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Abstract

Motivation: Computational approaches that can predict protein functions are essential to bridge

the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have

been experimentally characterized. We present a domain-based method for protein function

classification and prediction of functional sites that exploits functional sub-classification of CATH

superfamilies. The superfamilies are sub-classified into functional families (FunFams) using a hier-

archical clustering algorithm supervised by a new classification method, FunFHMMer.

Results: FunFHMMer generates more functionally coherent groupings of protein sequences than

other domain-based protein classifications. This has been validated using known functional infor-

mation. The conserved positions predicted by the FunFams are also found to be enriched in known

functional residues. Moreover, the functional annotations provided by the FunFams are found to

be more precise than other domain-based resources. FunFHMMer currently identifies 110 439

FunFams in 2735 superfamilies which can be used to functionally annotate > 16 million domain

sequences.

Availability and implementation: All FunFam annotation data are made available through the

CATH webpages (http://www.cathdb.info). The FunFHMMer webserver (http://www.cathdb.info/

search/by_funfhmmer) allows users to submit query sequences for assignment to a CATH FunFam.

Contact: sayoni.das.12@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid increase in sequencing and structural genomics initiatives

have provided us with a wealth of data to unravel the complex se-

quence, structure and function relationships in proteins.

However, <1.0% of this data are functionally annotated from ex-

perimental studies (UniProtKB, January 2015).

The most commonly used methods for protein function annota-

tion often exploit a sequence or structure homology search of a

query protein against a protein database, although more sophisti-

cated approaches which also exploit heterogeneous data (e.g. gene

expression and protein–protein interaction data, etc.) and combine

this diverse information using machine-learning approaches have

also been developed. [For a review of current approaches, see

Radivojac et al. (2013)]. It has been observed that proteins sharing

high sequence or structural similarity can often evolve different

(sub-)functions (Bashton and Chothia, 2007; Glasner et al., 2006;

Hannenhalli and Russell, 2000). These functionally diverse relatives

perform distinct functions even though they may share a general

functional feature, e.g. for enzymes this may be a common step

along their reaction pathways. Such groups of homologous proteins

sharing the same function will be referred to as functional families

hereafter.
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Classification of protein space into functional families is useful for

annotating uncharacterized sequences by inheriting annotations from

characterized sequences in the family the query sequence matches

best. The identification of functional families and characterization of

their functional sites is also important for understanding how function

is modulated during evolution by sequence and structural changes in

diverse homologous groups (Hannenhalli and Russell, 2000).

Protein-based family resources like PANTHER (Mi et al., 2013),

TIGRFAMs (Haft et al., 2013), HAMAP (Lima et al., 2009) and

specialized databases like Structure-Function Linkage Database

(SFLD) (Akiva et al., 2014), TEED (Widmann et al., 2010) provide

manually curated functional grouping of protein sequences which

are limited by low sequence coverage. Using more automated

approaches, ProtoNet (Rappoport et al., 2014) provides an

automatic classification of similar proteins which are further sub-

classified into clusters using an information-theoretic protocol based

on available annotations. Another automated protein family

resource, PhyloFacts (Krishnamurthy et al., 2006) provides a collec-

tion of protein families which have been further classified into subfa-

milies by the SCI-PHY algorithm which uses Bayesian and

information-theoretic measures to construct a hierarchical phylo-

genetic tree and determine an optimal cut of the tree into families

(Sjolander, 1998).

When global protein homology searches fail, i.e. an

uncharacterized protein cannot be assigned to any characterized

whole protein families, function can perhaps be better understood

by analysing its domain components and finding functionally

characterized homologs for each domain. Exploiting this approach,

a ‘domain grammar’, (Dessailly et al., 2009) which exploits informa-

tion from a protein domain resource, can be used to describe protein

function.

