on the proportional uptake of diatom-

derived carbon into individual PLFAs, a relative indication of the

structure of the active microbial community [30], were examined

using correlation-based principle components analysis [31]. The

PLFAs 14:0, 16:1(n-7), 16:1(n-5), 16:0 and all C18s were excluded

from this analysis owing to their prevalence in the diatoms [18].

Results

Benthic Fluxes
Concentrations of NH4-N and TOx-N were inversely related

(Figs. 1A and 1B): NH4-N increased at a rate of 1.71 mmol

Metabolism of Temperate Estuarine Benthic Bacteria
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±0.11 m22 d21 (L.Ratio = 105.44, df1, p,0.001; Table S1) and

TOx-N decreased at a rate of 1.27±0.15 mmol m22 d21

(L.Ratio = 50.90, df1, p,0.001; Table S2). These rates were not

affected by the quantities of added diatoms (Time6Treatment

interactions; L.Ratios,4.5, df3, p.0.21 in both cases). Oxygen

concentrations declined significantly over time (Fig. 1C; L.Ra-

tio = 146.91, df1, p,0.001; Table S3) but drawdown rates were

not affected by the quantity of added diatoms (Time6Treatment

interaction; L.Ratio = 5.09, df3, p = 0.165); oxygen was consumed

at a rate of 33.45±1.43 mmol m22 d21. In contrast, the rate at

which diatom-derived carbon was mineralized increased signifi-

cantly with increasing quantities of added material (Fig. 1D;

Time6Treatment interaction; L.Ratio = 146.73, df2, p,0.001;

Table S4); mineralization rates in the low, medium and high

treatments are presented in Table 1.

Microbial Carbon Processing
The quantities of diatom-derived carbon incorporated into

bacterial biomass at the end of the experiment increased

significantly with the quantity of material added (Table 1;

F = 436.45, df2,6, p,0.001). Treatment effects on BGE were also

apparent (Table 1; F = 10.25, df2,6, p = 0.012). The proportional

uptake of diatom-derived carbon into individual fatty acids

differed by treatment (Fig. 2). The microbial community in the

low treatment discriminated on the first principal component

(PC1), with positive loadings of 10-Me18:0, i16:0 and i16:1 and

negative loadings of 15:0, i15:0 and i17:0. Communities in the

medium and high treatments discriminated on the second

principal component (PC2); the former was characterised by

increased carbon uptake into 17:1(n-8)c, 17:0, 19:1(n-8), ai17:0

and 12-Me16:0 and decreased uptake into 17:0cy and 19:1(n-6).

The inverse pattern was observed in the high treatment.

Discussion

Our measured fluxes of NH4-N, TOx-N and oxygen (Fig. 1A, B

and C) are in good agreement with earlier observations from other

temperate, intertidal mudflat sediments [32–36]. The null effect of

resource supply on these fluxes (p.0.16 in all cases; Fig. 1) is

consistent with previous benthic enrichment studies in which

relatively small quantities of organic carbon have been added

Figure 1. Resource-quantity effects on benthic fluxes. Temporal
trends in the concentrations of NH4-N (A), TOx-N (B), oxygen (C) and
respired diatom-derived carbon (D). Data from the control, low-,
medium- and high-treatments are represented by squares, triangles,
vertical- and diagonal crosses respectively.
doi:10.1371/journal.pone.0038582.g001

Table 1. The effect of resource-quantity on estuarine benthic
carbon budgets.

Resource quantity

Low Medium High

Mineralization 0.143±0.05 (3.4) 1.149±0.06 (2.8) 6.589±0.50 (1.6)

Bacterial uptake 0.096±0.01 (2.3) 1.314±0.12 (3.2) 8.201±1.51 (2.0)

BGE 0.40±0.02 0.53±0.02 0.55±0.04

Mineralization and uptake units are mmol C m22 d21±SEM. Estimated bacterial
growth efficiencies (BGE) are expressed as proportions±SEM. Values in
parentheses represent the percentage of total carbon added.
doi:10.1371/journal.pone.0038582.t001
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[23,37,38]. These data do not imply that oxygen and nitrogen

cycle independently of the amount of organic carbon available; it

is well known that the deposition of excessive quantities of organic

material on the seabed impact upon benthic fluxes of oxygen and

nitrogen [39]. Rather, they demonstrate that our substrate

additions were sufficiently low to avoid driving a major change

to the natural functioning of the benthos. It follows that the

majority of the oxygen consumed during our incubations was used

to catabolise substrates other than those introduced experimentally

and/or for the reoxidation of reduced inorganic metabolites

produced during anaerobic respiration [40]. Similarly, the

observed nitrogen fluxes relate to the cycling of autochthonous

substrates, and not necessarily to the activities of the microbial

communities responding to the diatom additions.