There are many protein domain resources which provide classifi-

cations of protein domains based on either sequence (e.g. Pfam) or

structure [e.g. CATH (Sillitoe et al., 2015) and SCOP (Murzin et al.,

1995)]. Pfam (Sonnhammer et al., 1997) is the most comprehensive

and widely used database of protein domain families. The Pfam ver-

sion 27.0 release comprises 14 831 manually curated Pfam-A fami-

lies which provides �80% coverage of the UniProtKB sequence

space (Finn et al., 2014). The Funshift (Abhiman and Sonnhammer,

2005) database classifies Pfam version 12.0 families into subfamilies

using the SCI-PHY algorithm and provides analysis of function

shifts of subfamilies within a Pfam family (Brown et al., 2007;

Sjolander, 1998).

The protein structure classification databases CATH (Sillitoe

et al., 2015) and SCOP (Murzin et al., 1995) extracts structural in-

formation from the Protein Data Bank (PDB) and classifies protein

domains into evolutionary-related superfamilies based on their evo-

lutionary origin, exploiting structural data to bring together very

distant evolutionary-related domains in a superfamily. Additionally,

Gene3D (Lees et al., 2014) and SUPERFAMILY (de Lima Morais

et al., 2011) provide broader sequence coverage for each superfam-

ily in CATH and SCOP, respectively.

SCOP sub-classifies its superfamilies into manually curated fami-

lies. However, these have been found to more closely resemble taxo-

nomic groups rather than functional groups (Pethica et al., 2012). A

few protein resources like InterPro (Mitchell et al., 2015) and the

Conserved Domain Database (CDD) (Marchler-Bauer et al., 2015)

also combine multiple protein domain family databases like Pfam,

SMART, TIGRFAM among others, providing higher sequence

coverage compared with individual resources. Thus, it can be clearly

seen that although, there are several well-established resources for

classifying homologous sequences into protein or domain families,

most have not traditionally sub-classified relatives according to

functional similarity using automated approaches, because of the

complex nature of this task.

Sequences in the CATH-Gene3D resource have been classified

into functional families or FunFams by cutting a hierarchical tree of

sequence relatives produced by a clustering algorithm, GeMMA

(Lee et al., 2010) at a generic threshold. This was later improved by

the Domain Family Exploration (DFX) algorithm which used func-

tion annotation data from the Gene Ontology (GO) (Ashburner

et al., 2000) to sub-classify the superfamilies into FunFams

(Rentzsch and Orengo, 2013). However, due to the paucity of the

GO terms and annotation biases existing in the GO (Schnoes et al.,

2013), new approaches for functionally classifying CATH superfa-

milies have been explored which exploit sequence patterns, and are

unaffected by the limitations of GO.

Here, we present a new and much more accurate method for

functional classification of CATH superfamilies into FunFams that

can be used for protein function annotation and prediction of func-

tionally important residues. The new protocol, FunFHMMer, deter-

mines an optimal cut of a hierarchical clustering tree of sequence

relatives within a given superfamily by calculating a novel functional

coherence index based on conserved positions and specificity-

determining positions (SDPs) in sequence alignments. Prediction of

SDPs has been used in the past to generate functional groups for a

number of selected protein superfamilies (Costa et al., 2013; Mazin

et al., 2010; Rausell et al., 2010; Reva et al., 2007). However, none

of these approaches has been used for large-scale sub-classification

of all known protein domain superfamilies. Moreover, these

methods also require an accurate multiple-sequence alignment of all

sequences as a starting point which can lead to erroneous sub-

classification of very large and diverse superfamilies.

The functional purity of the classification has been validated by

known functional information. For example, the predicted con-

served sites of the FunFams are found to be enriched in experimen-

tally characterized functional residues and the functional

annotations provided by FunFams are found to be more precise

compared with those generated by other domain-based resources.

Furthermore, the FunFHMMer prediction protocol is able to pro-

vide functional annotations for nearly >16 million domain se-

quences in UniProtKB and Ensembl.

2 Methods

2.1 Superfamily sequence clustering
For each CATH-Gene3D superfamily, the sequences are first pre-

clustered at 90% sequence identity into S90 clusters using CD-HIT

(Fu et al., 2012). All sequences are associated with GO annotations

from UniProt-GOA (dated May 2013). Any S90 cluster which lacks

at least one sequence with high-quality GO annotations is removed,

as each family must contain at least one relative with reliable func-

tion annotations for annotation transfer to uncharacterized se-

quences. High-quality GO annotations were considered to be those

which were Inferred from Electronic Annotations (IEAs) in

Swiss-Prot made by EC2GO or Swiss-Prot Keyword2GO mapping

methods as well as annotations experimentally inferred or curated

(non-IEA) in UniProtKB (Rentzsch and Orengo, 2013; Škunca et al.,

2012). Fragments (<80% of the average sequence length) are then

removed from the remaining clusters. These clusters form the start-

ing clusters for the profile-based agglomerative clustering algorithm,

GeMMA (Lee et al., 2010). GeMMA exploits COMPASS (Sadreyev

and Grishin, 2003) to compare the profiles derived from the
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multiple sequence alignments (MSAs) of clusters present at each

stage of the clustering. At each iteration, the cluster profiles match-

ing above a threshold are merged and profiles are generated for the

new clusters. These iterations continue giving a hierarchical cluster-

ing tree built from the leaf nodes to the root, till a single cluster

remains.

2.2 FunFHMMer algorithm
The FunFHMMer algorithm is an automated classification protocol

that determines the optimal cut of this ‘bottom-up’ hierarchical clus-

tering tree (Supplementary Fig. S1) to identify FunFams in protein

domain superfamilies. It identifies highly conserved positions and

SDPs in cluster alignments (Fig. 1) and calculates a novel Functional

Coherence index (FC) for each parent node in the tree. This value is

to determine whether the child nodes should be merged.

The conserved positions in all sequences in an alignment are gen-

erally important for the stability, folding or function of the protein

domain. In contrast, SDPs or positions conserved within groups of

sequences which share a specific (sub-)function, are usually involved

in functional divergence (Abhiman and Sonnhammer, 2005; Rausell

et al., 2010).

2.2.1 Functional coherence index (FC)

The analysis of functional coherence of a parent node takes into ac-

count the following parameters:

1. Information content of MSAs. An MSA which comprises evolu-

tionary distant relatives is considered to be highly informative. The

diversity of residue conservation of positions in informative MSAs

not only helps to prevent bias but also provides more discriminating

conservation scores (Bartlett et al., 2002).

FunFHMMer calculates Diversity of Position Scores (DOPS) for

MSAs using Scorecons (Valdar, 2002). DOPS is 0 if all positions in

an alignment have the same conservation score and 100 when no

two positions have the same conservation score. For our analysis,

we have considered any alignment with a DOPS>70, as sufficiently

diverse (Dessailly et al., 2013). For less diverse alignments, any MSA

analysis will have a higher probability of predicting false positives

(false SDPs, in this case) as a result of less discriminatory conserva-

tion scores. To account for this, a DOPS factor ðDf Þ is used, where

Df ¼ 1, if both groups have DOPS>70 and Df ¼ 0, if either sub-

group have DOPS<70.

2. Proportion of predicted SDPs in an MSA. FunFHMMer uses

GroupSim (Capra and Singh, 2008) to predict SDPs in MSAs of par-

ent nodes in the clustering tree. GroupSim takes an MSA containing

pre-defined groups (clusters associated with two child nodes in the

tree) as input and calculates a prediction score (Gs) for each column

in the alignment. Gs ranges from 0 to 1 where higher scores indicate

a higher probability for a column in an alignment to be an SDP.

In order to discriminate easily between conserved positions and

SDPs using Gs, a threshold was identified that distinguishes between

these positions using a benchmark dataset generated by

Chakraborty and Chakrabarti (2015) (Supplementary Section S2).

Henceforth, we defined all positions with ðGs�0:3Þ as conserved

positions and those with 0.7<Gs �1 as SDPs in our subsequent

analysis of parent nodes.