Resource-availability had a significant, stepwise effect on the

quantities of diatom-derived carbon that were mineralized

(Fig.1D) and incorporated into bacterial biomass (Table 1). These

data support the understanding that the catabolism of organic

matter in marine sediment ecosystems, from tropical estuaries and

Arctic shelf sediments to the deep-sea, is directly related to the

quantity of labile respiratory substrates [38,41–44]. Previous

studies using two levels of 13C-enriched diatoms to investigate

benthic carbon cycling also reported a similar, stepwise effect of

substrate availability on mineralization rates in coastal and deep-

sea sediment ecosystems [45,46]. Our study illustrates the

sensitivity of 13C tracer experiments relative to measuring bulk

ecosystem parameters such as oxygen consumption. It also

highlights the need for caution when attempting comparisons

between different 13C tracer studies; the outcome of such

experiments clearly depends upon the quantity and quality of

the available substrates [38,45,46].

Estimated BGEs increased significantly with the supply of labile

substrates (Table 1), despite the temperature being well below the

seasonal maximum of ,20uC. Our estimates of BGE fall within

previously observed values in estuarine and deep-sea sediments

[14,37,38] and agree closely with the value of 0.5 observed for a

natural marine bacterioplankton community growing on diatom

aggregates [47]; they also correspond with an apparent plateau in

BGE of ,0.5 observed across a range of eutrophic pelagic systems

[48]. Benthic metazoans, particularly nematodes, contribute

significantly to carbon mineralization in estuarine sediments

[1,49]. We did not quantify metazoan contributions to mineral-

ization processes, therefore our values of BGE may be considered

to be minimal estimates. However, a growing number of studies

report negligible mineralization and uptake of diatom-derived

carbon by nematodes during short-term tracer incubation studies

[37,50–52]. This suggests that they are not directly involved in the

catabolism of detrital material, at least within the time-scale of the

present study. Close agreement between the BGEs presented

herein and previous estimates suggests that the metazoan

contribution to carbon mineralization in our experiments was

low. This interpretation is further supported by other work which

indicates that estuarine detrital carbon cycling is predominated by

bacteria whereas the constituent metazoans feed selectively on

living, autocthonous microphytobenthos [53]. Our observations

indicate that the growth of the bacterial community in our

experimental sediments was directly regulated by resource

availability, as previously reported for bacterioplankton commu-

nities [11–13]. The positive relationship between BGE and

resource supply reflects a progressive uncoupling between bacterial

biomass production and respiration. This finding is consistent with

theory and previous observations; a greater proportion of

assimilated resources must be allocated to meet basal demands

for biomass maintenance (as opposed to growth) when resources

are scarce [12,13,54].

The relative uptake of tracer carbon into the different PLFAs

examined in our study changed between the low, medium and

high substrate additions (Fig. 2), likely reflecting a range of

complex and interacting processes. Previous work using terminal

restriction fragment length polymorphism analysis found no effect

of resource supply on the prokaryotic community composition of

tidal creek sediments [55]. Similarly, there were no appreciable

changes in the proportional uptake of 13C into different PLFAs in

a deep-sea sediment community when exposed to two different

quantities of 13C-enriched diatoms [46]. Differences in the relative

distribution of 13C-labelling between the treatments in our

experiment may therefore reflect a resource-dependent change

in the balance between catabolism and anabolism of individual

PLFAs within the active component of the bacterial community;

the relative abundance of certain PLFAs are known to be affected

by external stressors [56,57] and can change in response to the

substrates used for biosynthesis [58]. However, the most dominant

factors discriminating between the low-, medium- and high-

treatments, 10Me-18:0, 17:1(n-8) and 17:0cy respectively, are

typical of sulfate-reducing bacteria [56,59]. This group of

organisms is responsible for approximately 50% of all carbon

degradation in shallow water sediments [60]. They grow under

anaerobic conditions but are capable of aerobic carbon mineral-

ization [61,62]. We therefore suggest that the observed changes in
13C uptake into individual PLFAs predominantly reflects a