For each parent node being analysed by FunFHMMer, its child

nodes form the predefined groups for GroupSim. The number of

SDPs ðNsdpÞ and the number of conserved positions ðNcÞ are calcu-

lated from the Groupsim prediction scores for the parent node

MSA. Whether two child nodes are merged depends on the ratio of

SDPs to conserved positions in the parent node MSA (Rsdp).

However, optimization trials showed that this ratio ðRsdpÞ needed to

be adjusted if one or both the child nodes had a low DOPS score.

The Rsdp ratio for a parent node is therefore calculated as:

Rsdp ¼ Df

Nsdp

Nc þNsdp
� 0:2

� �
þ ð1�Df Þ

Nsdp

Nc
� 1

� �
(1)

where Df is the DOPS factor of the MSA, Nsdp is the number of SDPs,

Nc is the number of conserved positions in the MSA. For more details

on how Equation (1) was derived, see Supplementary Section S3.

3. Gaps in an MSA. A large number of gaps in a parent node align-

ment would indicate that the group alignments are of different

lengths. The coherence index uses a gap factor fgap which is

dependant on the number of non-gapped ðNnongapÞ and gapped

positions ðNgapÞ in the alignment. Such that, fgap ¼ 0, if Nnongap

> Ngap and fgap ¼ 1, if Nnongap�Ngap in MSA.

Bringing together all the above parameters, the Functional

Coherence index (FC) is calculated using the empirical formula

described later (Equation 2), where a coherence index of 1 indicates

functional coherence of the parent node and 0 indicates that function-

ally diverse child nodes have been merged to form the parent node.

FC ¼
1 if Rsdp:fgap�0

0 if Rsdp:fgap > 0

(
(2)

where, Rsdp is the SDP ratio (Equation 1) and fgap is the gap factor.

The functional coherence index is used to ensure that only func-

tionally related clusters are merged. The resulting clusters of the tree

form the functional families (FunFams) for a protein domain super-

family. The workflow for the FunFHMMer algorithm is shown in

Supplementary Figure S4. Once the functional families have been

identified sequence patterns (hidden Markov models, HMMs) are

derived for each and used to identify further relatives in UniProtKB.

2.3 FunFam model generation and mapping of

family relatives
For each FunFam in a superfamily, an alignment is generated using

MAFFT (Katoh et al., 2002) and a profile HMM is built using

Fig. 1. Use of SDPs by FunFHMMer to infer functional coherence of cluster

alignments. The coloured circles represent the node sequence clusters and

each colour denotes a unique function. The schematic representation of the

parent node MSA and the child nodes MSA is shown along with the phylo-

genetic tree. Child nodes are separated by a dashed line. Conserved positions

in the MSA are shown in red and the SDPs are shown in green or yellow for

different child nodes
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HMMER3 (Eddy, 2010). A model-specific inclusion threshold score

is then determined for each family model by choosing the lowest

HMM bit score obtained by scanning all the sequences from which

a model was built, against the model itself. After this, all sequences

from Gene3D not clustered into an S90 cluster at the start of cluster-

ing, are scanned against the family models and a sequence is ac-

cepted as a new member of a FunFam if it exceeds the inclusion

threshold score of the respective family model.

2.4 Identification of functionally important residues

in FunFams
Ideally, FunFams are groups of protein domains with a high probability

of sharing the same function(s) and therefore the functionally import-

ant residues (e.g. catalytic residues, ligand-binding residues) in a family

are also expected to be highly conserved. For FunFams with sufficient

information content in their MSA, residue conservation scores are cal-

culated for each position in the alignment using Scorecons (Valdar,

2002). Scorecons scores range from 0 to 1 and residues having scores

�0.7 are considered to be highly conserved (Dessailly et al., 2013).

Overlaps between conserved positions in FunFams and known

catalytic residues taken from the Catalytic Site Atlas (CSA) (Porter et

al., 2004) were evaluated using enrichment tests adapted from

Dessailly et al. (2013). For each FunFam, enrichment values were cal-

culated as the difference between the proportion of conserved residues

that are catalytic and the proportion of all residues that are catalytic.

The enrichment values were averaged for each superfamily and an un-

paired, one-sided Wilcoxon rank sum test (Kruskal, 1957) was run on

the averaged values using the wilcox.test function in R (Team, 2014).

This test assessed a P-value for the null hypothesis that the proportion

of conserved catalytic residues is the same as the proportion of uncon-

served functional residues i.e. the median enrichment value is zero.

2.5 Functional annotation of uncharacterized sequences
Uncharacterized protein sequences are scanned against a library of

HMMs of CATH superfamilies and domain regions assigned to

superfamilies using DomainFinder3 (Yeats et al., 2010) [Fig. 2(ii)].

The domain sequences are then scanned against the CATH FunFam

models for the given superfamily using HMMER3 (Eddy, 2010) and

mapped to their most likely FunFam i.e. the model matched with the

highest HMM score, [Fig. 2(iii)] if it achieves the inclusion threshold

score of the respective family model.

The GO term annotations of that FunFam are then transferred

to the query sequence in a probabilistic manner which is calculated

as the annotation frequency of a particular GO term among the seed

sequences of the FunFam [Fig. 2(iii)–(iv)]. The GO term confidence

scores are subsequently propagated up the GO hierarchy (Fig. 2(vi)].

Finally, the non-redundant set of constituent domain GO term as-

signments for each domain region in the protein sequence, each GO

term retaining its highest confidence score, together make up the

function predictions for the whole-protein.

2.6 Assessment of functional purity of FunFams
To assess whether sub-classifying the domain data in CATH-

Gene3D into FunFams by FunFHMMer improved the functional

purity of the FunFams and the ability to use them to transfer func-

tional annotation, we performed the following tests: (i) assessment

of the quality of functional classification using known functional in-

formation (EC numbers) and (ii) analysis of the predictive power of

CATH-Gene3D FunFams using a UniProtKB/Swiss-Prot rollback as-

sessment. In these, we compared FunFHMMer against our previous

functional classification method, DFX and other domain-family

classifications i.e. Pfam, SUPERFAMILY and CDD. The domain

families and superfamilies in these resources have not been explicitly

classified according to function and therefore, the only purpose of

including them in the assessment was to determine whether there

was any benefit in function annotation transfer from sub-classifica-

tion of the CATH-Gene3D resource into FunFams.

2.6.1 Quality of functional classification based on EC numbers

This test (referred to as the EC assessment hereafter) was used to

analyse the performance of protein classifications in distinguishing

between sequence relatives having different EC numbers as consis-

tency of EC numbers across a group of sequence relatives is clearly

indicative of functional purity. The FunFams generated by

FunFHMMer for both CATH superfamilies and Pfam-A families

were assessed as were DFX FunFams, CATH superfamilies, Pfam-A

families, superfamilies in SUPERFAMILY and families in

Fig. 2. Function prediction using CATH FunFams. Workflow for making func-

tion predictions using CATH Functional Families
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SUPERFAMILY. Although CATH, Pfam and SUPERFAMILY are

not publicized as functional classifications, these resources are fre-

quently used for functional annotation of query sequences.

The EC annotations of all FunFam sequences in CATH were ex-

tracted from UniProtKB (dated February 2013) but we only con-

sidered those which had a four-digit EC number associated with the

whole protein. These sequences were mapped to the different pro-

tein classifications used in the assessment and the number of differ-

ent unique EC numbers per family or superfamily was analysed.

2.6.2 UniProtKB/Swiss-Prot rollback assessment

A CAFA-style assessment was generated by rolling back the

UniProtKB/Swiss-Prot database dated November 2013 to May 2013

(6 months before). The assessment comprised well-annotated se-

quences which did not have any reported GO terms (having GO evi-

dence codes: EXP, IDA, IMP, IGI, IEP, TAS or IC) in the Molecular

Function Ontology (MFO) in the May 28, 2013 version of

UniProtKB/Swiss-Prot, but had MFO annotations associated with

them in the November 28, 2013 version. This resulted in a dataset

of 1945 proteins. The distribution of leaf term (MFO) annotations

of the assessment proteins is shown in Supplementary Figure S5.