progressive shift towards a sulfate-reducing microbial community

as substrate supply increased [56]. However, the present data do

not allow us to conclusively differentiate between the suggested

explanations. The isotope-based PLFA technique is a powerful

and sensitive method for discerning carbon uptake in natural

microbial communities. The effectiveness of this approach is,

however, tempered by an inability to differentiate between a true

shift in the microbial community structure and metabolic changes

Figure 2. Influence of resource availability on carbon uptake
into individual phospholipid fatty acids. Principle components
analysis distance biplot visualising differences in the proportional
uptake of 13C into the phospholipid fatty acids between the different
treatments.
doi:10.1371/journal.pone.0038582.g002
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within the same community owing to the poor specificity of

individual biomarker PLFAs. Irrespective of the underlying

mechanism, substrate-induced shifts in the synthesis of individual

compounds has implications for the energetic and nutritional value

of estuarine sediments to the communities of deposit feeding

animals that inhabit them.

In conclusion, resource quantity had a profound effect on the

rates of carbon mineralization and uptake into specific PLFAs in a

temperate estuarine sediment microbial community. Processes that

increase the supply of labile resources to this environment will

result in a greater proportion of the organic carbon being retained

in the benthic food web due to increased bacterial growth

efficiency. Nevertheless, the absolute quantities of CO2 resulting

from microbial mineralization will increase with the input of labile

organic matter, at least over the range investigated herein. More

work is needed to refine our understanding of the longer-term

impacts of resource availability on microbial community structure

and functioning and the implications for stocks of previously

sequestered carbon in estuarine sediments.

Supporting Information

Table S1 Model output from the NH4-N concentration
data analysis. The optimal model (OM) was a LME model that

incorporated core identity as a random effect (L. ratio = 14.230,

df1, pcorr,0.001) and allowed the residual spread to increase

exponentially over time (L. ratio = 44.507, df1, p,0.001):

NH4Nij~InterceptzTimeijzaizeij

ai
~NN(0,s2

Core)

eij
~NN(0,s2|e2d|Timei )

where ai is a random intercept and the index i refers to the core

identity (i = 1,…, 12), and j to the observations within each core

(j = 1,…,7). Random effect (a), variance function (b), correlation

coefficients of observations made within each variance grouping

(intra-class correlation) and fixed effects (d). *Note the intercept

(baseline) is the control treatment.

(DOC)

Table S2 Model output from the TOx-N concentration
data analysis. The optimal model (OM) was a LME model that

incorporated core identity as a random effect (L. ratio = 5.390, df1,

pcorr = 0.010) and allowed the residual spread to increase

exponentially over time (L. ratio = 15.366, df1, p,0.001):

TOxNij~InterceptzTimeijzaizeij

ai
~NN(0,s2

Core)

eij
~NN(0,s2|e2d|Timei )

where ai is a random intercept and the index i refers to the core

identity (i = 1,…, 12), and j to the observations within each core

(j = 1,…,7). Random effect (a), variance function (b), correlation

coefficients of observations made within each variance grouping

(intra-class correlation) and fixed effects (d). *Note the intercept

(baseline) is the control treatment.

(DOC)

Table S3 Model output from the oxygen concentration
data analysis. The optimal model (OM) was a LME model that

incorporated core identity as a random effect (L. ratio = 19.467,

df1, p,0.001): Oxygenij~InterceptzTimeijzaiai
~NN(0,s2

Core)
where ai is a random intercept and the index i refers to the core

identity (i = 1,…, 12), and j to the observations within each core

(j = 1,…,7). Random effect (a), correlation coefficients of observa-

tions made within each core [intra-class correlation] (b) and fixed

effects (c). *Note the intercept (baseline) is the control treatment.

(DOC)

Table S4 Model output from the DIC concentration
data analysis. The optimal model (OM) was a LME model that

incorporated core identity as a random effect (L. ratio = 48.237, df1,

pcorr,0.001) and allowed the residual spread to increase exponen-

tially over time and to vary by treatment (L. ratio = 179.335, df3,

p,0.001):

Carbonij~InterceptzTimeijzTreatmentijzTimeij|

Treatmentijzaizeijai
~NN(0,s2

Core)eij
~NN(0,s2

k|e
2d|Timeij )

where ai is a random intercept and the index i refers to the core

identity (i = 1,…, 9), j to the observations within each core

(j = 1,…,6) and k to the treatment (k = 1,…, 3). Random effect (a),

variance function (b), correlation coefficients of observations made

within each variance grouping (intra-class correlation) and fixed

effects (d). *Note the intercept (baseline) is the low diatom-addition

treatment.

(DOC)
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