Sequence MD5 (a 32 character hexadecimal number) of the query

sequences were used to map sequences between databases (Smith

et al., 2005). Sequences were scanned against FunFams generated by

DFX and FunFHMMer to predict functions for this dataset using

the protocols described earlier and high-quality MFO annotations

(Section 2.1 for details) available up to May 2013. The functional

annotations assigned by FunFams generated by FunFHMMer were

compared with the annotations provided by Pfam (version 27.0) and

CDD (version 3.10) family matches (Supplementary Section S5.2).

Pfam and CDD were chosen for the assessment as Pfam is the most

comprehensive manually curated domain-based resource which is

widely used by biologists for functional annotation and CDD is a

widely used comprehensive protein resource that integrates multiple

curated protein and protein domain family databases such as Pfam,

SMART, COGs (Cluster of Orthologous Groups), TIGRFAMs,

NCBI Protein Clusters and NCBI Curated Domains. Each classifica-

tion protocol was evaluated only on the subset of the assessment

dataset for which it predicted at least one GO annotation.

The performance of the functions predicted by different classifi-

cation methods was measured using Precision-Recall (PR) graphs

by comparing the maximum F-measure ðFmaxÞ (harmonic mean

between precision and recall) values in the same manner as used

by Radivojac et al. (2013) in the CAFA (Critical Assessment of

protein Function Annotation) function prediction assessment

(Supplementary Section S5.3).

2.7 Generation of CATH superfamily networks
CATH superfamily networks are constructed in which FunFams are

represented by nodes and the edge distances correspond to the se-

quence similarity between the FunFams, assessed using Profile

Comparer (PRC) (Madera, 2008) which compares the sequence pro-

files derived from the multiple alignments of the families. The net-

works are visualized in the prefuse force-directed layout with edges

weighted by the PRC score using the Data-Driven Documents (D3)

JavaScript library (Bostock et al., 2011).

3 Experiments and results

3.1 Generation of CATH FunFams
FunFHMMer was used to generate a new set of FunFams for CATH

v4.0 (Sillitoe et al., 2015). A total of 110 439 FunFams were

generated by FunFHMMer for 2735 CATH superfamilies. By scan-

ning UniProtKB sequences against CATH-Gene3D and FunFam

HMMs (see Section 2.3 in Methods), >16 million sequences can be

mapped to the FunFams and annotated with functional information.

All FunFam data are made available through the CATH webpages

which provides a listing of FunFams within each superfamily. For

each FunFam, visualization of the MSA is provided, which is also

available for download.

FunFHMMer was also used to generate FunFams for 14 831

Pfam-A families giving 172 211 Pfam-A FunFams. In the text below,

Pfam families that have not been sub-classified using FunFHMMer

are referred to as Pfam (native) families. FunFams were also gener-

ated for the CATH superfamiles using the DFX algorithm which re-

sulted in 26 760 DFX FunFams.

3.2 Functionally important residues are highly

conserved in FunFams
The conserved residues in FunFam alignments (Section 2.4) were

found to be significantly enriched in known catalytic residues, i.e.

FunFams have a greater proportion of conserved catalytic residues

in comparison to unconserved catalytic residues (P-value<3.64E-

51). Moreover, the FunFams were also found to have a larger pro-

portion of conserved catalytic residues compared with our previous

classification (Supplementary Section S6). The highly conserved resi-

dues in the FunFams identified by FunFHMMer are highlighted on a

representative 3D-structure for the FunFam and can be viewed on

the CATH webpages.

3.3 Assessment of functional purity of FunFams
3.3.1 Quality of functional classification using EC numbers

The EC assessment dataset (Section 2.6.1) in CATH, consisting of

670 128 sequences, mapped to 1664 CATH superfamilies, 33 668

CATH FunFams generated by FunFHMMer, 9215 CATH FunFams

generated by DFX, 4856 Pfam (native) families, 24 789 Pfam

FunFams generated by FunFHMMer, 1187 superfamilies in

SUPERFAMILY and 2509 families in SUPERFAMILY.

Figure 3 shows the proportions of different sequence groupings

(families or superfamilies) generated by the above-mentioned pro-

tein classifications having relatives with one or many different EC

numbers. The figure has been truncated to show the proportion of

families or superfamilies, up to a maximum of 10 different ECs per

sequence grouping by a classification protocol. The highest propor-

tion of families found to have only one EC number associated with

them were CATH FunFams (86.5%) and the Pfam FunFams

(85.5%) generated by FunFHMMer, followed by CATH FunFams

(71.9%) generated by DFX, Pfam (native) families (51.6%), CATH

superfamilies (37.7%), families in SUPERFAMILY (35.8%) and

superfamilies in SUPERFAMILY (30.7%). This illustrates that the

FunFams generated by FunFHMMer provide a more functionally

coherent grouping of protein sequences than the other domain clas-

sifications. Moreover, it also shows that the FunFHMMer classifica-

tion protocol is not limited in its use to CATH but can also be used

to sub-classify other widely used domain-based classification re-

sources such as Pfam.

Furthermore, we also assessed the quality of our functional sub-

classification by comparing functional assignments against the re-

nowned SFLD which has been used in benchmarking other func-

tional classifications (Brown et al., 2007 and Lee et al., 2010).

Results are given in the Supplementary Section S7 which showed

that FunFHMMer provides functional families that correspond well

with the manually curated SFLD families.
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3.3.2 UniProtKB/Swiss-Prot rollback assessment

The PR graph in Figure 4 shows the performance of FunFams gener-

ated by FunFHMMer in predicting functions for the rollback assess-

ment compared with functions predicted by Pfam (native) families,

CDD families and DFX FunFams at different confidence score

thresholds ranging from 0 to 1. Pfam provides predictions for the

highest number of sequences (Coverage (C)¼86.5%) in the dataset

followed by DFX (C¼75.8%), CDD (C¼74.7%) and

FunFHMMer (C¼74%).

From Figure 4, we observe that all the methods perform competi-

tively. For predictions with high confidence scores (thresh-

olds>0.95), Pfam (native) and DFX families i.e. broader groupings

of protein sequences can predict functions with higher precision

than CDD and FunFHMMer. However, for all other predictions

with lower confidence scores (thresholds<0.95), CDD and

FunFHMMer perform better with respect to both precision and

recall. For this dataset, FunFHMMer gives the highest maximum

F-measure (Fmax¼0.653) than the other family resources (CDD

Fmax¼0.598; DFX Fmax¼0.595; Pfam Fmax¼0.581). The relative

performance of the methods was the same for hard targets of the as-

sessment i.e. those proteins which do not have any functionally

annotated relatives with sequence identity>50% (Supplementary

Section S5.4). FunFHMMer also shows better performance (higher

Fmax value) in predicting protein functions compared with

DFX which confirms that, as expected, improved functional sub-

classification of CATH superfamilies also improves protein function

prediction and that the purity of the FunFams can have a significant

impact on their performance in functional annotation of

uncharacterized sequences.

3.4 Visualization of FunFam relationships within

superfamilies
The superfamily networks can be very useful in providing a compre-

hensive summary of the relationships between FunFams in a super-

family. For example, Figure 5 shows the network for the large and

diverse HUP superfamily (High-signature proteins, UspA and PP-

ATPase, CATH 3.40.50.620) showing only FunFams with high in-

formation content. Study of such superfamily networks can provide

useful insights into the evolution of functional diversity within the

superfamily. All superfamily networks can be viewed on the CATH

web pages.

4 Conclusion

The CATH-Gene3D resource provides a comprehensive classifica-

tion of structure and sequence domains into 2735 structure-based

Fig. 3. EC number variation across protein classifications. Percentage of families or superfamilies having a certain number of EC terms for each of the domain-

based protein classifications

Fig. 4. UniProt rollback assessment. Performance of FunFHMMer protocol on

the UniProtKB/Swiss-Prot rollback assessment dataset compared with func-

tional annotations predicted by DFX protocol, Pfam (native) family and CDD

family assignments
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superfamilies. We have developed a novel method (FunFHMMer)

for functional classification of these superfamilies. The aim of this

classification is manifold. For example, to improve our understand-

ing of the sequence and structure mechanisms of functional diver-

gence within a superfamily during evolution and to improve the

functional annotation of uncharacterized protein domain sequences

assigned to an annotated functional family within the superfamily.

To our knowledge no other such comprehensive functional classifi-

cation of domain sequences, linked to structural data, exists.

Here, we show that our novel functional classification protocol

has resulted in FunFams that are significantly more functionally

pure than in our previous classification reported in 2011 (DFX,

Rentzsch and Orengo, 2013). This was demonstrated using an as-

sessment protocol based on the EC classification and the manually

curated SFLD superfamilies. We also demonstrate that this

enhanced functional purity translates into better performance in

functional prediction for uncharacterized sequences using a

UniProtKB/Swiss-Prot rollback assessment.

FunFHMMer clearly generates more functionally pure families

than other domain-based resources and outperforms DFX in protein

function prediction as assessed by the UniProtKB/Swiss-Prot roll-

back assessment. Moreover, the performance of FunFHMMer in the

preliminary results of CAFA 2 (2013–2014) have been very encour-

aging. FunFHMMer, which only uses domain information, was fea-

tured among the top five among 110 automatic function prediction

methods (some of which use information from heterogenous data

sources for making predictions) in predicting biological process GO

terms and among the top 10 in predicting molecular function terms.

CAFA 2 results can be accessed from: https://github.com/idoerg/

CAFA2-results. The CAFA assessment protocol provides independ-

ent validation that the FunFams in CATH-Gene3D are of reasonable

functional purity and valuable for providing functional annotations

for novel, uncharacterized sequences.

CATH currently identifies 110 439 FunFams and for the most

populated of these (having high information content), accounting

for 72% of CATH-Gene3D sequences, residues implicated in func-

tional sites can be predicted. Our assessment of functional purity of

the FunFams has shown that our new families can be used to iden-

tify a higher proportion of known functional residues associated

with a particular functional grouping than our previous method

DFX. A web server has been set up to allow users to submit query

sequences for assignment to a CATH FunFam, where possible. The

server (http://www.cathdb.info/search/by_funfhmmer) takes a pro-

tein sequence in the FASTA format as input and scans it against the

CATH FunFam HMMs. The FunFam matches for the constituent

domains of the query sequence are reported when they achieve the

inclusion threshold score of the corresponding FunFam HMM.

Information on the highly conserved residues identified for those

CATH FunFams having MSAs with sufficient information content,

is also available on the CATH-Gene3D website (Lees et al., 2014;

Sillitoe et al., 2015). These positions are highlighted on a representa-

tive 3D-structure for the FunFam, where available.

We also provide network visualizations of the relationships be-

tween FunFams within each superfamily. These images provide

valuable insights into the functional diversity across a superfamily

and reveal where particular functions dominate the superfamily.

Therefore, CATH FunFams are useful for analysing the variation in

functions across a superfamily and since functional sites can be iden-

tified for many FunFams, they allow a structurally informed analysis

of the mechanisms of this divergence.

In summary, we have shown that a novel approach to sub-clas-

sifying FunFams in CATH-Gene3D, based on the difference in SDPs

between functional groups is able to separate FunFams exploiting

different conserved residues to perform their functional properties.

This approach provides a domain classification that is able to pro-

vide accurate functional annotations than broader groupings of

relatives.
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